
BULL. AUSTRAL. MATH. SOC. 06F20

VOL. 39 (1989) [277-286]

EPICOMPLETE ARCHIMEDEAN LATTICE-ORDERED GROUPS

DAO-RONG TON

In this paper we give the structure of an N; -complete £-group and the epicomplete objects
in the category A1.

1. INTRODUCTION

We determined the structure of a complete £ -group in [8] and the structure of
an Archimedean £ -group in [9]. In this paper we will determine the structue of an
Hi-complete £-group, in particular, of a a -complete £-group.

Let C be the category of all £-homomorphisms between abelian £-groups. In [1],
Anderson and Conrad determined the epicomplete objects in£. An object G in £ is
epicomplete if and only if it is divisible. Let A1 be the category of all I -homomorphisms
between Archimedean £-groups. In [2, 3], Ball and Hager determined the epicomplete
objects in A1. An object Ge in A is epicomplete if and only if G is divisible and a-
complete and a--laterally complete (meaning each countable subset of positive elements
of G which is either bounded or pairwise disjoint has a supremum). In this paper we
will give the structure of the epicomplete objects in A1.

Our general terminology and notation are standard, as in [5]; for the special nota-
tions to be discussed here the reader may refer to [8, 9].

2. THE STRUCTURE OF AN Hi -COMPLETE £ -GROUP

Let G be an £-group. We denote the least cardinal a such that |A| ^ a for
each bounded disjoint subset A of G by vG, where \A\ denotes the cardinal of A.
G is said to be v -homogeneous if vH — vG for any convex ^-subgroup H ^ {0} of
the £ -group G. Let G be a v -homogeneous £ -group and Hi a cardinal number. If
vG = Hj, we call G an £ -group of Hi type. For example, an ^-group of countable type
is an £-group of Ho- (For the definition of an £ -group of countable type the reader
may consult [10].) The free abelian £-group Av of rank r\ (rj > 1) is an ^-group of
Ho type (see Proposition 8.1 in [9]). A Riesz space (vector lattice) V is said to be of
Hi type if it is an £-group of Hi type.
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LEMMA 2.1 . Any Archimedean (-group G of H; type with a weak unit can be
embedded into a complete Riesz space of N̂  type.

PROOF: Let G~ be the Dedekind-MacNeille completion of G. It follows from

Proposition 2.12 in [8] that G~ is a complete £ -group of Nj type. From 1.16 in [6] we

see that G~ can be embedded into a complete Riesz space U(G~); that is

(1) G - G~ -» Z{CT) -

where Z(G"~) = {— \ x G G~& n G N} and U(G~) is the Dedekind-MacNeille comple-
n

tion of Z(G~). Now we prove that Z(G~) and £f (G~) are both of Nj type. Without

loss of generality, from Proposition 2.2 in [8] we may assume

(2) £r«C<TC* JJr,

where each Ts (6 G A ) is a real group, or an integer group, or a complete v-

homogeneous £-group of Hj type. Put Tg = {g G G~ | 5' ^ 5 ^^- y4» = 0} for
J G A . Then Ts is a convex ^-subgroup of G~ for 5 G A. So vTs - vG~= N<. Hence
each Ts (6 € A ) is a continuous complete ^-group of N; type. From (1) we have

(3) £ T« C <7~ C Z{CT) C ' JJ

where Z(2«) = {— | xs G T« & n G N}. Let {x° | a G A} be a disjoint subset with
n

an upper bound in Z(G^). Then there exists a division of A from formula (3)

where A a = {6 G A | x% ^ 0 } , and A' = {6 G A | (Va G A){xf = 0)} . It is clear
that , if a ^ a ' then A a n Aa» = 0. Let a; be a weak unit in G. Then x is also
a weak unit in G*~. In fact, for any y G G~, y — \J {ya G G | a G A} . Then

0 = i A t / = j;A V 2 / a J = Y (x Aya) imph'es x A yQ = 0 for all a £ i . So y = 0.
\a€A / aE/1

Let s?a be the element whose 6 component is xs and all other components are zero.
Put

f i« 5 G A o

\ 0 a ,

then i a = (... z£ . . . ) = V (G~h > hence {xa \ a G A} is a disjoint subset with
«€Aa

an upper bound x in G~\ So \A\ < Hi and vZ(G~) ^ Hj. On the other hand, since
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G~ C Z(G~), we have vZ(G~) ^ vG~ = H<. Therefore, Z(G") is of Hi type. From
Proposition 2.12 in [8] we see that vU(G") — K<. |

A lattice L is called Hi-complete if each of its non-empty subsets with cardinality
number a ^ K; has a supremum and an infimum. A Boolean algebra X is said to be
Hj -complete if X is an Hi -complete lattice. A Boolean algebra V is called an algebra,

of Hi type if the cardinal number of each disjoint subset is at most Hj.

LEMMA 2.2. Let V be an tti-complete Boolean algebra of Hi type. Then in an
arbitrary infinite subset EofV there exists a subset E' C E with \E'\ < Hi such that

vE' = vE, f\E' = AE.

PROOF: The proof is similar to the proof of Theorem VI.1.1 in [10]. Let E be
an arbitrary infinite subset of V. We denote by A/" the set of all subsets TV C V with
17V| ^ Hi possessing the following properties:

a) TV is a disjoint set;

b) if e ^ TV, then there exists an ei € E such that e < e i .

The set M is non-empty. We assume that A/" is ordered by inclusion. We will show
that M satisfies the condition of Zorn's Lemma. In fact, if A/"' C A/" A/"' = {TVa | a E A}

and AT' is a chain, then we put TV' = |J TVa . Since for arbitrary e\, e2 € TV' an index

a can be found for which e j , e% £ TVa, then TV' consists of pairwise disjoint elements
and hence |TV'| is at most Hi and TV' £ A/". By Zorn's Lemma, there exists a maximal
set TV0 in A/". Let eo = VTVo. We can show that eo = VE. Suppose that there exists
ei 6 E such that ej is not ^ eo. Then ei A e'o = e > 0 (see Theorem II.5.2 a), b) in
[10]). Now, adjoining the element e to the set TV0 , we obtain a set which also occurs
in A/" which contradicts the maximality of TV0. On the other hand, since TV0 satisfies
the condition b), then there exists a subset E' in E with \E'\ < |TV0| < H» such that
e0 < V £ ' . Consequently, e0 V E' = VE. |

A Riesz space X is called a space of Hj type if the cardinal number of each bounded
disjoint subset is at most Hi.

LEMMA 2.3. Let X be a Dedekind complete Riesz space of Hi type. Then in every
infinite subset E C X which is bounded above (below), there exists a subset E' C E
with \E'\ ^ Hi such that VE' = VE (AE' = AE).

PROOF: This is similar to the proof of Theorem VI.2.2 in [10], using Lemma 2.2
to replace Theorem VI.1.1. |

LEMMA 2.4. In any Archimedean £ -group G of Hi type with a weaTc unit, if

z = V {G)z ' tnen there exists a subset {za< \ a' e A} with \A'\ ^ Hi of {za \ a £ A}
a€A
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such that z= V {G)za'•

PROOF: Let G be an Archimedean £-group of Hi type with a weak unit. From
Lemma 2.1 we see G can be embedded into a complete Riesz space U(G) of Ni type
according to the process of (1). Since U(G) is a regular extension of Z(G), we can
assume

(4) z' = \ / (*(0))*« = V

By Lemma 2.3 there exists a subset {zai \ a' £ A'} with |J4'| < Hi of {za | a £ i }
such that

(5) z'= \ / lZm*a>= V
a'€A' a'£A

We denote the set of all upper bounds of the subset M of G in Z(G) by MZ

and the set of all upper bounds of M in G by MG . From (4) and (5) we have

{za | a € 4}^(G) = {*a' I «' 6 A'Yz(a),

then

K l « e Ayz(G) n G - {za, | a' e A'}Z(G) n G,

{za | a € A}^ = {za, | a' 6 A } ^ .

Therefore

V ( G ) z Q <=
'€it'a'€it

An £-group G is said to be Ni-compiete if each upper bounded subset E with
\E\ < Hi in G has a least upper bound. For example, a <7-complete ^-group G is
No -complete. Since a a -complete £ -group is Archimedean, if Ni > Ho , an N$-complete
^-group is Archimedean.

LEMMA 2.5. Any Hi -complete £-group of Kj type with a weak unit is complete.

PROOF: Let G be an Hi-complete £-group of Ki type with a weak unit e. Then
G is an Archimedean £ -group of Hi type with a weak unit e and G has a Dedekind
completion G". Let {xa \ a E A} be an arbitrary upper bounded subset in G. Assume

x = \ / (G")*Q.
a€A
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By Proposition 2.12 in [8] we see that G~ is also an £-group of N; type. And e is

also a weak unit in G~. So, by Lemma 2.4, there exists a subset {xa \ a' £ .4'} with

|A'| < N; of {xa | a £ A} such that

X =

a'eA'

Therefore
x = \ / {G)*a>-

a'€A'

I

LEMMA 2.6. Let G be an Archimedean (-group. lithe completion G~~ has a weak

unit, then G also has a weak unit.

PROOF: Let e be a weak unit in G". From Theorem 2.4 in [4] there exists e' in
G such that e' ^ e. Then e' is a weak unit in G. Because, if e' A x = 0 for x £ G,

then e A x = 0. Hence x = 0. |

Let £-group G be a subdirect sum of {G« | S £ A } . If there exists a subset
Aj C A such that Y^ Gg C G, then we call G a semicomplete subdirect sum of

{Gs\SeA}.

An ^-group G is said to be projectable or a P-group, if G — j - 1 - 1 - ffl^"1" for each

g E G, where 5-1- = {g}-1 = {x £ G | \g\ A |x| = 0} and 0J~L = (5-1-) . It is well-known

that any (T-complete ^-group G is projectable. So any Nj-complete £-group G is

projectable for Nj ^ No . An Archimedean £-group G is said to be continuous, if for

any strictly positive element x we have x — x\ + X2 and Xi A X2 = 0 , where «i ^ 0

and x2 7̂  0-

LEMMA 2.7. Any Hj-compiete (-group G of Nj type with N< and H_, > Ho is
continuous.

PROOF: Let 0 < x e G. Since V[E] = vG = Hj , by 4.3 in [7], [0,x] is not a chain,

and there exists 0 < x\ < x and 0 < x^ < x such that X2 A x\ = 0. It is clear that

x-11- is also Ni -complete. In fact, if {xa | a £ A} is a subset in a;-1"1- with |A| ^ Hj and

xa < x £ x-1"1- for a £ A, then there exists V (G)xa = x0 £ G. Since x A 3/ = 0 for
crG/l

each y £ x1-, XQ Ay = 0 for each y £ x x and so xo £ x-""1-. Because G is projectable,
we have

(6) J~L I

It is easy to see that X£XJL-L . In fact, if x £ xj1-1-, then x-1-1 C XJ1-1- , hence xJ~L = xj1"1.
But X2 £ x^" C a;-1--1-, giving a contradiction. On the other hand, since a;i£"xj", we have
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x€xf-. From (6) we see that there exist 0 < x1 £ xj"1 and 0 < x2 £ xj- such that
x = x1 + x2 . Therefore G is continuous. |

THEOREM 2.8. Any Hi-complete l-group G is £-isomorphic to an semicomplete
subdirect sum of reed groups, integer groups, continuous complete £-groups of N; type
and continuous N; -complete £-groups of ttj type with Hj > N;.

PROOF: We will proceed in three steps.

(1) Let G be an Nj-complete ^-group. Then G has a Dedekind completion G~.
From Theorem III.4.4 and Theorem III.4.6 in [11] we see that

(7) CT C * J ] Gx,
AgA

where C?A is a complete £ -group with a weak unit x\ for A € A. From Proposition
2.2 in [8], without loss of generality, we have

(8) GAC* J ] G X(

for each A € A, where G\( (Xs G AA) is a real group, or an integer group or a
continuous v -homogeneous complete £-group. We can show that x\( is a weak unit
in G\6 for each Xs £ AA . In fact, let y\s € G\6 and x\e A y\f = 0. Let yX( be the
element in G\s whose Xg component is y\s and all other components are zero. Then
xx A yXf = 0 and so yAj = 0, therefore y\{ = 0.

From (7) and (8) we have

( V n .̂
A£A

A A

Putt ing A — U AA and 2$ = GA4 for each 6 £ A, we get

Let pg be the projection from Yl Ts to T« and T's = Gps for each S £ A . Then

(9)

where each T& is a real group, or an integer group or a continuous v -homogenous
complete £ -group with a weak unit and T's is a subgroup of reals or a v -homogenous
Archimedean £-group with a weak unit for 8 £ A (see Lemma 2.6).
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(2) It is clear that the projection ps from G onto T's is complete. Let {x° \ a G A}
be a subset in T'6 with \A\ ^ Nj and x% ̂  xs £ T's for a € A. Let xa be the element
in G whose 6 component is xf and x the element in G whose 6 component is X{.
Put ya = xa A x. Then {ya \ a G A} is a subset of G with an upper bound x and
|A| < Hi. Thus there exists y = \J ^y". Clearly, yaps = x° . Put yps = ys G TJ.

Then ys = \J (T«%°. So each T's is Nj-complete for 8 G A. If Tj is a subgroup
a€A

of the reals, then T's is R or Z. If T̂  is not a subgroup of the reals, then T'6 is
v -homogeneous. Suppose vT's = Hj. If Nj = H ,̂ T's is an Hi-complete ^-group of N̂
type. It follows from Lemma 5 that T's is complete for those 6 G A for which T'6 is of
Hi type. It then follows from Lemma 2.7 that each T's is continuous for 8 G A.

(3) Finally we prove G is a semicomplete subdirect sum. Put Ai = {8 G A | T'6
is R or Z or a continuous complete £ -group of Nj type }. For each 8 G Aj , set

% = {g€G\6'*6 => gs.= 0} .

Let Jg be the strictly positive element in Tt whose 8 component is z$. Then ~zs G G~
because G~ D £ T4 D E T i • F r o m Theorem 1.1 in [4] we have

(10) zs = \/ °{za G G | 0 ^ za < 7<}.

It is clear that za E= T'6. It follows from (10) that

* = V (7%-
*eA

By Lemma 2.4 there exists a subset {za' \ a' G A'} with |>L'| < Hi of {z" | a £ >1}
such that

« = V W)*a<-
Therefore

* = V (<r)*?'-

From Theorem 2.4 in [4] there exists Z ' E G such that z$ ^ z'. Since G is Hi -complete,

there exists V (° )z a . From Lemma 2.2 and Theorem 2.4 in [4] and (11) above, we
a'GA'

see that

V < G V =
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Thus zs G G. This proves that T's C G for each 8 G A j . Therefore

£ 2* C G C ' H T's.

3. EPICOMPLETE OBJECTS IN THE CATEGORY A1

LEMMA 3.1. The following are equivalent for G G A:

(a) G is epicomplete in A1;
(b) G is conditionally and laterally <r -complete, and G is divisible (see The-

orem 4.9 in [3]).

From Theorem 2.8 we have the following result.

COROLLARY 3.2. Any a -complete t-group is £ -isomorphic to a semicomplete sub-
direct sum of real groups, integer groups, continuous complete £-groups of countable
type and continuous cr -complete £ -groups of #j type with #j > No . That is, there
exists an £-isomorphism f such that

(12) £ TS C f(G) C ' JJ TS,

where Ai = {6 G A | Tg is a rea7 group, or an integer group or a continuous complete
£-group of countable type } and A\Aj = {$ G A | T& is a continuous a -complete £-
group of #j type with Hj > No}.

Now let G be a divisible a -complete ^-group. Without loss of generality, from
(12) we have

T6CGC'Y[TS.

Each Ts is a homomorphic image of G, hence Tg is divisible for each 8 G A. Thus we
get:

COROLLARY 3.3. Any divisible cr -complete £-group is £ -isomorphic to a semicom-
plete subdirect sum of real groups, continuous divisible complete £-groups of ocuntable
type and continuous divisible cr-complete £-groups of Hj type with Nj > No .

Let {Ts | 5 G A} be a set of ^-groups. Put

J J °TS = {x G J J Ts | 3 a countable subset A,, in A such that xs = 0 if <SeA,}.

Let £-group G be a semicomplete subdirect sum of {Tg \ 6 G A} . That is.

T(cGC'JJr«.

If Yl "Tg C G, then we call G a <r-seinicompiete subdirect sum of {T$ | 8 G A } .
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THEOREM 3.4. Let G be an epicomplete object in the category A1. Then G is

i-isomorphic to a a -semicomplete subdirect sum of real groups, continuous complete

epicomplete £-groups of countable typs and continuous £-groups of Nj type with Nj >

Ho-

PROOF: By Lemma 3.1 and Corollary 3.3 we have

(13) X) TsCGC

«€AXCA

where Tf is a real group or a continuous divisible complete £-group of countable type

for each 6 6 Aj and Tg is a continuous divisible a -complete £-group of Hj type with

Nj > Ho . By 6.1 in [2] the real group R is epicomplete in A1. For each 6 G Aj put

From (13) we have

for each 8 6 Aj , where Gs = {g € G \ g6 = 0}. If T« < T̂  is epic in A1, put

G' = Tf ffl G«. Then G < G'. Suppose aj and 02 are two £ -homomorphisms from

G' to an Archimedean ^-group P such that <XI\G = <*2\G • Then ai |y = a2|5; . So

a i | ^ = 02)7' and ai = a^ . This means G ^ G' is epic in X' . Since G is epicomplete,

G = G' and T« = T's. Therefore each Ts or T6 is epicomplete in A1 for f e ^ .

On the other hand, G is a -laterally complete. Hence

T« C G C ' JJ T«.
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