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Membrane viscosity is known to play a central role in the transient dynamics of
isolated viscoelastic capsules by decreasing their deformation, inducing shape oscillations
and reducing the loading time, that is, the time required to reach the steady-state
deformation. However, for dense suspensions of capsules, our understanding of the
influence of the membrane viscosity is minimal. In this work, we perform a systematic
numerical investigation based on coupled immersed boundary–lattice Boltzmann (IB-LB)
simulations of viscoelastic spherical capsule suspensions in the non-inertial regime. We
show the effect of the membrane viscosity on the transient dynamics as a function
of volume fraction and capillary number. Our results indicate that the influence of
membrane viscosity on both deformation and loading time strongly depends on the volume
fraction in a non-trivial manner: dense suspensions with large surface viscosity are more
resistant to deformation but attain loading times that are characteristic of capsules with no
surface viscosity, thus opening the possibility to obtain richer combinations of mechanical
features.
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1. Introduction

A capsule is formed by a liquid drop core enclosed by a thin membrane, which can be
engineered with tailored mechanical properties such as strain-softening, strain-hardening
and viscoelastic properties (Barthès-Biesel 2016). Capsules have emerged as a promising
material for encapsulation, transportation and sustained release of substances in various
applications such as cosmetics, personal care products, self-healing paints, fire-retardant
coatings and pharmaceutical drugs (Kim et al. 2009; Luo & Bai 2019; Bah, Bilal &
Wang 2020; Sun et al. 2021). They are also used as a simplified model to study complex
biological cells such as red blood cells (RBCs) numerically (Zhang, Johnson & Popel
2007; Krüger 2012; Gekle 2016; Bächer et al. 2018; Shen et al. 2018).

The viscous component of the membrane is often disregarded when simulating the flow
behaviour of RBCs. However, microfluidic experiments have shown that, in such systems,
the membrane surface viscosity is an important feature, and the interplay between the
viscous and elastic contributions of the membrane is not trivial (Tran-Son-Tay, Sutera &
Rao 1984; Tomaiuolo et al. 2011; Tomaiuolo & Guido 2011; Braunmüller et al. 2012;
Prado et al. 2015; Tomaiuolo et al. 2016). The mechanical and rheological properties
of suspensions of purely elastic capsules have been thoroughly studied analytically
(Barthès-Biesel & Rallison 1981; Barthès-Biesel 1980, 1991, 1993; Barthès-Biesel, Diaz
& Dhenin 2002), experimentally (Chang & Olbricht 1993; Walter, Rehage & Leonhard
2001) and numerically (Pozrikidis 1995; Ramanujan & Pozrikidis 1998; Diaz, Pelekasis &
Barthès-Biesel 2000; Dodson & Dimitrakopoulos 2009; Clausen & Aidun 2010; Bagchi
& Kalluri 2011; Clausen, Reasor & Aidun 2011; Krüger, Varnik & Raabe 2011; Pranay,
Henríquez-Rivera & Graham 2012; Cordasco & Bagchi 2013; Karyappa, Deshmukh &
Thaokar 2014; Krüger, Kaoui & Harting 2014; Rorai et al. 2015; Alizad Banaei et al.
2017; Kessler, Finken & Seifert 2008; Tran et al. 2020; Wouters et al. 2020; Aouane,
Scagliarini & Harting 2021; Bielinski et al. 2021; Esposito et al. 2022). However, only a
few studies were dedicated to understanding the effect of the capsules’ membrane viscosity
(Barthès-Biesel & Sgaier 1985; Diaz, Barthès-Biesel & Pelekasis 2001; Yazdani & Bagchi
2013; Li & Zhang 2019; Guglietta et al. 2020, 2021a; Zhang et al. 2020; Guglietta et al.
2021b; Li & Zhang 2021; Rezghi & Zhang 2022; Rezghi, Li & Zhang 2022).

In their theoretical contribution, Barthès-Biesel & Sgaier (1985) performed perturbative
calculations in the small-deformation limit showing that the membrane viscosity reduces
the overall deformation. Concerning the loading time, that is, the time required to reach
the steady-state deformation, Diaz et al. (2001) were among the first investigating the
effect of membrane viscosity on the transient dynamics using numerical simulations: using
a boundary integral method they showed that, in an elongational flow, the presence of
the membrane viscosity induces an increase in the loading time that is proportional to
the membrane viscosity. Yazdani & Bagchi (2013) studied the effect of the membrane
viscosity on the deformation and the tank-treading frequency of a single viscoelastic
capsule numerically, also observing wrinkles appearing on the surface due to the
membrane viscosity. Recently, Li & Zhang (2019, 2020) coupled a finite difference method
with the immersed boundary–lattice Boltzmann (IB-LB) method to simulate the effect of
the viscosity at the interface. This implementation has been then employed to investigate
mainly the dynamics of RBCs, highlighting the key role played by the membrane viscosity
on the deformation and the associated characteristic times (Guglietta et al. 2020, 2021b;
Li & Zhang 2021) as well as on the tumbling and tank-treading dynamics (Guglietta et al.
2021a; Rezghi & Zhang 2022).

The works mentioned previously investigate the effect of membrane viscosity on single
capsules. However, the understanding of its effect on the suspension of capsules is
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still missing. To the best of the authors’ knowledge, a parametric study on the effect of
membrane viscosity on such systems does not exist yet. Our contribution aims at filling
this gap by focusing on generic spherical viscoelastic capsules. We present the results of
a numerical investigation of the effect of membrane viscosity on suspensions of (initially
spherical) viscoelastic capsules by using our coupled IB-LB implementation.

To study the impact of membrane viscosity, quantified via the Boussinesq number Bq
(see (3.3)), on the deformation D and loading time tL, we conducted simulations using
different values of Bq, capillary number Ca and volume fraction φ. We aim to investigate
how different values of the membrane viscosity and volume fraction affect the deformation
and loading time of viscoelastic capsules.

The remainder of this paper is organised as follows. In § 2 we present a few details on
the IB-LB method (§ 2.1) and the viscoelastic membrane model (§ 2.2). In § 3, we provide
details on the numerical set-up and introduce the main dimensionless numbers. Section 4
is dedicated to the numerical results: we first show and discuss the deformation and the
loading time for a single capsule (§ 4.1) and then for suspensions with different volume
fraction (§ 4.2). We finally summarise the main findings and provide some conclusions
and future perspectives in § 5.

2. Numerical model

We simulate the dynamics of the capsules and the surrounding fluid using the coupled
IB-LB method. In a nutshell, the immersed boundary (IB) method uses a triangulated
mesh of Lagrangian points as support to compute forces that are then used to impose the
correct space and time-dependent boundary conditions on the fluid, which is simulated
using the LB method. The IB-LB method provides a two-way coupling: the boundary
surface deforms due to the fluid flow, and the fluid local momentum balance is changed
due to the viscoelastic forces exerted by the boundary surface. Boundary surface forces
comprise membrane elasticity, membrane viscosity, a volume-conserving regularisation
term and a repulsive force to prevent capsules from penetrating each other. Details are
reported in the following.

2.1. The IB-LB method
The LB method solves numerically a discretised version of the Boltzmann transport
equation for the particle populations ni, representing the probability density function of
fluid molecules moving with a discrete velocity ci at position x on the lattice and at time
t (Benzi, Succi & Vergassola 1992). The solution to the Navier–Stokes equations emerges
from the transport equation via the calculation of the moments of the particle distribution
and the appropriate Chapman–Enskog analysis (Chapman & Cowling 1990).

The evolution of the functions ni provided by the lattice Boltzmann (LB) equation is

ni(x + ci�t, t + �t) − ni(x, t) = Ωi + Si, (2.1)

where �t is the discrete time step, Ωi represents the collision operator and Si is a source
term proportional to the acting external forces F (such as membrane forces, see § 2.2) that
is implemented following Guo, Zheng & Shi (2002):

Si(x, t) =
(

1 − �t
2τ

)
wi

c2
s

[(
ci · u

c2
s

+ 1
)

ci − u
]

· F , (2.2)

971 A13-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.694


F. Guglietta, F. Pelusi, M. Sega, O. Aouane and J. Harting

Here, τ is the relaxation time, i.e. the time the functions ni take to reach the equilibrium
distribution n(eq)

i which is given by (Qian & Humières & Lallemand 1992)

n(eq)
i (x, t) = wiρ

(
1 + u · ci

c2
s

+ (u · ci)
2

2c4
s

− u · u
c2

s

)
, (2.3)

with cs = �x/�t
√

3 being the speed of sound, �x the lattice spacing and wi suitable
weights. In the D3Q19 scheme used in this work, w0 = 1/3, w1−6 = 1/18, w7−18 = 1/36.
We implement the Bhatnagar–Gross–Krook collision operator (Qian & Humières &
Lallemand 1992)

Ωi = −�t
τ

(ni(x, t) − n(eq)
i (x, t)). (2.4)

The Chapman–Enskog analysis provides the bridge between the LB and the Navier–Stokes
equations by linking the relaxation time τ to the fluid transport coefficients, for example
the dynamic viscosity

μ = ρc2
s

(
τ − �t

2

)
. (2.5)

The functions ni are then used to compute the hydrodynamic density (ρ) and velocity (u)
fields of the fluid as

ρ(x, t) =
∑

i

ni(x, t), ρu(x, t) =
∑

i

cini(x, t) + F�t
2

. (2.6a,b)

The coupling between the fluid and the viscoelastic membrane is accounted through the
IB method. The membrane is represented by a set of Lagrangian nodes linked to build a
three-dimensional (3-D) triangular mesh (see figure 1). The idea is to interpolate the fluid
(Eulerian) velocity (u) to compute the nodal (Lagrangian) velocity (ṙ) and to spread the
nodal force (ϕ) to find the force density acting on the fluid (F ). Such interpolations are
given by the following equations (Peskin 2002; Krüger et al. 2017):

F (x, t) =
∑

i

ϕi(t)Δ(ri − x), ṙi(t) =
∑

x

u(x, t)Δ(ri − x)�x3, (2.7a,b)

where Δ is a discretised approximation of a Dirac delta function which can be factorised
as the product of three interpolation stencils Δ(x) = φ(x)φ( y)φ(z)/�x3. In this work, we
use the two-point interpolation stencil

φ2(x) =
{

1 − |x| for 0 � |x| � 1,

0 elsewhere.
(2.8)

2.2. Membrane model

2.2.1. Elastic model
We use the Skalak model to account for the membrane elasticity (Skalak et al. 1973). Here,
the elastic free energy is given by

WS =
∑

j

Aj

[
kS

12
(I2

1,j + 2I1,j − 2I2,j) + kα

12
I2
2,j

]
, (2.9)

where Aj is the area of the jth triangular element of the mesh, kS and kα are the elastic
shear and dilatational moduli (we restrict ourselves to kα = kS), respectively, I1,j = λ2

1,j +
971 A13-4
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Capillary number: Ca =
γ·Rμ
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Deformation: D(t) =
r1(t) − r3(t)
r1(t) + r3(t)

·γ = d
dz

ux(z)

Elastic energy (strain modulus ks) 

Volume conservation

Viscous tensor (membrane viscosity μm)

+

+

=

Viscoelastic nodal forces ϕi

Boussinesq number: Bq =
μm
Rμ

L ϕi

r1

θ

Elastic energy (strain modulus ksk ) 

Volume conservation

Viscous tensor (membrane viscosity Vi t ( b i it μm))

+

+

=

Viscoelastic nodal forces ϕii
ϕi

Figure 1. Sketch of the simulations performed in this work. Left side: 3-D cubic domain with L3 lattice nodes
(Eulerian lattice) containing a dense suspension of viscoelastic spherical capsules with initial radius R. The
domain is bound along the z-axis by two planar walls moving with constant speed Uw in opposite directions.
In this set-up, we impose a simple shear flow with constant shear rate γ̇ . Top-right box: detail of a single
capsule deformed under a simple shear flow. The capsules are represented using 3-D triangular meshes with
2420 elements. The Taylor deformation D is given by D = (r1 − r3)/(r1 + r3), where r1 and r3 are the main
semi-axes (green segments). The time evolution of the deformation D(t) is used to evaluate the loading time tL
(see (3.6)). The inclination angle θ is the angle that r1 forms with the flow direction (x-axis). Bottom-right box:
on each triangular element, the viscoelastic forces are computed and distributed to the vertices. These forces
are coupled to the fluid via the immersed boundary (IB) method and the fluid dynamics is simulated using the
lattice Boltzmann (LB) method (see § 2).

λ2
2,j − 2 and I2,j = λ2

1,jλ
2
2,j − 1 are the strain invariants for the jth triangular element, with

λ1,j and λ2,j being the principal stretch ratios of the triangle (Skalak et al. 1973; Krüger
et al. 2014). The free energy W(j)

S computed on the jth element is used to compute the force
on its three vertices: we can write the force acting on the ith node with coordinates xi as

ϕi = −∂W(j)
S

xi
. (2.10)

2.2.2. Viscous model
The membrane viscosity can be implemented through the incorporation of the viscous
stress tensor given by

τττ ν = μs (2e − tr(e)P) + μd tr(e)P = 2μme, (2.11)

where μs and μd are the shear and dilatational membrane viscosity, respectively (in order
to reduce the number of parameters, we consider μs = μd = μm, and we only refer to the
membrane viscosity μm (Barthès-Biesel & Sgaier 1985)), P is the projector tensor to the
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two-dimensional surface, and

e = 1
2

{
P · [(∇SuS) + (∇SuS)†] · P

}
(2.12)

is the surface rate of strain. In (2.12), the superscript S identifies the surface projection
of the gradient operator (∇S) and local membrane velocity (uS) (Li & Zhang 2019). By
following Li & Zhang (2019), we employ the standard linear solid model to compute τττ ν .
We evaluate the stress tensor τ

(j)
ν on each triangular element j (i.e. we rotate the triangular

element on the xy-plane), and we then compute the force on its vertices i as

ϕi(x, y) = AjP (j) · ∇Ni, (2.13)

where Ni(x, y) = aix + biy + ci are the linear shape functions, the tensor P(j) = [τ ν ·
(F−1)T](j), with (F−1)T being the transpose of the inverse of the deformation gradient
tensor F (Krüger 2012; Li & Zhang 2019; Guglietta et al. 2020).

2.2.3. Volume conservation
In addition to the previous two contributions to the nodal force, we also impose the volume
conservation by adding another term to the elastic free energy given in (2.9):

WV = kV
(V − V0)

2

2V0
. (2.14)

Here kV is an artificial modulus tuning the strength of the volume conservation and V is the
total volume of the capsule (the subscript 0 refers to the volume at rest, i.e. V0 = 4πR3/3)
(Krüger 2012; Aouane et al. 2021). The nodal force is then computed in the same way as
for the elastic model (2.10).

2.2.4. Capsule–capsule repulsion
Finally, to avoid capsules penetrating each others, we introduce a force

ϕij =

⎧⎪⎨
⎪⎩

ε̄

[(
�x
dij

)2

−
(

�x
δ0

)2]
d̂ij if dij < δ0,

0 if dij � δ0,

(2.15)

acting on nodes i and j belonging to two different capsules, where dij is the distance
between nodes i and j, d̂ij = dij/dij is the unit vector connecting them, δ0 is the interaction
range and ε̄ ≈ 100/3kS. The choice of the parameter ε̄ is as such that the macroscopic
behaviour of the suspension is not affected by this additional nodal force contribution
(further details were provided by Aouane et al. 2021).

2.3. Membrane geometry
The information on the geometry of the capsules is retrieved from the inertia tensor, which
is defined by (Ramanujan & Pozrikidis 1998; Krüger 2012)

Iαβ = ρp

5

∑
i

Ai(r2
i δαβ − riαriβ)riγ niγ . (2.16)

Here, ρp is the density of the particle (in our case, ρp = 1), ri is a vector pointing form
the centre of mass of the capsule to the centroid of face i. We use Ai and ni to denote the
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area and the unit normal of the face i, respectively. We now consider the inertia ellipsoid,
i.e. the equivalent ellipsoid with the same inertia tensor I . The three eigenvalues (I1, I2
and I3) can be used to compute the lengths of the three semi-axes of the ellipsoid with
density ρp and volume V (Krüger 2012; Ramanujan & Pozrikidis 1998):

r1 =
√

5(I2 + I3 − I1)

2ρpV
, (2.17)

r2 =
√

5(I1 + I3 − I2)

2ρpV
, (2.18)

r3 =
√

5(I1 + I2 − I3)

2ρpV
, (2.19)

with r1 � r2 � r3. By comparing with figure 1, r1 and r3 are the longest and shortest
radii in the shear plane (respectively), whereas r2 is the radius directed along the vorticity
direction (y-axis).

Once we know the length of the two main semi-axes r1 and r3, we can evaluate the
deformation index

D(t) = r1(t) − r3(t)
r1(t) + r3(t)

, (2.20)

which is equal to zero when the spherical capsule is not deformed (i.e. r1 = r3).
Finally, the inclination angle θ (see figure 1) is the angle that the longest radius r1 forms

with the flow direction (x-axis).

3. Simulation set-up and physical parameters

The numerical set-up consists of a cubic Eulerian domain with L3 lattice nodes, where
L = 128 �x. The domain is bound along the z-axis by two planar walls at which we impose
a constant velocity Uw to generate a simple shear flow with constant shear rate γ̇ (see
figure 1). The viscoelastic capsules have an initial radius R = 8 �x, and the corresponding
mesh is made of 2420 triangular elements. Each capsule is initialised as a rigid sphere in
order to start the simulation with zero stress and deformation of the surface. Furthermore,
the distance between the surfaces of the capsules cannot be less than one lattice spacing.

Several dimensionless numbers may play a role in describing the dynamics of the
system. First of all, the Reynolds number

Re = γ̇ R2ρ

μ
(3.1)

gives the balance between inertial and viscous forces. We chose Re small enough (Re ∼
10−2) to neglect inertial effects. The capillary number

Ca = γ̇ Rμ

ks
(3.2)

measures instead the importance of the viscosity of the fluid with respect to the elasticity
of the membrane: we chose the range of Ca in order to work as close as possible to the
small-deformation regime, avoiding strongly nonlinear effects (Ca ∈ [0.05, 1]). In this
paper, we have purposefully chosen to equate the elastic dilatational modulus (kα) and
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L Length of the domain 128 �x
R Radius of the spherical capsule 8 �x
Re Reynolds number ∼0.01
Ca Capillary number 0.05–1.0
Bq Boussinesq number 0–50
φ Volume fraction 0.001–0.4

Table 1. Simulation parameters in lattice units.

the elastic shear modulus (kS). This decision has been made to decrease the complexity of
parameters within our simulations, aligning with our primary aim of centring the study on
the effects of surface viscosity. The dimensionless number accounting for the membrane
viscosity μm is the Boussinesq number

Bq = μm

μR
, (3.3)

which describes the importance of the membrane viscosity with respect to the fluid
viscosity (in this work, we consider the range Bq ∈ [0, 50]). Note that μm describes the
viscosity of a two-dimensional membrane: for this reason, it is measured in [m Pa s], while
the fluid viscosity is given in [Pa s]. Finally, for dense suspensions, it is important to define
the volume fraction

φ =
∑

i
Vi

L3 , (3.4)

which ranges in φ ∈ [0.001, 0.4] (i.e. from 1 to 400 capsules). In (3.4),
∑

i Vi coincides
with the total volume occupied by the viscoelastic spheres. The computational time is
normalised with the capillary time as

t∗ = Rμ

ks
. (3.5)

Note that, in this work, the viscosity ratio is unity, meaning that the viscosity of the fluid
inside the capsules is equivalent to that of the fluid outside. The main quantities mentioned
above are also summarised in table 1.

We also briefly mention the roles played by the membrane viscosity and the internal
fluid viscosity. Indeed, in order to simulate the effect of membrane viscosity, Keller &
Skalak (1982) were the first to propose an effective viscosity ratio that is the sum of
the viscosity ratio λ and a term which accounts for the dissipation due to the membrane
viscosity. However, some recent studies showed that while the qualitative effect of both
kinds of viscosity is similar, they quantitatively show different behaviours (Guglietta et al.
2021a; Li & Zhang 2021; Matteoli, Nicoud & Mendez 2021; Noguchi & Gompper 2005,
2007). We decided to keep the viscosity ratio λ = 1 to focus on the effect of membrane
viscosity only and avoid enlarging the already wide space of parameters.

Intending to study and quantify the transient deformation of viscoelastic capsules, we
use the solution of a damped oscillator to describe the deformation behaviour as a function
of the dimensionless time:

Dfit

( t
t∗

)
= D̄

[
1 − exp

(
− t

t∗tL

)
cos

(
ω

t
t∗

)]
, (3.6)

where D̄ represents the steady-state value of the deformation, tL is the dimensionless
loading time (i.e. the time the capsule takes to deform) and ω coincides with the
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Figure 2. Deformation of the single capsule (φ = 0.001) as a function of t/t∗ for Ca = 0.2 and different values
of the Bq (Bq = 0, 10, 25 and 50, from lighter to darker colours). The solid lines represent the best fit to (3.6).

dimensionless frequency of the deformation oscillations. To show how (3.6) fits data from
numerical simulations, in figure 2 we report the measured deformation D as a function of
the dimensionless time t/t∗ for the single-capsule case. Different colours correspond to
different values of Bq, while all data refer to the case with Ca = 0.2. Figure 2 shows an
excellent agreement between Dfit(t) (solid lines) and the numerical simulations (circles),
confirming that (3.6) is a suitable estimate for the dynamical observables tL and ω.

Concerning the choice of making time dimensionless, there are mainly two choices:
either using the shear rate γ̇ or the capillary time t∗ (Maffettone & Minale 1998; Diaz et al.
2000; Barthès-Biesel 2016). In particular, Barthès-Biesel (2016) considered a capsule with
membrane viscosity under simple shear flow, and they observed that the response (loading)
time made dimensionless via the intrinsic time decreases with the capillary number.
Moreover, Guglietta et al. (2020, 2021b) studied the transient dynamics of RBCs under
simple shear flow and in order to compare their numerical results against experiments,
they reported the characteristic loading and relaxation times (in [s] on the y-axis) as
functions of the shear rate γ̇ (in [s−1] on the x-axis). We therefore decided to take this as
an example, and to normalise both x- and y-axis with the capillary time t∗, thus obtaining
the dimensionless loading time tL as a function of the capillary number Ca.

4. Results

In this section, we show the numerical results concerning the deformation D and the
loading time tL of both a single spherical capsule (§ 4.1) and a suspension of particles
(§ 4.2).

4.1. Single capsule
In this section, we report the numerical results for the deformation and loading time of a
single capsule (φ = 0.001) under shear flow, which will serve as a reference for the next
section, where suspensions of capsules are considered. Figure 3 shows the steady-state
configuration of a capsule under shear flow with Ca = 0.5, for two values of the Bq
(Bq = 0, a,b; Bq = 50, c,d). The capsule is initialised in the middle of the channel; white
arrows represent the velocity of the walls Uw. The left and right parts of figure 3 show
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Figure 3. Steady-state configurations for a single capsule (φ = 0.001) under shear flow with Ca = 0.5.
(a,b) Single capsule configuration with Bq = 0. (c,d) Single capsule configuration with Bq = 50. (a,c) Side
view in the yz-plane. (b,d) Side view in the xz-plane.
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Figure 4. Data corresponding to the single-capsule case (φ = 0.001) for different values of the Bq (Bq = 0,
10, 25 and 50, from lighter to darker colours). (a) Steady-state deformation D̄ as a function of the capillary
number Ca, where black crosses represent data from Aouane et al. (2021). (b) Inclination angle θ as a function
of the capillary number Ca. (c) Loading time tL as a function of the capillary number Ca. (d) Frequency ω as
a function of the capillary number Ca.

side views in the yz- and xz-plane, respectively. Figure 3 shows that some wrinkles appear
on the surface when Bq increases. These results agree with what was observed by Yazdani
& Bagchi (2013). It should be noted that the introduction of a bending energy into the
membrane model can potentially inhibit the emergence of these wrinkles, as discussed in
detail in Yazdani & Bagchi (2013). In the case of a purely elastic capsule (Bq = 0), no
wrinkles appear if the capillary number is large enough (Ca � 0.1), but some of them
do appear when the capillary number is small (Ca = 0.05). We emphasise that these
wrinkles are not a numerical artefact, as they have also been observed in experiments
(Walter et al. 2001; Unverfehrt, Koleva & Rehage 2015) and studied analytically (Finken
& Seifert 2006).

In figure 4(a), we show the steady-state value of the deformation D̄ as a function of the
capillary number Ca for different values of Bq (the darker the colour, the higher the value
of Bq). We also report results from Aouane et al. (2021) (black crosses), as a benchmark
of our implementation, which corresponds to a case without membrane viscosity.
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Suspensions of viscoelastic capsules

Figure 4(a) shows that the effect of increasing Bq is to decrease the deformation, a trend
that has been previously observed in other works (Yazdani & Bagchi 2013; Li & Zhang
2019; Guglietta et al. 2020, 2021b). This can be explained by an energetic argument: for
a fixed value of the elastic modulus kS and a given intensity of the shear rate γ̇ (i.e. for
the same value of the capillary number Ca), the energy injected into the system is the
same. However, the simple shear flow can be split into two contributions, accounting for
the rotation and the elongation of the capsule, respectively:

∇u =
(

0 γ̇

0 0

)
=

⎛
⎜⎜⎝

0
γ̇

2
γ̇

2
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
γ̇

2

− γ̇

2
0

⎞
⎟⎟⎠ . (4.1)

This means that the energy injected by the applied shear flow not only contributes to
the deformation of the capsules but also to their rotation. Therefore, increasing the value
of the membrane viscosity leads to an increase in the dissipative effects on the surface
due to viscous friction, which in turn reduces the energy available for deformation. If one
deforms the capsule without using a flow but via external forces acting directly on the
membrane (such as the typical stretching experiment performed on RBCs by using optical
tweezers (Suresh et al. 2005)), the dependence of the steady-state value of the deformation
on the membrane viscosity clearly disappears (Guglietta et al. 2020, 2021b). In addition,
in an elongational flow, where the rotation of the membrane is suppressed, the steady-state
value of the deformation does not depend on the value of Bq (Guglietta et al. 2021b).

The steady-state values of the inclination angle θ are reported in figure 4(b). As
expected, in the absence of membrane viscosity (Bq = 0), the inclination angle θ

diminishes as a function of the capillary number, which is in good agreement with the
results of Aouane et al. (2021). Upon introducing membrane viscosity, the inclination
angle decreases, and intriguingly, exhibits a non-monotonic behaviour when Bq = 50.

Figure 4(c) shows that the loading time tL depends on both Ca and Bq. In particular, on
the one hand, it decreases when Ca increases, and seems to converge to a constant value.
On the other hand, the increase of tL when the membrane viscosity increases is expected
because of the viscous dissipation at the interface. The loading time tL depends on Bq even
when we apply an elongational flow or perform a stretching experiment (Guglietta et al.
2021b). This behaviour is opposite to that of the steady-state deformation value, which
does not show such a dependence when only the membrane deformation is present.

Figure 4(d) depicts the frequency of the deformation oscillations ω. It does not show a
strong dependence on the membrane viscosity but only on the capillary number Ca. This
means that this characteristic time simply scales with the characteristic time of the flow,
γ̇ −1. The results for tL and ω are in qualitative agreement with results for a single RBC in
simple shear flow (Guglietta et al. 2021b).

In the literature, oscillations of the deformation have already been observed (Yazdani
& Bagchi 2013; Li & Zhang 2019) and also analytically predicted (Barthès-Biesel &
Sgaier 1985). It is worth noticing that also droplets under simple shear flow exhibit such
oscillations (Gounley et al. 2016), meaning that they are not strictly related to the kind
of the interface energy nor the presence of wrinkles, since in that case surface tension
acts and prevents any wrinkle appearing at the interface. Indeed, as explained by Gounley
et al. (2016), these oscillations appear when the flow time scale and the relaxation time
scale differ significantly.

We also looked at the time evolution of the xz-component of the particle stress Σ
p
xz

given by the sum of the elastic and viscous contribution (Σe
xz and Σν

xz, respectively), with

971 A13-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.694


F. Guglietta, F. Pelusi, M. Sega, O. Aouane and J. Harting

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1.0

1.2

Σ
xz

 (
t)

(×10−8)

Σe
xz – Bq = 0

Σv
xz – Bq = 0

Σp
xz – Bq = 0

Σe
xz – Bq = 50

Σv
xz – Bq = 50

Σp
xz – Bq = 50

t/t∗

Figure 5. Time evolution of the xz-components of the particle stress Σ
p
xz for a single capsule, for Bq = 0

(orange lines) and Bq = 50 (black lines). Dotted and dash-dotted lines represent the xz-component of the elastic
(Σe

xz) and viscous (Σv
xz) contributions of the stress, respectively; solid lines represent the particle stress Σ

p
xz =

(Σe + Σv)xz.

the idea of bridging the micro- and macro-rheology by relating the loading time tL to
the characteristic time that the stress takes to reach the steady-state value (see figure 5).
When there is no membrane viscosity (Bq = 0), the particle stress is completely given by
the elastic contribution; when Bq > 0, it is mainly dominated by the viscous contribution.
Since Σν

xz depends on the velocity gradient on the surface (see (2.11)), it suddenly increases
as soon as the shear flow starts, thus reducing the characteristic time of Σ

p
xz almost to zero.

This behaviour goes in the opposite direction with respect to what we observe for the
loading time tL, which is related to the deformation.

Since the deformation as defined in (2.20) only contains information about the main
axes in the shear plane, it does not provide a complete description of how the capsule
is deforming in 3-D space. Therefore, we examined the three main radii r1, r2 and r3
separately (figure 6(a–c), respectively). The radii are normalised by the initial radius R,
which is the capsule’s radius at rest. In all three cases, the variation in the length of the
radii ri (i = 1, 2, 3) relative to their values at rest decrease as the membrane viscosity
increases (as expected based on the measurements of the deformation). However, the most
significant variation is seen in r1 and r3 (i.e. in the shear plane), whereas r2 changes only
slightly when Bq = 0 and is almost unchanged for Bq = 50.

4.2. Suspensions
We consider the same numerical set-up as before, but now we increase the number of
capsules N up to 400, corresponding to an increase of the volume fraction φ up to 0.4. We
introduce the capsule-averaged quantities represented by

〈A〉 = 1
N

∑
i

Ai, (4.2)

where the sum runs over the number of particles N and Ai is a general observable measured
for the ith capsule (such as the steady-state value of the deformation D̄, the loading time
tL and the radius ri). The data reported in this section are provided with error bars, which
are calculated from the standard deviation normalised with

√
N.
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Figure 6. Three main radii of the single capsule (φ = 0.001) as a function of Ca, for different values of Bq
(Bq = 0, 10, 25 and 50, from lighter to darker colours), normalised to the capsule radius at rest, R.

(a)
(b) (c)

(d) (e) ( f )

Figure 7. Snapshots of the suspensions. The configurations shown correspond to Ca = 0.1 and: (a) φ =
0.01, Bq = 0; (b) φ = 0.1, Bq = 0; (c) φ = 0.04, Bq = 0; (d) φ = 0.01, Bq = 50; (e) φ = 0.1, Bq = 50;
( f ) φ = 0.4, Bq = 50.

Figure 7 shows some steady-state configurations for three different values of φ

(columns) and two values of Bq (rows). Data refer to Ca = 0.1. It is interesting to observe
that wrinkles do not appear on the surface when Bq = 0, whereas they are visible for Bq =
50. However, in the latter case, the volume fraction seems to play a role: indeed, while the
cases with φ = 0.01 and φ = 0.1 show just a few particles with small wrinkles (panels
(d,e), respectively), the most-dense case (panel f ) shows more pronounced wrinkles on
more particles.

We want to study the transient dynamics of the system and compare results for different
values of the volume fraction φ. To make the comparison as fair as possible, we initialise
the system without membrane pre-stress also for the dense case, since that is the case for
the dilute suspensions. To reach high volume fractions (φ > 0.1) without deforming the
capsules, we initialised the system in an fcc crystal configuration (see figure 7c, f ).
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Figure 8. (a) Plot of μr as a function of Ca for different values of Bq and φ = 0.1 and 0.4. The inset shows
magnified region around the φ = 0.1 data. (b) Plot of μr as a function of φ for different values of Bq and
Ca = 1. The solid and dashed lines are the theoretical predictions of Einstein (1906) and Batchelor & Green
(1972), respectively.

Before analysing the same quantities studied in the single-particle case, we investigate
the rheological properties of the suspension. We consider the xz-component of the stress
of the capsule Σ

p
xz and its elastic and viscous components (Σe

xz and Σν
xz, respectively).

In figure 8, we report the relative viscosity μr = μs/μ = 1 + Σ
p
xz/γ̇ μ, where μs is the

effective viscosity of the suspension. For very dilute suspensions, (φ = 0.01) the relative
viscosity μr ≈ 1. Upon increasing the volume fraction φ, we observe an expected increase
in μr. In figure 8(a), we report the μr as a function of the capillary number Ca, for different
values of Bq. For the sake of clarity, we report only data for φ = 0.1 and φ = 0.4. In
both cases, we observe an increase of the relative viscosity with Bq. To better appreciate
this dependency in the φ = 0.1 case, this is magnified in the inset, showing that the
shear-thinning behaviour is present regardless of the value of Bq, but is more pronounced
for Bq = 50. In figure 8(b), we report μr as a function of the volume fraction φ for
different values of Bq. Again, to improve the readability of the plot, we selected data for the
highest value of capillary number only, Ca = 1. We also report the theoretical predictions
of μr(φ) according to Einstein (1906) (μr = 1 + 5

2φ, solid black line) and Batchelor &
Green (1972) (μr = 1 + 5

2φ + 5.2φ2, dashed black line), which hold for suspensions of
hard spheres in the dilute and semi-dilute approximations, respectively. It is worth noting
that the cases with small values of Bq differ from the prediction computed by Batchelor
& Green (1972), but still show a quadratic behaviour, whereas the data for high values of
Bq are closer to values predicted by the theory for hard spheres. The reason may be that
a high membrane viscosity reduces the deformation of the capsule, making them a better
approximation of hard spheres, at least from a geometrical point of view. The change in
relative viscosity calls for a redefinition of the capillary number. When φ increases, the
viscosity of the suspension increases too (as shown in figure 8). Therefore, we introduce
the effective capillary number Caeff , which accounts for the viscosity of the suspension
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Figure 9. Capsule-averaged steady-state deformation 〈D̄〉 (see (3.6)) as a function of Caeff for different values
of φ (a, φ = 0.001; b, φ = 0.01; c, φ = 0.1; d, φ = 0.2; e, φ = 0.3; f, φ = 0.4) and Bq (Bq = 0, 10, 25 and
50, from lighter to darker colours).

μs:

Caeff = γ̇ Rμs

ks
= Ca μr. (4.3)

In figure 9, the capsule-averaged steady-state deformation is reported as a function of the
Caeff for different values of Bq and φ. The data for the single capsule (φ = 0.001) are also
reported for comparison (figure 9a). As already observed for elastic capsules in the absence
of membrane viscosity, our data shows that the capsule-averaged steady-state deformation
〈D̄〉 slightly increases with increasing φ (Aouane et al. 2021). It is interesting to compare
panels (a) and ( f ), which are the two extreme cases we simulated (i.e. φ = 0.001 and 0.4,
respectively). We observe that in absence of membrane viscosity (Bq = 0), 〈D̄〉(φ = 0.4)

is about 5–10 % higher than 〈D̄〉(φ = 0.001), whereas when Bq = 50, there is an increase
of about 250 %. This suggests a weaker effect of the membrane viscosity in reducing the
deformation for higher values of φ. This general trend can be observed in figure 9 for all
the reported values of φ. We note that 〈D̄〉 increases when φ increases (from panel a to
panel f ) at Bq = 50, but this difference in 〈D̄〉 shrinks when Bq is smaller.

The values of the inclination angle θ as a function of Caeff are reported in figure 10.
For volume fraction up to φ = 0.3, the results are very similar to the single-capsule
case, with a slight increase for Bq /= 0. However, in the most-dense case simulated, the
inclination angle is slightly reduced (with respect to the single-capsule case) in the absence
of membrane viscosity, while it is increased in the other cases. It is interesting to note the
collapse of θ for high values the effective capillary number, Caeff > 1.5.

Regarding the capsule-averaged loading time 〈tL〉, depicted in figure 11, we observe
again that the volume fraction φ mitigates the effect of the presence of the membrane
viscosity, especially at increasing values of the capillary number. In fact, the apparent
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Figure 10. Capsule-averaged steady-state inclination angle 〈θ̄〉 as a function of Caeff for different values of
φ (a, φ = 0.001; b, φ = 0.01; c, φ = 0.1; d, φ = 0.2; e, φ = 0.3; f, φ = 0.4) and Bq (Bq = 0, 10, 25 and 50,
from lighter to darker colours).
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Figure 11. Capsule-averaged loading time 〈tL〉 (see (3.6)) as a function of Caeff for different values of φ

(a, φ = 0.001; b, φ = 0.01; c, φ = 0.1; d, φ = 0.2; e, φ = 0.3; f, φ = 0.4) and Bq (Bq = 0, 10, 25 and 50,
from lighter to darker colours).
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Figure 12. Steady-state values of the ratio of the viscous contribution of the particle stress (Σv
xz) to the total

stress of the particle (Σp
xz = (Σv + Σe)xz) for Bq = 25 and Bq = 50.

increase of 〈tL〉 with Bq for φ � 0.01 (panels a–c) is not present for higher values of
φ (panels d– f ). Furthermore, it is worth noting that 〈tL〉 shows a slight dependence on
the volume fraction φ for Bq = 0, and the φ = 0.001 and φ = 0.4 data superpose almost
perfectly. The dependence of 〈tL〉 on φ and Bq is even more evident for small values of
the capillary number Ca (close to the linear response), i.e. when focusing on the intrinsic
properties of the membrane: for the volume fraction φ � 0.1, 〈tL〉 still shows a dependence
on Bq, but if the capillary number Ca increases, the data tend to collapse on the same
curve. This means that, for suspensions with a concentration φ � 0.1 and for high values of
the effective capillary number Caeff , the effect of membrane viscosity almost disappears.
The origin of the reduction of the effect of membrane viscosity with volume fraction
increase can be traced to the viscous tensor defined in (2.11): while the elastic contribution
depends only on the geometry (i.e. the deformation) of the capsule, the viscous tensor
depends only on the surface velocity gradient ∇SuS . Therefore, when the volume fraction
φ increases, the strain tensor e (see (2.12)) decreases, and the effect of the membrane
viscosity becomes smaller. In figure 12, we report the ratio Σv

xz/Σ
p
xz as a function of the

capillary number Ca for two values of volume fraction (φ = 0.1 and φ = 0.4) and for two
values of Bq (Bq = 25 and Bq = 50). We observe a reduction of the contribution given by
Σv

xz when the volume fraction increases, while for dilute suspensions the ratio Σv
xz/Σ

p
xz is

close to 1. This suggests that, when the volume fraction increases, the viscous dissipation
reduces and the energy left contributes to the elastic deformation.

Concerning the capsule-averaged frequency of the oscillations ω, we observe that there
is a weak dependence on Bq for volume fractions up to φ = 0.1 (see figure 13a–c);
however, for φ > 0.1 (figure 13d– f ), the oscillations of the deformation disappear, and
therefore ω goes to zero at large Caeff . This may be due to the collisions (i.e. strong
capsule–capsule interactions) that do not allow the deformation of the capsules to
oscillate freely. We also looked at the deformation of some capsules for the most-dense
case simulated (φ = 0.4) and we observed that the deformation shows small and
noisy fluctuations around the average: again, these oscillations can be attributed to the
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Figure 13. Capsule-averaged frequency 〈ω〉 (see (3.6)) as a function of Caeff for different values of φ

(a, φ = 0.001; b, φ = 0.01; c, φ = 0.1; d, φ = 0.2; e, φ = 0.3; f, φ = 0.4) and Bq (Bq = 0, 10, 25 and 50,
from lighter to darker colours).

capsule–capsule collisions. By looking at the deformation for some capsules in the
suspensions, we also checked that the behaviour of the capsule-averaged deformation well
reflects that of the single capsules, meaning (3.6) is still good at estimating tL and ω. To
further confirm the goodness of the fitting procedure, the reader can look at the error bars
reported in figures 9–11.

As presented in the previous section for the single capsule, in figure 14 we show the
capsule-averaged values of the normalised radii 〈r1〉/R, 〈r2〉/R and 〈r3〉/R (a–d, e–h and
i–l, respectively). We observe that, at a given value of the volume fraction, the membrane
viscosity clearly reduces the deformation of the three radii. The effect of the volume
fraction becomes important for φ > 0.1, that is, when capsules start to interact with each
other. Even when the volume fraction increases, most of the deformation occurs in the
shear plane (i.e. r2 is less affected than r1 and r3). The effect of the volume fraction
becomes prominent for φ > 0.1: indeed, for all the values of Bq we have simulated, when
φ = 0.4 the radii r1 and r3 (d and l) are different if compared with the cases φ � 0.1.
This might be due to the strong capsule–capsule interaction when φ = 0.4, confirming
again that the effect of membrane viscosity reduces for high values of the volume fraction.
Concerning the deformation in the vorticity direction, r2, it is ∼10 % for Bq = 0 and
�5 % for Bq > 0. While r2 shows a clear hierarchy in Bq for φ < 0.4, a more complex
behaviour appears when φ = 0.4. However, we are facing very small deformations (less
than 5 %), which means that the length of r2 changes by about 0.4�x. We conclude that the
deformation in the vorticity direction is in general small, especially when we increase the
volume fraction. To provide a more quantitative and precise investigation for the behaviour
of r2, one should perform simulations with larger capsules (and therefore with a more
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Figure 14. The capsule-averaged lengths of the three main radii of the capsule 〈r1〉 (a–d), 〈r2〉 (e–h) and 〈r3〉
(i–l), normalised with the radius of the spherical capsule at rest, R, as functions of Caeff for different values of φ

(a,e,i, φ = 0.001; b, f,j, φ = 0.01; c,g,k, φ = 0.1; d,h,l, φ = 0.4) and Bq (Bq = 0, 10, 25 and 50, from lighter
to darker colours).

resolved mesh); however, such a detailed study on the deformation in the vorticity direction
goes beyond the scope of this work.

5. Conclusions

In this study, we have performed a parametric investigation of the impact of membrane
viscosity on the transient dynamics of suspensions of viscoelastic spherical capsules
for different values of the volume fraction φ. To achieve this, we have performed
numerical simulations using the IB-LB method. Our results indicate that the effect
of membrane viscosity, as measured by the dimensionless Boussinesq number Bq,
strongly impacts the dynamics of a single capsule. However, this effect is diminished
as the volume fraction φ increases. The comparison between the single-capsule case
(φ = 0.001) and the most-dense case simulated (φ = 0.4) revealed that although the
capsule-averaged deformation 〈D̄〉 is greatly affected by the presence of membrane
viscosity, the capsule-averaged loading time tL does not show a strong dependence on
Bq when φ = 0.4. We can therefore conclude that, for the flow conditions simulated
in this work (i.e. Re ∼ 0.01 and Ca ∈ [0.05, 1], as outlined in table 1), the membrane
viscosity does not significantly affect the characteristic time when the volume fraction is
high enough, but it still has a substantial impact on the deformation.

In the future it will be valuable to investigate the dynamics of both dilute and dense
suspensions flowing through small channels. The interaction between membrane viscosity
and confinement is yet to be studied in this context. In addition, it would be of interest
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to study the effect of membrane viscosity on different geometries and membrane models,
with a focus on RBCs as an example.
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