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Early evolution of optimal perturbations in a
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This work shows how the early stages of perturbation growth in a viscosity-stratified
flow are different from those in a constant-viscosity flow, and how nonlinearity is a
crucial ingredient. We derive the viscosity-varying adjoint Navier–Stokes equations,
where gradients in viscosity force both the adjoint momentum and the adjoint scalar.
By the technique of direct-adjoint looping, we obtain the nonlinear optimal perturbation
which maximises the perturbation kinetic energy of the nonlinear system. While we study
three-dimensional plane Poiseuille (channel) flow with the walls at different temperatures,
and a temperature-dependent viscosity, our findings are general for any flow with viscosity
variations near walls. The Orr and modified lift-up mechanisms are in operation at low
and high perturbation amplitudes, respectively, at our subcritical Reynolds number. The
nonlinear optimal perturbation contains more energy on the hot (less-viscous) side, with
a stronger initial lift-up. However, as the flow evolves, the important dynamics shifts to
the cold (more-viscous) side, where wide high-speed streaks of low viscosity grow and
persist, and strengthen the inflectional quality of the velocity profile. We provide a physical
description of this process and show that the evolution of the linear optimal perturbation
misses most of the physics. The Prandtl number does not qualitatively affect the findings
at these times. The study of nonlinear optimal perturbations is still in its infancy, and
viscosity variations are ubiquitous. We hope that this first work on nonlinear optimal
perturbation with viscosity variations will lead to wider studies on transition to turbulence
in these flows.
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1. Introduction

A variation of viscosity in space and time occurs in a vast range of flows. Practically all
flows where composition or temperature are not constant are of varying viscosity. Changes
in viscosity are known to affect the stability of the flow dramatically. While an enormous
literature is available on viscosity stratification and its effect on linear instability, far less
is studied about how it impacts the non-modal growth of perturbations. Understanding the
transition to turbulence in shear flow requires understanding how non-modal perturbations
grow and propagate. In recent years, it has been recognised (Cherubini et al. 2010; Pringle
& Kerswell 2010; Pringle, Willis & Kerswell 2012) that studying the nonlinear optimal
perturbations is essential to this effort. The present study is the first to our knowledge
on nonlinear optimal perturbations in viscosity-stratified flows. Our interest is in a gentle
variation of viscosity rather than a sharp one, and we choose a pressure-driven channel
flow with the walls maintained at different temperatures as a prototypical model flow
to reveal the essential physics. Further, we are interested in short term optimisation, to
underline how viscosity-varying flows already depart considerably from constant-viscosity
flows. We set gravity to zero in this study to isolate the effects of viscosity
variation.

The interaction of viscosity stratification and shear can lead to both suppression
and enhancement of flow instabilities (for a review, see Govindarajan & Sahu 2014).
A viscosity jump across an interface can give rise to linear instability at any Reynolds
number (e.g. see Yih 1967). On the other hand, a lowering of viscosity near a wall has been
studied for decades as a means to stabilise shear flow and to thus achieve drag reduction,
e.g. in lubricating oil pipelines (Preziosi, Chen & Joseph 1989). Composition variation and
the introduction of polymers, whence besides elasticity, viscosity stratification resulting
due to shear thinning can be important, have been explored over the years. In aerospace
applications (Mack 1984), a viscosity reduction near the wall in a boundary layer can
provide a fuller and more stable velocity profile. By virtue of viscosity (e.g. see Schmid,
Henningson & Jankowski 2002) and its spatial gradients (Govindarajan 2004) being
multiplied by the highest derivatives in the stability equations, we are presented with
a singular perturbation problem. In other words, however high the Reynolds number
(however small the viscosity), viscosity and its variations can have a large effect on the
flow. For example, Ranganathan & Govindarajan (2001) showed that a ten per cent change
in viscosity across a thin layer can, if overlapped with the critical layer of the least stable
eigenmode, give rise to an order of magnitude change in the critical Reynolds number
Rec of 5772.2 in a channel. The effect of wall heating and subsequent viscosity changes
on a fully developed turbulent flow has been studied using direct numerical simulations
(DNS) for both a boundary layer (Lee et al. 2013) and a channel flow (Zonta, Marchioli
& Soldati 2012). Zonta et al. (2012) find vortical structures to be more populated near the
colder (more-viscous) wall as compared to the hotter (less-viscous) wall, while Lee et al.
(2013) find that vortical structures near the heated wall are unaffected, whereas away from
the wall, they become sparser with wall heating. The effects of a continuous variation
of viscosity have also been investigated in the linear stability studies of Potter & Graber
(1972), Schäfer & Herwig (1993), Wall & Wilson (1996) and Sameen & Govindarajan
(2007).

For a channel flow below Rec, a traditional normal-mode analysis predicts that the
energy of no single eigenmode can grow in isolation. However, the linear stability operator
of the flow, obtained by linearising the Navier–Stokes equations about a laminar flow and
posing the resulting Orr–Sommerfeld and Squire equations as an eigenvalue problem, is
non-normal. Hence, a transient (algebraic) growth in energy can occur in the flow due
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to the superimposition of suitably arranged eigenmodes at intermediate time (Reddy &
Henningson 1993; Trefethen et al. 1993). Shear makes the governing operator non-normal
and transient growth is experienced, for example, in channel flow, pipe flow and Couette
flow. If the transient growth is large enough, nonlinear mechanisms could be activated.
It is now accepted that findings such as that the transition to turbulence in a channel
at Re ≈ 1000 (e.g. Orszag & Patera 1980; Carlson, Widnall & Peeters 1982) are a
manifestation of these non-modal and nonlinear mechanisms. For such flows, non-modal
analyses complement modal analysis in fully understanding the behaviour (Böberg &
Brosa 1988; Butler & Farrell 1992; Trefethen et al. 1993; Trefethen & Embree 2005) (for
a review, see Schmid 2007). A linear non-modal study often optimises for the energy
growth of an infinitesimal initial perturbation over all possible initial conditions, and
from the singular value decomposition (SVD) of the linear operator, reveals the optimal
perturbation, i.e. the initial perturbation that leads to the largest transient growth in the
linear regime.

For any amplitude of initial perturbation, the optimal perturbation can be obtained by an
adjoint-based iterative optimisation procedure with the full, or linearised, Navier–Stokes
equations as in Schmid (2007). The procedure would be the same for linearised or
nonlinear equations. Also, the nonlinear equations could be used along with a very
small disturbance amplitude to yield effectively linear solutions. This procedure involves
repeated computations of adjoint fields and the sensitivity of a cost functional to changes
in the initial perturbation. It has been applied to the Navier–Stokes equations for control
of fluid flow by Abergel & Temam (1990), Bewley, Temam & Ziane (2000), Corbett &
Bottaro (2000) and Zuccher, Luchini & Bottaro (2004) among others, and to numerically
calculate the optimal perturbations and the associated transient growth, within the
framework of the linearised as well as of the nonlinear Navier–Stokes equations, as
in Monokrousos et al. (2011), Foures, Caulfield & Schmid (2013), Kaminski, Caulfield
& Taylor (2014), Marcotte & Caulfield (2018) and Vermach & Caulfield (2018) (for a
review, see Kerswell (2018)). The nonlinear optimal perturbation has been found to have
a different spatial structure from the linear optimal perturbation (Rabin, Caulfield &
Kerswell 2012). Since the full nonlinear equations are optimised, the nonlinear optimal
perturbation leads to a larger transient growth (Cherubini et al. 2010; Pringle & Kerswell
2010; Luchini & Bottaro 2014). This hints at the importance of the nonlinearity in
the non-modal analysis and indicates that the search for a minimal seed for turbulence
onset must involve studying the time evolution of the nonlinear optimal (e.g. see
Pringle et al. 2012).

In this paper, we investigate the sole effects of viscosity stratification on the optimal
perturbation and the resultant transient growth at early times. Our central idea is to
investigate how the process of subcritical perturbation growth in the nonlinear regime is
affected by viscosity variations. We consider the full nonlinear Navier–Stokes equations,
modified to account for varying viscosity, and derive the adjoint viscosity-stratified
Navier–Stokes equations. We then formulate a nonlinear stability theory using the
adjoint-based optimisation technique. We utilise this framework to calculate the optimal
perturbation for a certain fixed target time. Performing studies with very small and more
significant initial perturbation amplitudes, our findings show how nonlinearity is a crucial
part of the initial evolution, although the Orr and lift-up mechanisms in operation have
linear underpinnings. The evolution of initial perturbation which maximises linear energy
growth is restricted to the hot wall, whereas optimising for nonlinear energy growth shows
how the cold wall is more important, with persistent streaks and velocity profiles becoming
increasingly inflectional.
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2. Governing equations and problem formulation

We study pressure-driven flow through a three-dimensional channel bounded by two
parallel walls, kept fixed at y = ±Ly as depicted in figure 1. The mean pressure gradient
dP/dx forces the flow in the x direction. Hence, x is the streamwise direction and z
the spanwise direction. The temperature of both walls is kept constant, with the wall at
y = +Ly at a higher temperature than the wall at y = −Ly. There is no gravity in this
problem, and non-Boussinesq effects arising from density change due to temperature
variations are neglected. The half-width, Ly, of the channel is chosen as our length scale.
The non-dimensional size of the channel is fixed at 2π, 2 and π in the x, y and z directions,
respectively.

The unperturbed laminar flow through the channel is our base state. Three-dimensional
perturbations are introduced over this base state. The non-dimensional governing
equations for a viscosity-stratified flow read as

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ (Uj + uj)

∂ui

∂xj
+ uj

∂Ui

∂xj
= − ∂p

∂xi
+ 2β

Re
∂

∂xj
[μ(sij + Sij) + μ̄sij], (2.2)

∂T
∂t

+ (Uj + uj)
∂T
∂xj

+ uj
∂(T̄ + T0)

∂xj
= 1

RePr
∂2T

∂x2
j
. (2.3)

Here, Uj = δj1U(y) is the laminar base state, consisting only of a streamwise component,
uj(x, y, z, t) are the components of the perturbation velocity u(x, t) and p(x, t) is the
perturbation pressure; x, y and z are referred to as x1, x2 and x3, respectively,

Sij = 1
2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
and sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.4a,b)

are the base and the perturbation velocity strain tensors, respectively. The parameter T(x, t)
is the perturbation temperature, and the base state temperature T̄(y) + T0 is linear in
y, varying from the reference temperature T0 at the bottom wall to T0 + �T at the top
wall. The base and perturbation viscosities, μ̄(T) and μ(T) respectively, are functions of
temperature alone, and are defined in § 2.1. The Reynolds number Re and the viscosity
ratio β are defined in § 2.2. The parameter Pr = μ0cp/ρk is the Prandtl number, where μ0
is the viscosity at the reference temperature T0, cp the specific heat at constant pressure
and k the thermal conductivity of the fluid. The density ρ of the fluid is taken to be a
constant.

Barring the mean pressure drop, all variables of the flow are prescribed to be periodic
at the domain boundaries in x and z. No-slip velocity boundary conditions are imposed at
the walls.

We will refer to (2.2) as the modified Navier–Stokes equation, valid for
viscosity-stratified flow. Equations (2.1)–(2.3) are referred to as the ‘direct’ equations to
distinguish them from other equations, called the ‘adjoint’ equations, to be introduced in
§ 2.3. The variables appearing in (2.1)–(2.3) will be called direct variables. The initial
velocity and temperature conditions are represented as u(x, 0) = u0(x) and T(x, 0).
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Hot wall

Cold wall

y

x
z

dP/dx

Lx

Lz

2Ly

Figure 1. The flow domain being studied. The flow is from left to right, driven by the mean pressure gradient
dP/dx. Here, Lx = 2πLy is the streamwise length, Lz = πLy is the spanwise length and Ly is the half-width of
the channel. The hot and cold walls at y = ±Ly are kept at constant but different temperatures.

2.1. Viscosity model and the base state
The local non-dimensional viscosity μtot in the flow is modelled as an exponential function
of the total temperature Ttot = T̄(y) + T0 + T , following Wall & Wilson (1996), as

μtot ≡ μ̄ + μ = exp(−κTtot)

exp(−κT0)
, (2.5a)

where

μ̄ = exp[−κ(T̄(y) + T0)]
exp(−κT0)

. (2.5b)

The viscosity of the cold wall is used as the scale here. With the constant κ chosen to
be 0.012 per degree Kelvin, this function closely follows the viscosity of water in our
temperature range. Since the density of water varies by less than 2 parts in a 1000 for the
largest temperature difference, variations in kinematic viscosity are mainly from changes
in dynamic viscosity. As is typical of liquids, the viscosity decreases with an increase in
temperature, as shown in figure 2(a). The laminar base profile of the streamwise velocity
given by Wall & Wilson (1996) is

U(y) = −2α

κ�T

[
1 + coth κ�T + (y − coth κ�T) exp(κ�T(1 + y))

]
, (2.6)

where

α = 2κ�T
3

1
−2(1 + coth κ�T) + (exp(2κ�T) − 1)/(κ�T)3 , (2.7)

allows for the same non-dimensional volumetric flow rate through the channel for different
�T , as shown in figure 2(b).

2.2. The Reynolds number
In order to make a fair comparison between the growth of perturbation energy in a
stratified flow and an unstratified flow, a careful definition of the Reynolds number is
required. Note that when we refer to ‘unstratified’ flow, we mean constant-viscosity flow,
and when we refer to ‘stratified’ flow, we mean a viscosity-stratified flow. As the laminar
base velocity profile in a stratified channel is asymmetric around y = 0 (figure 2b), the
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–1.0
0.2 0 0.5 1.0

Cold wall

Hot wall

U (y)

y

0.4 0.6 0.8 1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0
(b)(a)

μ̄ ( y)

Figure 2. (a) The wall-normal (y) profiles, for various temperature differences �T between the walls, of base
viscosity μ̄(y) as given by (2.5b). The profile for �T = 0 is a vertical line at μ̄(y) = 1. The ratios of viscosity
between the top (hot) and the bottom (cold) wall are 0.61 for �T = 20 K (dashed line), 0.38 for �T = 40 K
(dash-dotted line) and 0.23 for �T = 60 K (dotted line). (b) The unperturbed streamwise laminar velocity U(y),
normalised to have equal volumetric flux through the channel, for unstratified case (solid line) and different �T .

centreline velocity is not a standard velocity scale across different stratification levels,
whereas the volume flux is. Secondly, the viscosity in the channel decreases continuously
when moving away from the cold wall at y = −1 (figure 2a). If, for example, Re was
defined based only on the viscosity at the cold wall, then the effective Reynolds number of
the stratified channel would be higher than this value, and consequently, the perturbation
energy growth could be expected to be higher. So, we choose the space-averaged mean
viscosity as our viscosity scale to define Re. The Reynolds number used in this paper is

Re ≡ ρLy

∫ Ly

−Ly

1.5U(y) dy

∫ Ly

−Ly

μ̄d dy
= 1.5ρLy〈U〉

〈μ̄d〉 , (2.8)

where μ̄d(T) is the dimensional base viscosity of the fluid, and the angle brackets represent
an average in the wall-normal direction y. A factor of 1.5 is incorporated for ease of
comparison with earlier studies on unstratified flow which use the centreline velocity as the
velocity scale. The dimensional viscosity must therefore be scaled by the average viscosity
in the channel, but for ease of comparison, we have scaled it by its value at the cold wall.
This is adjusted for, by the introduction in (2.2) and (2.10) of the viscosity ratio

β = μ̄d(T0)

〈μ̄d〉 . (2.9)

In this paper, we remain in the subcritical regime by fixing Re at 500, which also allows
for validation against the unstratified channel flow result of Vermach & Caulfield (2018).
The non-dimensional mean pressure gradient is constant in the streamwise direction and
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is given by
dP
dx

= −2αβ

Re
. (2.10)

2.3. Non-modal analysis using ‘direct-adjoint looping’
The nonlinear non-modal analysis is formulated in terms of an optimisation procedure
termed ‘direct-adjoint looping’ (Luchini & Bottaro 1998; Andersson, Berggren &
Henningson 1999; Corbett & Bottaro 2000; Juniper 2011; Arratia, Caulfield & Chomaz
2013; Foures, Caulfield & Schmid 2014; Kaminski, Caulfield & Taylor 2017; Vermach &
Caulfield 2018), to find the largest non-modal energy growth and the optimal perturbation
of the flow that causes this growth. To effect this, we need to define a cost functional
which includes some measure of energy, and the aim of the optimisation procedure would
be to maximise this cost functional. Especially when density or viscosity or any flow
component varies with space and time, there are many choices that may be made for
the cost functional, and each choice could lead to a different optimal perturbation. For
example, Foures et al. (2014) show, interestingly, that energy optimisation leads to weak
mixing, but optimal perturbations obtained from mixing optimisation are very effective
in mixing, although evolving to lower energies. Monokrousos et al. (2011) prescribe
the time-averaged viscous dissipation of energy as their cost functional to understand
laminar–turbulence transition in a Couette flow. They optimise the nonlinear equations
for long optimisation times and search across various initial energy levels to find the least
energetic initial condition that initiates this transition. Thus the aims of each study are
critical in choosing an appropriate cost functional.

In this first attempt to understand the optimal perturbations in a viscosity-stratified
channel flow, we study the growth of kinetic energy of the velocity perturbations. As noted
in previous studies (Foures et al. 2014; Vermach & Caulfield 2018), perturbations growing
through a given time horizon may not have the largest energy precisely at a target time.
To account for this, we choose the ratio of the integral over time, up to a preset target
time, of the perturbation kinetic energy, to the initial perturbation kinetic energy, as our
cost functional. The time-integrated perturbation kinetic energy of the flow up to the target
time T is defined as

G(T ) = γ

2

∫ T

0
‖u(x, t)‖2

V dt, (2.11)

where ‖u(x, t)‖V is the total (integrated over the channel volume V) L2-norm of the
velocity perturbations u(x, t). Note that the math-calligraphy symbol T for the target time
is distinguished from the italics T for temperature. Here, γ is a constant with units of
inverse time, and has been set to unity throughout this study; T is non-dimensionalised
with the advective time scale, i.e. Ly/1.5〈U〉, a constant across the various stratification
levels studied here. Time integration includes effects from the intermediate-time dynamics
of the flow as opposed to just the energy at the target time T . The other quantity needed
to construct the cost functional is the total initial perturbation kinetic energy

E0 = 1
2‖u0(x)‖2

V . (2.12)

The cost functional J (T ) of interest is

J (T ) = G(T )

E0
. (2.13)
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Our aim is to find the optimal perturbation u0(x, 0)opt which maximises the cost functional

Jopt(T ) ≡ Jmax(T ) = Gopt(T )

E0
, (2.14)

with a fixed initial energy E0. To effect this, we formulate the optimisation procedure
by defining a Lagrangian L, an augmented functional which contains the cost functional
J (T ) in (2.13), constrained by the incompressibility condition (2.1), the modified
viscosity-stratified Navier–Stokes equation (2.2), the temperature equation (2.3) and the
initial velocity conditions of the flow. The constrained Lagrangian L is

L = J (T ) −
[
∂ui

∂t
+ (Uj + uj)

∂ui

∂xj
+ uj

∂Ui

∂xj
+ ∂p

∂xi
− 2β

Re
∂

∂xj
(μ(sij + Sij) + μ̄sij), vi

]

−
[

∂T
∂t

+ (Uj + uj)
∂T
∂xj

+ uj
∂(T̄ + T0)

∂xj
− 1

RePr
∂2T

∂x2
j
, τ

]

−
[
∂ui

∂xi
, q

]
− 〈〈ui(0) − u0,i, v0,i〉〉, (2.15)

where

〈〈a, b〉〉 ≡ 1
V

∫
V

aibi dV (2.16)

is the normalised volume integral of the inner product of the vectors a(x, t) and b(x, t),
and

[a, b] ≡ 1
T V

∫ T

0

∫
V

aibi dV dt (2.17)

is the normalised time integral of 〈〈a, b〉〉. The constraints on the Lagrangian are imposed
with the help of time- and/or space-varying Lagrange multipliers, which are our adjoint
variables. Three of the constraints in (2.15) appear as the inner products of the governing
equations for the conservation of momentum, temperature and mass, respectively, with
the adjoint variables vi, τ and q. In (2.15), ui(0) = u0,i are the components of the initial
perturbation velocity u0(x). The constraint on the initial condition appears as its inner
product with v0,i, and its relevance will become apparent below. The adjoint velocity vi,
the adjoint temperature τ , the adjoint pressure q and the adjoint velocity initial condition
v0,i correspond respectively to the direct variables ui, T , p and u0,i.

The variation of L with respect to all the variables and their corresponding adjoints are
independent of each other. At the maximum of the cost functional J (T ) and hence L in
(2.15), the variational derivatives identically vanish. The variation of L with respect to p is
discussed briefly here for illustration. Using integration by parts in three dimensions, we
have

δL
δp

= 1
T V

∫ T

0

∫
V

vi
∂δp
∂xi

dV dt = 1
T V

∫ T

0

(∮
S

viδpni dS −
∫
V

∂vi

∂xi
δp dV

)
dt, (2.18)

where S is the surface enclosing the volume V and ni is the outward-pointing unit
normal on the surface; δp must be periodic at the domain boundaries of the homogeneous
directions to ensure that the mean pressure drop dP/dx is constant. Hence, the requirement
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that the derivative on the left-hand side of (2.18) should vanish gives the incompressibility
condition for the adjoint velocity

∂vi

∂xi
= 0. (2.19)

Derivatives with respect to ui and T are treated similarly (for a detailed derivation with
constant viscosity see Luchini & Bottaro (2014) and Foures et al. (2014)) to give the adjoint
evolution equations (2.20) and (2.21) for vi and τ and the values of vi and τ at t = T ,

∂vi

∂t
− vj

∂(uj + Uj)

∂xi
+ ∂(vi(Uj + uj))

∂xj
+ β

Re
∂

∂xj

[
(μ + μ̄)

(
∂vi

∂xj
+ ∂vj

∂xi

)]

−τ
∂(T + T̄ + T0)

∂xi
+ ∂q

∂xi
+ γ ui = 0, (2.20)

∂τ

∂t
+ (Uj + uj)

∂τ

∂xj
+ 1

RePr
∂2τ

∂x2
j

− 2β

Re

[
∂μ

∂T

(
sij + Sij

) + ∂μ̄

∂T
sij

]
∂vi

∂xj
= 0, (2.21)

vi(T ) = 0, τ (T ) = 0. (2.22a,b)

The derivation also leads to the boundary conditions for the adjoint variables which are
same as that of the direct variables.

Similarly, the derivatives of L in (2.15) with respect to the adjoint variables give us
back the direct equations (2.1)–(2.3) and the condition ui(0) = u0,i for the initial velocity.
We thus reconfirm that adjoint variables are essentially Lagrange multipliers. Equations
(2.19)–(2.21) are the adjoint equations corresponding to the direct equations (2.1)–(2.3).
We note that the adjoint equations are linear in the adjoint variables. The nonlinearity
appears in terms of the direct variables which appear in both direct and adjoint equations.
For a constant-viscosity flow, these adjoint equations reduce to those derived by Vermach
& Caulfield (2018) for mixing of a passive scalar. Here, vi and q have the same dimensions
as the direct variables ui and p but τ behaves as the square of a velocity per unit
temperature. Nevertheless, we refer to τ as the adjoint temperature since its evolution
equation (2.21) is derived by taking a variation of L in (2.15) with respect to temperature
T . We notice that, in the absence of viscosity stratification, the last term in (2.21), with
the coefficient of 2β/Re, vanishes, and since we have no gravity, the solution to (2.21)
is just τ = 0, and the temperature term will drop out of the adjoint momentum equation
(2.20). The signs of the diffusion of adjoint momentum and temperature in (2.20) and
(2.21) imply that, only during backward time evolution, i.e. from t = T to 0, are these
equations well-posed. We also have in (2.22a,b) the required ‘initial’ conditions for vi
and τ at t = T for the backward marching. Hence, a loop in time can be set up. At the
very first iteration, we start with a guess of the optimal perturbation u0(x)opt. In our case,
this is a random noise. The temperature perturbations are set to zero at t = 0. The direct
equations (2.1)–(2.3) are marched forward in time until t = T , where the adjoint variables
are initialised according to (2.22a,b). The adjoint equations (2.19)–(2.21) are marched
backwards in time from t = T to 0 (note that they are well-posed only in this direction).
We then update u0(x) for the next iteration by moving it in the direction provided by the
variational derivative δL/δu0(x), which takes us closer to the optimal perturbation (and
hence increases the objective functional). Another constraint that is missing in (2.15) is the
imposition of a fixed E0, a crucial component in this nonlinear optimisation. In the case
of linearised equations, this would not be a necessity as the initial perturbation energy
for the optimisation purpose could be arbitrarily set to unity. This initial energy constraint
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could have been imposed with a Lagrange multiplier in (2.15), but that has been found to
be numerically expensive and delicate (Foures et al. 2013). Hence, during the update of
the initial perturbation, carried out to march towards the optimal perturbation based on
the gradient information, we use a rotation technique to constrain the E0 of the updated
perturbation on a fixed energy hypersphere, as described in detail in Foures et al. (2013).
The adjoint equations for a viscosity-stratified flow are derived here for the first time to our
knowledge. We see new terms involving gradients in viscosity, both of the mean and of the
perturbations, entering the adjoint velocity as well as the adjoint temperature equations.

As mentioned, the temperature perturbations are initially set to zero for the evolution of
the direct equations. In the absence of gravity, there is no physical quantity dependent upon
temperature that we would wish to optimise for, so temperature perturbations do not enter
the cost functional, and therefore do not play a role in the optimisation procedure. Other
forms of temperature perturbations that respect the boundary conditions can be chosen and
are likely to lead to at least quantitative differences. The effect of varying this parameter
could be studied, but a more interesting study would be one which includes the effects of
buoyancy. Since potential energy would then be included in the cost functional, optimal
temperature perturbations would be determined by the optimisation procedure. It is to
be noted that the adjoint equations have terms which are products of direct and adjoint
variables. So, the direct variables have to be stored at each time step when the direct
equations are being solved, to be used in the adjoint equations while marching backward
in time. To find the optimal perturbation within a set numerical tolerance, we have to
iterate repeatedly and gradually march according to the gradient information and monitor
a residual, as defined in other studies, such as Vermach & Caulfield (2018), which denotes
whether we have converged to the actual optimal perturbation. For all the cases studied,
when the rotation technique of Foures et al. (2013) converges (as discussed in appendix A),
we find the residual to be O(10−3–10−4), and we decree the optimiser to have found the
optimal perturbation u0(x)opt. This optimisation procedure has been termed direct-adjoint
looping.

Whether or not nonlinear mechanisms will be important in the evolution will depend
on E0. With E0 = 10−2, as used in the nonlinear optimisation studies of Cherubini et al.
(2010), Foures et al. (2014) and Vermach & Caulfield (2018), the perturbations are at most
an order of magnitude smaller than the laminar base flow, and will hence trigger nonlinear
mechanisms. On the other hand, with a very small E0 of O(10−8), nonlinear mechanisms
remain unimportant throughout our time horizon, perturbations being several orders of
magnitude smaller than the laminar base flow, and their products vanishingly small.
Incidentally, the term ‘quasi-linear optimal perturbations’ (Rabin et al. 2012; Kerswell
2018) is used for optimal perturbations obtained from this nonlinear looping approach
with a small E0. These have been described as nonlinearly adjusted versions of the
linear optimal perturbations. While we recognise that our optimal structures calculated
with E0 = 10−8 are in fact quasi-linear by this definition, we term them linear optimal
perturbations in this study. This is because the E0 is so small that the optimal perturbations
are very close to the linear optimal perturbations found by SVD, and we have checked
this. We note that these linear optimal perturbations may be scaled up to a high value
of E0, and used as initial conditions in the complete Navier–Stokes equations, and the
nonlinear evolution of these perturbations studied. For the highest E0 of 10−2, the grid
in our study is set at 100 × 209 × 50 points in the x, y and z directions and we validate
our solver with Vermach & Caulfield (2018). More details on the numerical method are
given in appendix A. Unless otherwise specified, we set a Prandtl number Pr = 7 in our
simulations. The target time of optimisation is fixed at T = 4 and we study the linear
and nonlinear optimal perturbations and the mechanism behind their evolution, for an
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unstratified flow, and for stratified flows with temperature differences between the upper
and the lower channel walls at �T = 20 K, 40 K, and 60 K. Kaminski et al. (2017) studied
the nonlinear evolution of the linear optimal perturbations in a density-stratified flow and
found the linear optimal perturbations to be sufficient to trigger nonlinear effects when
evolved with sufficiently large E0. We will show later for viscosity-stratified flows, the
linear optimal perturbation is qualitatively different in structure from the nonlinear optimal
perturbation, and hence leads to qualitative and quantitative differences even when scaled
to have large E0. Thus, the nonlinear O(uivj), O(uiτ) terms in the adjoint equations (2.20)
and (2.21) are critical, especially for the viscosity-stratified flow. We also remark briefly
upon the effect of Prandtl number on the evolution of the nonlinear optimal perturbation.

3. Viscosity-stratified optimal perturbations and their evolution

3.1. The linear optimal and its evolution
When the direct-adjoint looping is employed at E0 = 10−8, the optimal perturbation
obtained by direct-adjoint looping, and its early time evolution, remain linear. This was
remarked upon by Foures et al. (2013), and we checked this for stratified flows as well,
as will be discussed. By increasing E0, we may attain optimal perturbations which are
increasingly nonlinear. We will see below how nonlinear optimal perturbations are very
different from the linear, and how this impacts the evolution in a significant manner.

The optimal perturbations are visualised in this paper as isosurfaces of maximum and
minimum streamwise velocity perturbations u1, e.g. as in figure 3 shown for linear optimal
perturbations. In this figure and those to follow, a yellow isosurface is plotted at a certain
percentage of the maximum over the channel of that quantity at that time, while a blue
isosurface indicates regions where the quantity is at the same percentage of the minimum
(a negative quantity).

The linear optimal perturbation (E0 = 10−8) consists of an array of streamwise velocity
perturbations inclined against the mean flow and shear, on both sides of the channel for
the unstratified case (figure 3a). In the stratified case, similar structures are seen, but all
perturbations are remarkably localised close to the hot wall, where the viscosity decreases
towards the wall, with practically no action on the cold wall (figure 3b). Such localisation
of linear optimal perturbations was also found by Jose, Brandt & Govindarajan (2020)
using SVD studies on a channel with viscosity stratification and weak gravity. For our
chosen target time of T = 4, we find that the non-modal energy growth and the shapes of
the optimal perturbations are similar whether we optimise for a cost functional with energy
growth at the target time or with time-integrated energy as in (2.13). As mentioned, the
linear optimal perturbation for maximising energy at a target time can also be obtained
by an SVD of the respective Orr–Sommerfeld and Squire operators for the unstratified
(Schmid et al. 2002) and viscosity-stratified (Chikkadi, Sameen & Govindarajan 2005)
cases. The streamwise and spanwise wavenumbers of the linear optimal perturbation from
SVD for T = 4 and Re = 500 are kx ≈ 2 and kz ≈ 4, respectively, for an unstratified
channel and kx ≈ 2 and kz ≈ 5, respectively, for the viscosity-stratified channel with �T =
40 K. Quantised for channel length, we observe from figure 3 that these wavenumbers
can be seen in the linear optimal perturbations obtained from direct-adjoint looping with
E0 = 10−8. The periodic boundary conditions in the streamwise and spanwise directions
restrict the wavenumbers to be zero or such that the channel dimension is an integer
multiple of the corresponding wavelength. Besides revealing the localisation of the arrays
of vortices near the hot wall due to viscosity stratification, this result is also a validation
for our direct-adjoint looping.
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Figure 3. Three-dimensional linear optimal perturbation (E0 = 10−8), which maximises the cost functional
in (2.13) for (a) unstratified (�T = 0) and (b) stratified (�T = 40 K) channel flow for Re = 500, T = 4 and
Pr = 7. The mean flow is along the positive x as marked by arrows in (a,b). The colours are the 40 % isosurfaces
of the maximum (yellow) and minimum (blue) values of the streamwise perturbations u1. The isosurfaces for
other stratification levels (�T = 20 K and 60 K) are qualitatively similar to (b), with 40 % isosurfaces of u1
localised near the hot wall, where viscosity is lower.

The corresponding root mean square (r.m.s.) profiles of velocity perturbations of the
linear optimal perturbations are shown in figure 4, where the quantities have been averaged
in the streamwise and spanwise directions. There is a significant proportion of initial
amplitude in each velocity component, and stratification increases the proportion of energy
in the spanwise and wall-normal perturbations u3 and u2 in relation to the streamwise
perturbations. In u2, the difference between stratified and unstratified cases is larger than
the difference between different levels of stratification. The localisation of all perturbations
on the hot side of the channel is underlined in this figure.

The time evolution, obtained by solving the direct equations initialised with the linear
optimal perturbation, suggests the reason for its shape. For both the unstratified and
stratified cases, shown in figures 5 and 6, respectively, velocity perturbations are initially
tilted against the mean shear, and as time progresses, lean into the shear as they stretch.
This is the well known, and probably oldest to be described, linear growth mechanism,
the Orr mechanism (Orr 1907), where the tilting and the subsequent energy growth is
driven by the base, or laminar, shear. In stratified laminar flow, the magnitude of shear
is larger near the less-viscous wall, which for liquids is the hot wall (figure 2b). So, the
Orr mechanism is much more efficient near the hot wall. It follows that, for a given E0,
better growth can be achieved by placing perturbations in the high gradient region, which
explains the localisation of the initial velocity perturbations in stratified flow (figures 3b
and 4). The evolution of the optimal perturbations results in algebraic energy growth of
disturbances for short durations of time, which eventually decays as shown in figure 7. As
can be seen, the maximum algebraic growth need not be at the target time. For the linear
optimal perturbations, the energy growth for stratified flow is larger than for unstratified
flow, but this conclusion will not be the same for the nonlinear optimal perturbations, as
we shall see.

We thus find that the Orr mechanism is the dominant linear growth mechanism for
small energy levels in this short target time window. We note that, for longer target
times, the dominant mechanism may be different. This mechanism has also been observed
in the time evolution of (nonlinear) minimal seeds by Duguet et al. (2013) in plane
Couette flow during intermediate times before eventually reaching a turbulent state. The
other well-known linear growth mechanism, the lift-up mechanism (Landahl 1980; Brandt
2014), is not observed in the evolution of the linear optimal perturbation at small E0.
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Figure 4. Wall-normal profiles of root mean square (r.m.s., spatially averaged in the x and z directions)
of the linear optimal perturbations (E0 = 10−8). (a) Streamwise velocity perturbations u1, (b) wall-normal
velocity perturbations u2 and (c) spanwise velocity perturbations u3 for various wall-temperature differences
�T (in K). The solid and the dash-dotted lines in (a) correspond to the isosurfaces shown in figures 3(a) and
3(b), respectively.

Before we study nonlinear optimal perturbations, it is instructive to study what would
happen if the linear optimal perturbation were of large enough amplitude to trigger
nonlinearities. To this end, we rescale the initial energy of the linear optimal perturbations
(calculated with E0 = 10−8) to a higher initial energy, E0 = 10−2, while maintaining
the shape of the initial conditions corresponding to the case shown in figure 3(b) for
�T = 40 K. The full nonlinear evolution of the streamwise velocity perturbations for
this case is shown in figure 8. The low momentum fluid is transferred away from the
walls, displaying features of the classical lift-up mechanism driven by streamwise vortices
(not shown). Negative perturbation velocities (in blue) are seen in the channel interior as
opposed to positive perturbation velocities (in yellow) at the top wall. However, given that
the mean velocity is higher towards the interior of the channel away from the walls, these
negative perturbation structures could move faster than the positive perturbation structures
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Figure 5. Evolution of the linear unstratified optimal perturbation shown at two angles, at times (a,b) t = 0,
(c,d) t = 2, (e, f ) t = T = 4, (g,h) t = 6 and (i,j) t = 8. The structures are initially aligned against the shear,
and as time progresses, realign along the shear. Refer to supplementary movie 1 available at https://doi.org/10.
1017/jfm.2020.1160 for the full evolution.

in terms of total speed. Comparing figures 6 and 8, we see that the nonlinear evolution of
the (scaled-up) linear optimal perturbation is very different from the linear evolution of
the linear optimal perturbation. The nonlinear evolution of the linear optimal perturbation
for the unstratified case (not shown) also shows a lift-up-type mechanism in operation,
albeit at both walls, and is symmetric around y = 0. The physical mechanism for energy
growth at small energy levels (E0 = 10−8) is thus the Orr mechanism and that at high
energy levels (E0 = 10−2) is indicative of the lift-up mechanism. As we discuss below,
in particular for stratified flow, the linear optimal perturbations are not the most efficient
structures to extract energy from the mean flow into the perturbations for higher energy
levels.
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Figure 6. Evolution of the linear viscosity-stratified optimal perturbation (�T = 40 K) shown at two angles.
Optimal perturbations are strongly localised on the top (hot) wall unlike in figure 5, and the Orr mechanism is
in evidence. The times are as in figure 5. Refer to supplementary movie 2 for the full evolution.

3.2. The nonlinear optimal perturbation and its evolution
The perturbation leading to the maximum energy growth for the highest E0 of 10−2

considered here is referred to as the nonlinear optimal perturbation. Isosurfaces of the
nonlinear optimal streamwise velocity perturbation (figure 9) and streamwise–spanwise
averaged r.m.s. wall-normal nonlinear optimal velocity profiles (figure 10) show some
localisation towards the hot wall due to viscosity stratification. But remarkably, unlike
in the linear case (figures 3 and 4), there is significant perturbation energy on both walls
of the channel for the stratified nonlinear optimal perturbation. Figure 10, in stark contrast
to figure 4, makes it clear that the asymmetry between the two sides of the channel is
small for the nonlinear optimal perturbation, whereas for the linear optimal perturbation,
energetic structures were absent in the bottom half of the channel. But in the nonlinear
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Figure 7. Energy growth with time of the linear optimal perturbations (E0 = 10−8) for various stratification
strengths. The target time of optimisation for all of them is T = 4. The labels at t = 2, 4, 6, 8 on the solid line
correspond to labels in figure 5.

optimal perturbation too, the asymmetry increases with increasing stratification, with more
structures at the hot wall. The streamwise velocity perturbations are now arranged in a
series of elongated (mainly in the flow direction, but with a spanwise inclination) high
and low momentum zones near the walls. Increasing the stratification level makes the
population near the cold wall smaller (but not insignificant). From figure 10 we observe a
significant contribution to the initial perturbation kinetic energy from all three components
of velocity.

The energy–time graphs corresponding to the evolution of the nonlinear optimal
perturbations in figures 9 and 10 are shown in figure 11 for various stratification levels.
Figure 11(a) shows the cost functional Jopt(T ) of the optimal perturbation, which is the
quantity that we optimised for, while figure 11(b) shows the volume-averaged kinetic
energy as a function of time. Growth is algebraic in the nonlinear regime as well,
and perturbations decay soon after the target time of optimisation. Unlike in the linear
evolution of the linear optimal perturbation, there is no qualitative difference between
the levels of growth in the unstratified case and those at various levels of stratification.
Whether this will hold true over longer target times will need investigation. We are now
in a position to compare the evolution, by the modified Navier–Stokes equation, of the
linear and the nonlinear optimal perturbations, both starting from the same initial energy
of E0 = 10−2, in figure 12. We may first satisfy ourselves of the higher energy growth
in the evolution of the nonlinear optimal perturbation as compared to the linear optimal
perturbation, consistent with the definition of the nonlinear optimal perturbation. For the
unstratified flow, for a short target time, it turns out that the linear and nonlinear optimal
perturbations show similar growth, although the linear is of course lower, whereas the
linear optimal perturbation shows a much lower growth in the stratified flow than the
nonlinear optimal perturbation (comparing the dashed black line to the dashed red one
in figure 12). This is consistent with the cold wall becoming more prominent in the
evolution of the nonlinear optimal perturbation, as we shall discuss below. It is also worth
mentioning that, on comparison with figure 7, we see that the growth of energy of the linear
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Figure 8. The linear viscosity-stratified optimal perturbation (�T = 40 K) calculated with E0 = 10−8 and
scaled to nonlinear initial energy E0 = 10−2 is evolved by the fully nonlinear direct equations. Two different
angles are shown, showing that the lift-up mechanism is in evidence. The times are as in figure 5. Refer to
supplementary movie 3 for the full evolution. For the corresponding streamwise vorticity evolution, refer to
figure 1 in the supplementary material.

optimal perturbation, as a ratio of the initial energy, is significantly lower with nonlinear
evolution, for initial conditions differing only in amplitude. However, the absolute value of
perturbation energy always remains larger than the linear case since the initial perturbation
was large. When the initial perturbation is large, the available energy from the laminar flow
becomes a limiting factor, which could result in the lower growth, as a ratio.

We now discuss how stratification changes the mechanism of subcritical disturbance
growth and how nonlinear optimal perturbations are fundamentally different from linear
optimal perturbations in this regard. Initially proposed by Hamilton, Kim & Waleffe (1995)
and Waleffe (1997) and summarised by Brandt (2014), the regeneration/self-sustaining
cycle of wall turbulence involves three steps, (i) lift-up, i.e. transportation of low (high)
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Figure 9. The 40 % isosurfaces of the maximum (yellow) and minimum (blue) values of the streamwise
perturbations u1 of the nonlinear optimal perturbation (E0 = 10−2) with (a) �T = 0 (unstratified); and of
the viscosity-stratified nonlinear optimal perturbation with (b) �T = 20 K and (c) �T = 40 K. (d) The 20 %
isosurfaces of the maximum (yellow) and minimum (blue) u1 for the viscosity-stratified nonlinear optimal
perturbation with �T = 60 K. A slightly lower isosurface value had to be shown in (d) for better visualisation.

momentum fluid away from (towards) the wall by streamwise vortices, to form streamwise
independent streaks of low (high) momentum away from (near) the wall, (ii) break
down of these by inflectional secondary instability to acquire streamwise dependence
and (iii) regeneration of elongated vortices by nonlinear interactions between oblique
modes. These arguments were initially made with the linear optimal perturbation in mind.
Through a direct-adjoint looping optimisation methodology, Cherubini et al. (2011) for
a boundary layer and Cherubini & De Palma (2013) for a Couette flow showed that it
is much more efficient for the lift-up to be driven by streamwise-modulated vortices in
the first place. The nonlinear optimal perturbation inherently contains such streamwise
modulation. This is referred to as the modified lift-up mechanism, as it can bypass
the stage of secondary (streak) instability en route to transition to turbulence.We detect
similar optimal perturbation structures here for a channel flow, both in the unstratified
and stratified cases. Their evolution in time by the modified Navier–Stokes equations
is shown in figure 13 for the unstratified case. A modified lift-up mechanism similar to
Cherubini et al. (2011) and Cherubini & De Palma (2013) is seen to be in operation, where
low momentum fluid is lifted off the wall and high momentum fluid is brought closer to
the wall by streamwise-modulated vortices (vortices not shown). This translates into the
algebraic growth of perturbation kinetic energy seen in figure 11.

The evolution of the nonlinear optimal perturbation in stratified flow is shown in
figure 14. As mentioned earlier, the inception of an inflection point due to lift-up may
be expected to be more efficient near the less-viscous wall as the wall-normal velocity
gradient is larger, and lift-up is usually associated with u2∂U/∂y (Cherubini et al. 2011).
Consistent with this, we have a larger population of optimal perturbation structures
near the less-viscous wall, as seen in figure 9(a,b). Since mean shear is smaller at the
cold wall, its lift-up capability is lower, and therefore it may be argued that structures
which are already a little away from the cold wall can grow better on the cold side.
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Figure 10. Wall-normal profiles of (a) streamwise velocity fluctuations u1, (b) wall-normal velocity
fluctuations u2 and (c) spanwise velocity fluctuations u3, averaged across the x and z coordinates, of the
nonlinear optimal perturbations (E0 = 10−2) for various stratification strengths.

This is borne out by the optimal perturbation structures seen in the bottom half of
figure 14(b). An interesting feature of the evolution of the viscosity-stratified nonlinear
optimal perturbation, which distinguishes it from the unstratified case as well as from
the evolution of the linear optimal perturbation, is that as time progresses action at
the cold wall is increasingly significant, and the high-speed structures at the hot wall
shrink in wall-normal extent. The evolution of perturbations at the cold wall is strong
enough to create points of inflection in the x–z-averaged velocity profiles, and this will
be discussed with the aid of figure 15. We shall refer to a ‘strengthening (weakening)’ of
inflectional profiles when the profile becomes more (less) strongly wavy in the wall-normal
direction. In panel (a) of this figure, we see that the unstratified flow progresses steadily
towards inflection, maintains this up to approximately t = 10 and become less inflectional
thereafter. The profiles are symmetric. In fact, the perturbations in all cases decay at long
times, given low Reynolds number and small target time of optimisation employed here.
In figure 15(b) the evolution of the profile in the stratified case is shown. There is a

914 A10-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1160


R. Thakur, A. Sharma and R. Govindarajan

1.0 0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0 5 10 15

Time (t)
20 25 30 0 5 10 15

Time (t)
20 25 30

1.5

2.0

2.5

3.0

3.5

4.0

4.5
J o

pt
 (t

)
�T = 0
�T = 20
�T = 40
�T = 60

E
n
er

g
y
 (

1
/2

||u
(x

,t)
||2 ν

)

(b)(a)

Figure 11. Time evolution of (a) the cost functional Jopt(t) as in (2.14) and of (b) energy, of the nonlinear
optimal perturbations for various stratification strengths. The time of optimisation is T = 4 for all.
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Figure 12. Evolution of energy of the linear and nonlinear optimal perturbations when evolved with the
modified Navier–Stokes equation with E0 = 10−2. Solid lines are for the unstratified cases (�T = 0) while
the dotted lines are for stratified cases with �T = 40 K. Other stratification levels (not shown) show similar
behaviour to �T = 40 K.

strengthening of the inflectional profile at early times at both walls, with the hot wall
being more inflectional. After approximately t = 4, the profile becomes weaker near the
hot wall and more strongly inflectional than before on the cold side, before eventually
weakening at long times. The corresponding profiles of the x–z-averaged total viscosity
are shown in figure 15(c). Upon comparing with the laminar viscosity profile, up to a time
of approximately 10, on the colder side, we see that higher-viscosity fluid from the cold
wall has been lifted up towards the centreline and lower-viscosity fluid from the central
portion of the channel has been carried towards the wall. A similar exchange is visible on
the hot side of the channel as well, but with opposite signs of viscosity change. At the long
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Figure 13. Evolution of the nonlinear unstratified optimal perturbation with E0 = 10−2, shown at two angles.
The times are as in figure 5. Refer to supplementary movie 4 for the full evolution. For the corresponding
streamwise vorticity evolution, refer to figure 2 in the supplementary material.

time of t = 16, we see a mixing of fluids. Below, we address the question: If lift-up is more
efficient at the less-viscous wall, why do perturbations grow near the other wall?

After the inception of lift-up, near the hotter wall, less-viscous fluid of low momentum
is brought away from the wall to the vicinity of more-viscous and high momentum fluid,
and the opposite happens on the colder wall. Thus the low (high) momentum streaks
near the hotter wall are composed of less (more) viscous fluid, but those near the colder
wall are composed of more (less) viscous fluid than the local laminar values. This is
evident from the conditionally averaged viscosity profiles in figures 16(a) and 17(a) at
times t = 2 and 6, respectively. Here, at each y location, the viscosity 〈μ+〉 is averaged
over all positive u1 cells over the x–z plane, and 〈μ−〉 is the viscosity averaged over
negative u1 cells in the same plane. A small cutoff ε = 0.001 in the velocity has been

914 A10-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1160


R. Thakur, A. Sharma and R. Govindarajan

–1

–1

0

1

0y y1

–1

–1

0

1

0y y1

–1

–1

0

1

0y y1

–1

–1

0

1

0y y1

–1
0

2
0

2
4

6

0 2 4 6

0 2 4 6

0 2 4 6

0 2 4 6

0 2 4 6

–1

0

1

0y y

z
x

0
2

0
2

4
6

z
x

0
2

0
2

4
6

z
x

0
2

0
2

4
6

z
x

0
2

0
2

4
6

z
x

x

1

(e)

(b)(a)

(c) (d )

(g) (h)

( i) ( j)

( f )

Figure 14. Evolution of the nonlinear viscosity-stratified optimal perturbation (�T = 40 K) with E0 = 10−2,
shown at two angles. The times are as in figure 5. Refer to supplementary movie 5 for the full evolution. For
the corresponding streamwise vorticity evolution, refer to figure 3 in the supplementary material.

used for this averaging, and it has been checked that the profiles are insensitive to the
exact choice of ε. These plots establish that, on the colder side of the channel, low-speed
regions are correlated with reduced viscosity, and high-speed regions correlate with
elevated viscosity, with the opposite correlations on the hotter side. The instantaneous
streamwise velocity perturbations in four different x–z planes are shown in figures 16
and 17 in panels (b–e). The spanwise widths and spacing of the low- and high-speed
streaks are significantly larger on the cold side than on the hot side. Secondly, the streaks
persist up to t = 6 on the cold side, whereas on the hot side the structure is practically
lost by this time. A physical argument for the relative persistence near the colder wall
is as follows. Consider that the streamwise pressure gradient is similar across the span
of the channel. High-speed streaks of low viscosity alternating with the low-speed flow
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Figure 15. The total streamwise velocity at various times averaged across the x and z coordinates for (a) the
nonlinear unstratified optimal perturbation and (b) the nonlinear viscosity-stratified optimal perturbation for
�T = 40 K. (c) The evolution of the total viscosity profile for the flow corresponding to (b). Solid black lines
in each for t = 0, solid red for t = 2, solid blue for t = 4, dashed black for t = 6, dashed red for t = 8, dashed
blue for t = 10 and solid green for t = 16.

of higher viscosity would be maintained by this pressure gradient. On the other side,
i.e. at the hot wall, a higher-viscosity fluid of higher forward speed would tend to slow
down, and a higher-viscosity fluid of lower speed to speed up, in response to a similar
streamwise pressure gradient. The greater persistence of streaks on the colder side is thus
a consequence of the basic asymmetry in the mechanics of the lift up on the two sides.

In figure 9(c) we had seen that the spanwise variation of the velocity perturbations
had different apparent wavenumbers on the two walls. The slices in figures 16 and 17
clarify this to be a sinuous variation. Such variation is known to be responsible for the
ultimate breakdown of streaks (Waleffe 2009). A study at higher Reynolds number and
longer target time could reveal this. Besides, the inflectional instability, discussed below
for the stratified case, extracts energy from the streaks (Waleffe 2009) allowing further
energy growth beyond the lift-up. Further studies at higher Reynolds numbers and longer
target times will be needed to explore these mechanisms in viscosity-stratified flows.

The observations in figures 15–17 enable us to schematically illustrate the lift-up
process in stratified flow, in figure 18. Ellingsen & Palm (1975) described the creation
of inflectional profiles due to the redistribution of velocity by streamwise independent,
but three-dimensional, velocity perturbations, i.e. due to the lift-up effect. The nonlinear
mechanism in the evolution of the optimal structures is the modified lift-up (Cherubini
et al. 2011; Cherubini & De Palma 2013). In figure 18, we highlight the effect of viscosity
stratification on the lift-up mechanism alone. Panel (a) shows stronger inception of
inflection near the hot wall at early times, which is caused by the rolls being concentrated
near that wall. On the left of panel (b) we sketch how this lift-up results in the exchange of
viscosities. On the right of this panel, we see how this exchange of viscosities results in the
strengthening of the inflectional profile on the cold wall and weakening on the hot wall.
Wherever viscosity is higher than the surrounding laminar flow, gradients are lowered,
and wherever it is lower, gradients are relatively increased. Thus, the low-viscosity streak
at the cold wall brings with it higher velocity gradients, leading to stronger lift-up.
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Figure 17. Same as figure 16 but for time t = 6. Refer to figure 14(g) for a three-dimensional view of
isosurfaces of u1 at this time and the black dashed line in figure 15(b) for the total U(y) averaged in x and
z at this time.

The nonlinear optimal of figure 9 has a non-zero velocity perturbation near the colder
wall, unlike the linear optimal of figure 6. This is because streaks persisting for longer at
the cold wall contribute to nonlinear energy growth. The persistence of high momentum
and low-viscosity streaks, combined with stronger inflection in the velocity profile near
the colder wall, is consistent with the observations of previous DNS studies (Zonta et al.
2012; Lee et al. 2013) concerned with turbulence in stratified flow. In boundary layer flow
(Lee et al. 2013) heating the flat plate and hence making fluid less viscous in the vicinity
leads to suppression of turbulence and for channel flow (Zonta et al. 2012) turbulence
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Figure 18. Schematic of the lift-up mechanism influenced by viscosity stratification: (a) inception of the
inflection in the velocity profile is stronger near the less-viscous wall as it has larger wall-normal velocity
gradient, (b) persistence of the inflection created is greater near the cold/more-viscous wall because the streak
C2 of high momentum can sustain higher wall-normal gradients of velocity than before, whereas the streak
of low momentum, C3, which has higher viscosity velocity gradients within it, will be lowered. The opposite
happens on the other wall, where high momentum fluid H2 has higher-viscosity and low momentum fluid H3
has lower viscosity than the local laminar value. The dashed line represents the undisturbed laminar profile, the
dash-dotted line and the solid lines are representations of early and later times, respectively.

is suppressed on the hot/less-viscous wall and enhanced on the cold/more-viscous wall.
Cherubini et al. (2011) and Cherubini & De Palma (2013) highlight the importance of
the Orr and lift-up mechanisms, both linear mechanisms, in the creation of subcritical
transition through minimal seeds of turbulence transition (obtained by optimising over
much larger target times as compared to what we study in this paper). Duguet et al. (2013)
also identify the existence and importance of these mechanisms in the time evolution of
minimal seeds in Couette flow, and the subsequent breakdown of the streaks to instabilities.
Recently, Vavaliaris, Beneitez & Henningson (2020) also reported the dominance of these
mechanisms in the initial stages of subcritical turbulence in a boundary layer. We have
shown how viscosity stratification in a channel acts to modify these mechanisms. For the
short target time (T = 4) optimal perturbations at the relatively small Reynolds number
(Re = 500) that we have studied, the interaction required for nonlinear regeneration of
the streaks and hence completing the regeneration cycle en route to transition (Waleffe
2009) is absent. But the primary role of viscosity stratification in the initial stages of the
nonlinear non-modal process has been revealed.
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Figure 19. Temperature perturbations at target time at z = π/2 for (a) Pr = 0.1 and (c) Pr = 7 when started
with the corresponding nonlinear viscosity-stratified optimal perturbation (�T = 20 K). The corresponding
viscosity contours at same time are in (b,d). Note the presence of higher gradients in temperature and viscosity
in (c,d), respectively. The colour bars in (a,c) are different.

3.3. Effect of Prandtl number
We performed simulations at three Prandtl numbers: Pr = 0.1, 7 and 5000, for �T =
20 K. Our lowest Péclet number, i.e. the product of the Reynolds and the Prandtl numbers,
is 50, which is too large for diffusion of the temperature perturbations to qualitatively
change the behaviour over our simulation times. We confirm this in our simulations. Slices
of temperature and viscosity perturbations are shown in figure 19 for two values of Pr,
when evolved with the corresponding nonlinear optimal perturbation up to the target time.
We see that diffusion effects are greater at the lower Prandtl number, so viscosity variations
persist better at the higher Pr, while we find very similar structures and their evolution (not
shown) at all Prandtl numbers. However, in studies over longer target times, of the process
of transition to turbulence, we expect the Prandtl number to play an important role.

4. Conclusions

In this study we have derived, for the first time to our knowledge, the adjoint modified
Navier–Stokes equations for a viscosity-stratified flow. We have developed a numerical
solver for the direct and adjoint equations in an iterative loop in three dimensions, to find
optimal initial conditions in the linear limit as well as for a finite initial perturbation energy.
We have shown that viscosity stratification brings important modifications to the operation
of the lift-up mechanism in the early stages of disturbance growth. For the optimisation
time considered here, initially stronger lift-up is set up at the hot (less-viscous) wall
due to the higher mean velocity gradient, but the lift-up at the cold (more-viscous) wall
increases in strength later, while that at the hotter wall weakens. Significantly, at the
colder wall, high-speed streaks are more persistent, of larger spanwise extent, and give
rise to a strengthening of the inflectional profile. We have presented physical arguments
for these observations based on the viscosity of the fluid in the high- and low-speed streaks
undergoing the lift-up. Thus the action shifts from the hotter wall to the colder wall as
time progresses. Most of the features we observe in the evolution of the nonlinear optimal
perturbation are completely missed in the linear study. A linear optimal perturbation
of small amplitude will only display the Orr mechanism and not the lift-up. At higher
amplitudes, lift-up will be seen, but only at the hot wall. In fact, no perturbations are ever
seen near the cold wall with the linear optimal perturbation.
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This work suggests several directions for future research. This study has been for a
short target time, so a starting point for understanding the role of viscosity stratification
in the transition to turbulence will be the study of nonlinear optimal perturbations over
long target times. The question of the minimal seed for triggering turbulence could be
of importance in this context. With an increase in the target time and Reynolds number,
the existence and the interplay of the observed Orr and the modified lift-up mechanisms
could be investigated. Vermach & Caulfield (2018) made an interesting finding that the
initial condition which produces the most efficient mixing could be quite different from
that which gives the highest energy growth. Recognising that most flows where questions
about mixing are relevant are also stratified in viscosity indicates this as an area of
study. We expect the effect of Prandtl number to be pronounced in flows with a sharp
stratification, e.g. the flow of miscible fluids of different viscosity, and also at long times
in continuously stratified flows, and this bears investigation. We have neglected gravity
in this study but most flows with a composition or temperature variation are subject to
buoyancy effects. This combination will make for an interesting study. Finally, given the
number of industrial applications for which viscosity stratification is important, a variety of
experimental studies are called for. We hope that this first work on the effects of viscosity
stratification in nonlinear optimal perturbation growth will give impetus to such studies.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.1160.
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Appendix A. More on the numerical method and its validation

The x and z directions in figure 1 are the homogeneous directions and we define periodic
boundary conditions in these, except in the pressure. We impose no-slip boundary
conditions at the walls at y = ±Ly. For all the analyses, we use a non-dimensional size of
Lx = 2π, Ly = 2, and Lz = π in which the streamwise extent is smaller than in Vermach
& Caulfield (2018), while the spanwise extent is the same. Our channel size is the same as
in the two-dimensional study of Foures et al. (2013).

A.1. Grid and numerical method
The gradients in the velocity and temperature fields are higher with nonlinear initial
energy (E0 = 10−2) when compared to linear initial energy (E0 = 10−8). In x, y and z, we
use 100 × 209 × 50 grid points for E0 = 10−2, while we use 50 × 209 × 25 grid points
for E0 = 10−8. The makes the grid spacing in the x and z directions equal, at 0.06 for
E0 = 10−2 and at 0.12 for E0 = 10−8. For a nonlinear stratified case with �T = 20 and
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E0 = 10−2, the maximum difference between E(T ) = 〈〈u(x, t) · u(x, t)〉〉/2 with a grid of
100 × 209 × 50 and a finer grid of 128 × 209 × 64 (this produces grid spacing the same
as that of Vermach & Caulfield 2018) is O(10−5).

The wall-normal or the y direction is discretised into a staggered combination of base
and fractional grids (e.g. see Bewley 2012). This puts a fractional grid point at the
mid-location of two base grid points. The streamwise and spanwise velocities, pressure
and temperature are defined on the fractional grid and the wall-normal velocity on the
base grid. A hyperbolic tangent function

yj = tanh
(

k
[

2(j − 1)

NY
− 1

])
, j = 1, 2, . . . NY , (A1)

where NY is the number of grids in the wall-normal direction, is used to cluster both the
fractional and the base grid points towards the walls. The value of k in (A1) has been
kept constant at 1.5 and it creates a y-grid with �ymax = 0.0159 (near the centre of the
channel) and �ymin = 0.0029 (near both the walls). The wall-normal spatial derivatives are
computed using second-order central finite difference method. The spatial derivatives in x
and z are calculated using fast-Fourier transform and we truncate the Fourier series using
the 2/3-rule to prevent aliasing (e.g. see Canuto et al. 2007). We employ a time-stepping
algorithm which is a combination of an explicit method (Runge–Kutta–Wray) for the
nonlinear (convective) terms and an implicit method (Crank–Nicolson) for the linear
(viscous) terms and the wall-normal derivatives.

A.2. Convergence to the optimal
To converge to the optimal perturbation, we start with a guess of the same at the outset of
the very first direct-adjoint loop. After we have completed one iteration by going forward
and backward with the direct and adjoint equations, we need to update the guess for the
next iteration. We employ the update-by-rotation technique of Foures et al. (2013) which
involves a line search after the adjoint leg of the direct-adjoint loop is completed. This
first amounts to updating the direct variables at t = 0 after the nth iteration by an angle ζ ,
between 0◦ and 360◦, as

un+1
i = un

i cos ζ + fi(un, vn) sin ζ, (A2)

where the exact functional form of fi in terms of the direct velocities un and adjoint
velocities vn is provided in Foures et al. (2013). The next step involves evolving the direct
equations with un+1

i for each update angle ζ and noting the cost functional. The update
angle that provides the largest cost functional is chosen as our desired update angle ζmax.
The iteration continues with the updated guess un+1

i = un
i cos ζmax + fi(un, vn) sin ζmax.

We have tried various step sizes for the angle search and, after a few iterations, found the
direct-adjoint loop to ultimately converge to a zero angle, i.e. where the direct variables
from the previous iteration are the optimal perturbations (un+1

i = un
i ) within the tolerance

of the step size. As expected, the number of iterations required to converge to zero angle is
inversely proportional to the angle step size. As mentioned in § 2.3, at this point, we find
the residual as defined in other studies (Vermach & Caulfield 2018) to be of O(10−3–10−4).
For the geometry considered in this paper, the direct-adjoint loop optimises for O(106)
variables for the nonlinear case, and as stated by Vermach & Caulfield (2018), it would be
instructive to regard the corresponding optimal perturbations as approximations. It takes
O(100) iterations to converge to the nonlinear optimal perturbation, with E0 = 10−2, for
the unstratified as well as the stratified cases, similar to the number in Vermach & Caulfield
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(2018), while it takes less than 50 iterations to converge to the linear optimal perturbation
(E0 = 10−8, both unstratified and stratified) when starting from random initial conditions.
Imposing an optimal perturbation of a similar parameter set as our initial guess allows
much faster convergence to the same optimal perturbation as before, akin to method of
continuation. The ease of convergence to the linear optimal perturbation has also been
reported in the studies cited in the text. It is seen that with an increase in the strength of
viscosity stratification, the structure of the nonlinear optimal perturbations become noisier,
and perfect isosurfaces of streamwise perturbation velocity are harder to obtain.

Only for the validation purpose with Vermach & Caulfield (2018), we use a longer
channel with Lx = 4π. With our direct-adjoint looping solver, for target time T = 2, we
achieve a G(T ) of over 93 % of that obtained by Vermach & Caulfield (2018) at the
target time, which incidentally is the only existing study to our knowledge on nonlinear
optimal perturbation in unstratified three-dimensional channel flow. The isosurfaces of
the streamwise velocity that we obtain for the nonlinear optimal perturbation with E0 =
10−2, starting from random initial conditions, closely agree with those of Vermach &
Caulfield (2018). In particular, both computations result in optimal perturbations which
are elongated in the streamwise direction, with streamwise wavelength far larger than can
be accommodated in the channel of 4π length, spanwise wavenumber of kz = 6, and very
similar levels of obliqueness. A more perfect numerical agreement is not to be expected as
these optimal perturbations are known to be numerically delicate (Foures et al. 2013) and
might vary with varying resolution of the optimiser. Nonlinearity makes the problem one
of non-convex optimisation and it is not clear how to arrive at the global maximum, or how
the existence of more than one local maximum can be resolved (Kerswell 2018). A close
examination of the two structures shows that there are small differences in the symmetry
of arrangement, so we might have arrived at a closely resembling but different optimal, as
compared to Vermach & Caulfield (2018). A check we performed to make sure we have
converged to a local optimum is to start from different initial conditions of random noise
of the desired amplitude, as well as an optimal perturbation from a different parameter
set, to ensure that the optimal perturbations we arrive at are the same within the finite
difference errors (O(10−4)). For the viscosity-stratified case, we ran the direct-adjoint
loop at very low initial energy of E0 = 10−8 to get the linear optimal perturbation by
maximising E(T ) = (‖u(x, T )‖2

V)/2, compared it to the linear viscosity-stratified optimal
perturbation obtained from SVD, and obtained excellent agreement as already mentioned
in § 3.1.
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