T. IshikawaNagoya Math. J.Vol. 118 (1990), 195-202

SUPER CONGRUENCE FOR THE APÉRY NUMBERS

TSUNEO ISHIKAWA

§ 0. Introduction

Let, for any $n \geq 0$,

$$a(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}, \qquad u(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2.$$

R. Apéry's proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ made use of these numbers (see [10]). As a result, many properties of the Apéry numbers were found (see [1]–[9]). In particular, Beukers and Stienstra showed the interesting congruence (see [11, Theorem 13.1]).

Theorem 1 (Beukers and Stienstra). Let $p \geq 3$ be a prime, and write

(1)
$$\sum_{n=1}^{\infty} \lambda_n q^n = q \prod_{n=0}^{\infty} (1 - q^{4n})^6.$$

Let $m, r \in \mathbb{N}$, m odd, then we have

$$(2) a\left(\frac{mp^{r}-1}{2}\right) - \lambda_{p}a\left(\frac{mp^{r-1}-1}{2}\right) + (-1)^{(p-1)/2}p^{2}a\left(\frac{mp^{r-2}-1}{2}\right)$$

$$\equiv 0 \bmod p^{r}.$$

Moreover they conjectured that congruence (2) holds mod p^{2r} if $p \ge 5$, and they called these congruences super congruences in [4] and [11].

In this paper we shall prove the conjecture for r = 1.

Theorem 2. Let $p \geq 5$ be a prime and $m \in \mathbb{N}$, m odd, then we have

$$a\Big(rac{mp-1}{2}\Big) - \lambda_p a\Big(rac{m-1}{2}\Big) \equiv 0 mod p^2 \,.$$

F. Beukers informed me that L. Van Hamme proved the case of $p \equiv 1 \mod 4$ using properties of the *p*-adic gamma function (see [7]). We prove the general case involving $p \equiv 3 \mod 4$ by entirely different method. Our

Received April 15, 1989.

method is applicable to super congruences of other numbers such as u(n) (see [8]).

§ 1. Congruence of a(n)

The numbers a(n) satisfy the recurrence

$$(3) \quad (n+1)^2 a(n+1) = (11n^2 + 11n + 3)a(n) + n^2 a(n-1) \qquad n \ge 1.$$

We know the following result. Let p be an odd prime, and $m \geq 0$, then

$$a(mp) \equiv a(m) \mod p^2,$$

$$a(p-1) \equiv 1 \quad \mod p^2.$$

By (3), (4) and (5), we have $a(p-2) \equiv -3 + 5p \mod p^2$, $a(p+1) \equiv 9 + 15p \mod p^2$.

Proposition 1. Let $m \ge 0$, $n \ge 0$ and m + n = p - 1. Then

$$a(m) \equiv (-1)^m a(n) \mod p$$
.

Proof. We proceed by induction on m to show that $a(m) \equiv (-1)^m a(p-m-1) \mod p$. From the above result, $a(0) \equiv a(p-1) \equiv 1 \mod p$ and $a(1) \equiv -a(p-2) \equiv 3 \mod p$. Let 0 < m < p-1. From the recurrence (3),

$$(m+1)^2 a(m+1) \\ = (11m^2 + 11m + 3)a(m) + m^2 a(m-1) \\ \equiv \{11(p-m)^2 - 11(p-m) + 3\}a(m) + (p-m)^2 a(m-1) \\ \equiv \begin{cases} -\{11(p-m)^2 - 11(p-m) + 3\}a(p-m-1) + (p-m)^2 a(p-m) & \text{if } m \text{: odd} \\ \{11(p-m)^2 - 11(p-m) + 3\}a(p-m-1) - (p-m)^2 a(p-m) & \text{if } m \text{: even} \end{cases} \\ \equiv \begin{cases} (m+1)^2 a(p-m-2) & \text{if } m \text{: odd} \\ -(m+1)^2 a(p-m-2) & \text{if } m \text{: even} \end{cases}$$

Proposition 2. For all primes $p, n \ge 0$ and $0 \le m \le p-1$, we have $a(np+m) \equiv a(m)a(n) \mod p.$

Proof. This congruence follows from the similar method of the proof of [6, Theorem 1]. Q.E.D.

§ 2. Congruence of b(n)

Let b(n) = 0 and, for any $n \ge 1$,

$$b(n) = \sum_{k=1}^{n} {n \choose k}^{2} {n+k \choose k} \left[\frac{2}{n-k+1} + \cdots + \frac{2}{n} + \frac{1}{n+1} + \cdots + \frac{1}{n+k} \right].$$

These numbers are (differential) of a(n) and they take important parts in the congruence of mod p^2 as shown in [6, Theorem 4].

Proposition 3. The numbers b(n) satisfy the recurrence

(6)
$$(n+1)^2b(n+1) = (11n^2 + 11n + 3)b(n) + n^2b(n-1) - 2(n+1)a(n+1) + 11(2n+1)a(n) + 2na(n-1),$$

and for all primes $p \ge 3$, $n \ge 0$ and $0 \le m \le p-1$, we have

$$a(np+m) \equiv \{a(m)+pnb(m)\}a(n) \mod p^2$$
.

Proof. Let

$$B_{n,k} = (k^2 + 3(2n+1)k - 11n^2 - 9n - 2)\binom{n}{k}^2 \binom{n+k}{k} H_{n,k} + (6k - 22n - 9)\binom{n}{k}^2 \binom{n+k}{k},$$

and

$$H_{n,k} = \frac{2}{n-k+1} + \cdots + \frac{2}{n} + \frac{1}{n+1} + \cdots + \frac{1}{n+k}$$

then we have

$$B_{n,k} - B_{n,k-1} = (n+1)^2 {n+1 \choose k}^2 {n+1+k \choose k} H_{n+1,k}$$

$$- (11n^2 + 11n + 3) {n \choose k}^2 {n+k \choose k} H_{n,k}$$

$$- n^2 {n-1 \choose k}^2 {n-1+k \choose k} H_{n-1,k}$$

$$+ 2(n+1) {n+1 \choose k}^2 {n+1+k \choose k}$$

$$- 11(2n+1) {n \choose k}^2 {n+k \choose k} - 2n {n-1 \choose k}^2 {n-1+k \choose k}.$$

Taking summation from 1 to n+1 on k, recurrence (6) follows. The congruence can be proved in the similar method of the proof of [6, Theorem 4] by congruences (4) and (5).

Q.E.D.

Proposition 4. Let $m \ge 0$, $n \ge 0$ and m+n=p-1. Then $b(m) \equiv (-1)^{m-1}b(n) \mod p.$

Proof. From the congruence (4), (5) and Proposition 3, $b(0) \equiv -b(p-1) \equiv 0 \mod p$. And by the definition of b(n), $\operatorname{ord}_p b(p) \geq 0$. Then $b(1) \equiv b(p-2) \equiv 5 \mod p$ by the recurrence (6). By induction on m, similarly in Proposition 1, we can prove. Q.E.D.

THEOREM 3. Let
$$m \geq 0$$
, $n \geq 0$ and $m+n=p-1$. Then $a(m) \equiv (-1)^m \{a(n)-pb(n)\} \mod p^2$.

Proof. It is clear from (4), (5) and Proposition 4 in the case of m = 0, 1. From the recurrence (3), (6) and the congruence

$$(m+1)^2 a(m+1)$$

$$\equiv \{11(p-m)^2 - 11(p-m) + 3\} a(m) + (p-m)^2 a(m-1)$$

$$- 11p\{2(p-m) - 1\} a(m) - 2p(p-m)a(m-1) \mod p^2,$$

it can be also shown by inductive method.

Q.E.D.

§ 3. Congruence of c(n)

If $p \equiv 3 \mod 4$, we can not obtain the congruence of b((p-1)/2) from Proposition 4. Therefore we prepare the numbers c(n).

Let, for all odd numbers $n \geq 1$,

$$c(n) = \sum_{k=1}^{n} {n \choose k}^{3} (-1)^{k} \left[\frac{3}{n-k+1} + \cdots + \frac{3}{n} \right].$$

Let p be an odd prime. From the congruence

$$egin{pmatrix} \left(rac{p-1}{2}+k
ight) \equiv (-1)^k \left(rac{p-1}{2}
ight) \mod p$$

and

$$\frac{1}{\frac{p-1}{2} + k + 1} + \dots + \frac{1}{\frac{p-1}{2}} + \frac{1}{\frac{p+1}{2}} + \dots + \frac{1}{\frac{p-1}{2} + k} \equiv 0 \mod p$$

where $1 \le k \le (p-1)/2$, we have

$$3b\left(\frac{p-1}{2}\right) \equiv c\left(\frac{p-1}{2}\right) \mod p \quad \text{if } p \equiv 3 \mod 4.$$

Proposition 5. The numbers c(n) satisfy the recurrence

(7)
$$n^{2}c(n) = -3\{9(n-1)^{2}-1\}c(n-2)$$

for all odd numbers $n \geq 3$.

Proof. Let

$$f_n(k) = 2(14n^2 + n - 1) - 3(26n^2 - n - 3)k/n + 3(29n^2 - 3)k^2/n^2$$
 $- 3(15n^2 + 2n - 1)k^3/n^3 + 3(3n + 1)k^4/n^3$,
 $g_n(k) = 2(28n + 1) - 3(26n^2 + 3)k/n^2 + 18k^2/n^3$
 $+ 3(15n^2 + 14n - 3)k^3/n^4 - 9(2n + 1)k^4/n^4$.

and

$$C_{n,k} = \frac{3}{n-k+1} + \cdots + \frac{3}{n}$$
.

Then we have

$$(n+1)^{2} {n+1 \choose k}^{3} C_{n+1,k} + 3(9n^{2}-1) {n-1 \choose k}^{3} C_{n-1,k}$$

$$+ 2(n+1) {n+1 \choose k}^{3} + 54n {n-1 \choose k}^{3}$$

$$= f_{n}(k) {n \choose k}^{3} C_{n,k} + f_{n}(k-1) {n \choose k-1}^{3} C_{n,k-1}$$

$$+ g_{n}(k) {n \choose k}^{3} + g_{n}(k-1) {n \choose k-1}^{3}.$$

We multiply both sides by $(-1)^k$. Taking summation from 1 to n+1 on k,

$$(8) \quad (n+1)^2 c(n+1) + 3(9n^2 - 1)c(n-1) + 2(n+1) \sum_{k=0}^{n+1} {n+1 \choose k}^3 (-1)^k + 54n \sum_{k=0}^{n-1} {n-1 \choose k}^3 (-1)^k = 0.$$

If $n \equiv 0 \mod 2$, two latter summations are equal to 0. Q.E.D.

Remark. The numbers c(n) satisfy the recurrence (8) if $n \equiv 1 \mod 2$.

Proposition 6. Let $p \equiv 3 \mod 4$ be a prime, we have

$$c\left(\frac{p-1}{2}\right) \equiv 0 \mod p$$
.

Proof. It is trivial if p = 3. If $p \equiv 7 \mod 12$ then (p + 2)/3 is odd. By (7), we have

$$\left(\frac{p+2}{3}\right)^2 c\left(\frac{p+2}{3}\right) + 3\left\{9\left(\frac{p-1}{3}\right)^2 - 1\right\} c\left(\frac{p-4}{3}\right) = 0.$$

Then $c((p+2)/3) \equiv 0 \mod p$. Hence, $c(n) \equiv 0 \mod p$ for $(p+2)/3 \le n \le p-2$ and n odd. If $p \equiv 11 \mod 12$ then (p+4)/3 is odd. Then it can be proved in the same way. Q.E.D.

§ 4. Proof of Theorem 2

Beukers and Stienstra showed that the generating function of a(n) is a holomorphic solution of the Picard-Fuchs equation associated to the family of elliptic curves. From this argument and the ζ -function of a certain K3-surface, they proved Theorem 1 (see [2, 11]). Moreover we know that the right hand side of (1) is equal to $\eta(4z)^6$ with $q=e^{2\pi iz}$, Im (z)>0, where $\eta(z)=q^{1/24}\prod_{n=1}^{\infty}(1-q^n)$ is Dedekind's η -function. From the Jacobi-Macdonald formula, we see

$$\lambda_p = egin{cases} 4a^2-2p & ext{if } p\equiv 1 mod 4 \ ext{and } p=a^2+b^2 \,, & a\equiv 1 mod 2 \ 0 & ext{if } p\equiv 3 mod 4 \,. \end{cases}$$

Hence if $p \equiv 1 \mod 4$ then $\lambda_p \neq 0 \mod p$. According to Theorem 1, m = 1 and r = 1 then $a((p-1)/2) \equiv \lambda_p \neq 0 \mod p$.

Let us prove Theorem 2 using congruences of a(n), b(n), c(n), and Theorem 1.

If $p \equiv 1 \mod 4$ then $\frac{p-1}{2}$ is even. From Proposition 4, $b\left(\frac{p-1}{2}\right)$ $\equiv -b\left(\frac{p-1}{2}\right) \mod p$. Hence $b\left(\frac{p-1}{2}\right) \equiv 0 \mod p$. Then $a\left(\frac{mp^2-1}{2}\right)$ $\equiv a\left(\frac{mp-1}{2}\right)a\left(\frac{p-1}{2}\right) \mod p^2$ and $a\left(\frac{mp-1}{2}\right) \equiv a\left(\frac{m-1}{2}\right)a\left(\frac{p-1}{2}\right)$ $\mod p^2$. Putting r=2 in Theorem 1, $a\left(\frac{mp^2-1}{2}\right) \equiv \lambda_p a\left(\frac{mp-1}{2}\right) \mod p^2$. Since $a\left(\frac{p-1}{2}\right) \neq 0 \mod p$, this is reduced to $a\left(\frac{mp-1}{2}\right) \equiv \lambda_p a\left(\frac{m-1}{2}\right) \mod p^2$.

If $p \equiv 3 \mod 4$ and $p \neq 3$ then

$$a\left(\frac{p-1}{2}\right) \equiv \frac{p}{2}b\left(\frac{p-1}{2}\right) \equiv \frac{p}{6}c\left(\frac{p-1}{2}\right) \mod p^2$$

by Theorem 3. From Proposition 6, we have $a\left(\frac{p-1}{2}\right) \equiv 0 \mod p^2$. Hence

$$a\left(\frac{mp-1}{2}\right) \equiv a\left(\frac{p-1}{2}\right)a\left(\frac{m-1}{2}\right) \equiv 0 \mod p^2$$

Thus we have completed the proof.

Q.E.D.

$\S 5.$ Application for other numbers

Above method is applicable to other numbers which satisfy the relation such as (2) (see [11]), and super congruence of u(n) is shown in [8]. i.e.

Theorem 4. Let $p \geq 3$ be a prime, and write

$$\sum_{n=1}^{\infty} \xi_n q^n = q \sum_{n=0}^{\infty} (1 - q^{2n})^4 (1 - q^{4n})^4.$$

If $u\left(\frac{p-1}{2}\right) \neq 0 \mod p$ then

$$u\Big(rac{p-1}{2}\Big)\equiv \xi_p \ \ \ \ \ \mathrm{mod}\, p^2\,.$$

Moreover we cite another example in this section. Let, for any $n \geq 0$,

$$u(n) = (-1)^n \sum_{k=0}^n \binom{n}{k}^3.$$

F. Beukers and J. Stientstra showed the following congruence in [11]. Let $p \geq 3$, and write

$$\sum_{n=1}^{\infty} \gamma_n q^n = q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^{2n}) (1-q^{4n}) (1-q^{8n})^2.$$

Then, for $m, r \in \mathbb{N}$, m odd,

$$v\Big(\frac{mp^r-1}{2}\Big)-\gamma_p v\Big(\frac{mp^{r-1}-1}{2}\Big)+\Big(\frac{-2}{p}\Big)p^2v\Big(\frac{mp^{r-2}-1}{2}\Big)\equiv 0 \qquad \operatorname{mod} p^r\,,$$

where $\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$ is the Jacobi-Legendre symbol.

The numbers w(n) which is (differential) of v(n) can be formulate to

$$w(n) = 3(-1)^n \sum_{k=1}^n {n \choose k}^3 \left[\frac{1}{n-k+1} + \cdots + \frac{1}{n} \right].$$

And for all primes $p \ge 3$, $n \ge 0$ and $0 \le m \le p - 1$, we have

$$v(np + m) \equiv \{v(m) + pnw(m)\}v(n) \mod p^2.$$

Then $v\left(\frac{p-1}{2}\right)$ of mod p^2 is determined by our method if $\left(\frac{-2}{p}\right)=1$, that is

$$v\left(\frac{p-1}{2}\right) \equiv \gamma_p + \frac{p}{2}w\left(\frac{p-1}{2}\right) \mod p^2$$
.

REFERENCES

- [1] F. Beukers, Irrationality of π^2 , periods of an elliptic curve and $\Gamma_1(5)$, Progress in Math., 31, pp. 47-66, Birkhäuser, 1983.
- [2] —, Arithmetical properties of Picard-Fuchs equation, Progress in Math., 51, pp. 33-38, Birkhäuser, 1984.
- [3] —, Some congruence for Apéry numbers, J. Number Theory, 21 (1985), 141-155. [4] —, Another congruence for Apéry numbers, J. Number Theory, 25 (1987), 201-
- [5] S. Chowla, J. Cowles and M. Cowles, Congruence properties of Apéry numbers, J. Number Theory, 12 (1980), 188-190.
- [6] I. Gessel, Some congruence for the Apéry numbers, J. Number Theory, 14 (1982), 362-368.
- [7] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, Proceedings of the conference on p-adic analysis, Hengelhoef, Belgium, 1986.
- [8] T. Ishikawa, On Beukers' conjecture, Kobe J. Math., 6 (1989), 49-52.
- [9] Y. Mimura, Congruence properties of Apéry numbers, J. Number Theory, 16 (1983), 138-146.
- [10] A. J. van der Poorten, A proof that Euler missed · · · Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer, 1 (1979), 195-203.
- [11] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3 surface, Math. Ann., 271 (1985), 269-304.

Department of Mathematics Kobe University Rokko, Kobe 657 Japan