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CYCLOTOMIC SPLITTING FIELDS 

BY 

R. A. M O L L I N 

ABSTRACT. Let D be a division algebra whose class [D] is in 
B(K), the Brauer group of an algebraic number field K. If [D®KL] 
is the trivial class in B(L), then we say that L is a splitting field for 
D or L splits D. The splitting fields in D of smallest dimension are 
the maximal subfields of D. Although there are infinitely many 
maximal subfields of D which are cyclic extensions of K; from the 
perspective of the Schur Subgroup S(K) of B(K) the natural splitting 
fields are the cyclotomic ones. In (Cyclotomic Splitting Fields, Proc. 
Amer. Math. Soc. 25 (1970), 630-633) there are errors which have 
led to the main result of this paper, namely to provide necessary and 
sufficient conditions for (D) in S(K) to have a maximal subfield 
which is a cyclic cyclotomic extension of K, a finite abelian extension 
of Q. A similar result is provided for quaternion division algebras in 
B(K). 

Introduction. In this paper we are interested in cyclic cyclotomic splitting 
fields for division algebras. In [6, Th. 4.7, p. 757], [7, Th. 4.2, p. 207], [8, Th. 
4, p. 113] and [9] we demonstrated the importance of obtaining such maximal 
subfields from the point of view of explicit construction qf crossed product 
division algebras. In [11] M. Schacher gave examples of division algebras D of 
exponent p for each prime p with [D]eB(K) such that D does not have a 
maximal subfield which is imbedded in a cyclotomic extension of K. However 
there are errors in the main results of [11] which have led us to formulate the 
following. 

In this paper we present necessary and sufficient conditions for a division 
algebra D with [D]eS(K) to have a maximal subfield which is a cyclic 
cyclotomic extension of K where K is a finite abelian extension of the field Q 
of rational numbers. 

Moreover, for [D]eB(K) with K a finite non-real abelian extension of Q 
where D is a quaternion division algebra we provide necessary and sufficient 
conditions for D to have a maximal subfield which is a cyclic cyclotomic 
extension of K. 

1. Notation and preliminaries. Let K be a field of characteristic zero. The 
Schur group S(K) may be described as consisting of those equivalence classes 
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in B(K) which contain a simple component of the group algebra KG for some 
finite group G. For basic results concerning S(K) the reader is referred to [14]. 

When K is an algebraic number field the elements [A]eB(K) are uniquely 
characterized by their Hasse invariants. A certain subgroup of B(K) has a 
particularly nice relationship between these invariants. We describe it as 
follows: 

Let K be a finite abelian extension of Q. U(K), called the absolute uniform 
distribution group for K, denotes the subgroup of B(K) consisting of those 
equivalence classes [A] such that: 

(i) If the index of A is n then en is in K, where en denotes a primitive nth 
root of unity, and 

(ii) If P is a K-prime above the rational prime p and a e G(KIQ), the Galois 
group of K over Q, with e„ = eb

n then the Hasse P-invariant of A satisfies: 

invp A = b invp~ A (mod 1). 

If [A] G U(K) and P and P' are K-primes above the rational prime p then 
A®KKP and A®KKP> have the same index, where KP denotes the completion 
of K at p. The common values of the indicies A<g>KKP for all K-primes P 
above p is called the p-local index of A, denoted indP A. 

We studied the relationship between S(K) and U(K) of which it is a 
subgroup in [4]-[9]. 

If [A]eB(K) and invP A > 0 for aK-pr ime P then we say that P is ramified 
in A, (see [10, p. 272]). Since we shall be concerned with K/Q finite abelian 
then we may say that p is ramified in A where p is the rational prime below P, 
whenever invP A > 0 for some K-prime P. 

The norm-residue symbol at P is denoted (*, *)P and the Legendre symbol is 
denoted (/). 

Throughout the remainder of the paper we shall be concerned with finite 
abelian extensions K of Q. A field extension K of F shall be denoted K/F. 
Since the decomposition of an F-prime in K essentially depends on the rational 
prime q which sits below it then we shall write Fq to denote the completion of 
K at an F-prime above q. Similarly KQ shall denote the completion of a 
K-prime above the given F-prime. 

If G is a group and p is a prime then Gp shall denote the Sylow p-subgroup 
of G. If m = pat where p and t are relatively prime then \m\p=pa, i.e. \m\p 

denotes the highest power of p dividing the integer m. 
A crossed product algebra is denoted by (L/K, |3). This is the central simple 

iC-algebra having L-basis ur with T G G ( L / K ) - G subject to: 

u ^ = |3 (T, a)uTor, T, a e G 
and 

uTx = xTuT for x e L * . 
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Moreover a crossed product of the form (K(s)/K, j3) where e is a root of 
unity and the values of |8 are roots of unity in K(e) are called cyclotomic 
algebras. These are the algebras which characterize S(K), (see [14]). 

When G is cyclic then (L/K, (3) denotes the cross product in which: 

i=(uri if l<i<\L:K\ 
MT l|3 if i = \L:K\. 

For further information on crossed products the reader is referred to [10]. 
Finally equivalence in B(K) will be denoted by ~ . 

2. Splitting fields for quaternion division algebras. Let K/Q be finite abelian 
and let D be a division algebra with [D]eB(K). We note that to ask whether 
D has a maximal subfield which can be imbedded in a cyclotomic extension of 
K is rendered, by the Kronecker-Weber theorem, to be equivalent to asking 
whether D has a maximal subfield which is abelian over Q. We commence by 
asking whether a quaternion division algebra D has a maximal subfield abelian 
over Q. The answer is negative in general as the following counterexample 
illustrates. 

Let K=QU-1,J3) and let [D]eB(K) (in fact [D]e U(K)), with ind 2 D = 
2 = ind3 D, and indp D = 1 for all primes p ^ 2, 3. If a maximal subfield L of D 
exists such that L/Q is abelian then either: 

(1) G(LIQ) = Z2®Z2®Z2 or, 
(2) G(L/Q) = Z2eZ4. 
If (1) then G(L3/Q3) = Z2®Z2®Z2. However, by [13,6-5-4] this is not 

possible since Q3 has only three quadratic extensions. Thus (2) holds and so 
one of Q(V~1), Q(V3) or Q(V~3) is imbedded in a cyclic extension of degree 
4. By [1, Th. 6, p. 106], - 1 must be a norm from one of these three fields. 
However, - 1 cannot be a norm from an imaginary quadratic field. Therefore 
- 1 must be a norm from Q(V3). Thus, by the Hasse norm theorem - 1 must be 
a norm everywhere locally. However, (3, - 1 ) 3 = ( - | ) = - 1 ; i.e. - 1 is not a norm 
from Q3(V3), a contradiction which establishes the counterexample. 

The above example is similar to [11, p. 632]. However the example therein is 
incorrect. We shall come back to this once we have the first result at our 
disposal. The following theorem provides necessary and sufficient conditions 
for a quaternion division algebra to have a maximal subfield abelian over Q. In 
what follows we shall use the term maximal cyclic p-extension of F ih K to 
mean a proper subfield M of K such that G(M/F)P is cyclic, and if F^M^ 
N^K with G(N/F)P cyclic then \N:M\P = 1. 

THEOREM 2.1. Let K/Q be finite non-real abelian, and let D be a quaternion 
division algebra with [D]eB(K). D has a maximal subfield which is abelian 
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over Q if and only if for each odd prime q which ramifies in D with G(KJQq)2 

non-cyclic, there exists a maximal cyclic 2-extension F of Q in K such that: 
(a) - 1 is a norm in F/Q and, 
(b) q is not completely split in F/Q. 

Proof. First we prove the necessity of (a) and (b). Suppose there exists a 
maximal subfield L of D such that L/Q is abelian. If q is an odd prime which 
ramifies in D with G(KJQq) non-cyclic then by [13, 6-5-4], G(LJQq)2 must be 
of the form Z2m(D© Z2™m where m(l) and m(2) are positive integers. Thus 
there exist maximal cyclic 2-extension Mt of Q in L with \Mt : Q | 2 > 2 m ( 0 for 
i = 1, 2. One of Mx or M2 is not contained in K, say M = M1. Therefore, if 
MC\K = F then \M:F\ = 2 and F is a maximal cyclic 2-extension of Q in K. By 
[1, Th. 6, p. 106] - 1 is a norm in F/Q. Moreover since G(KJQq)2 is non-cyclic 
then q is not completely split in F 

Conversely suppose (a) and (b) hold. Let q(i) for i = 1, 2 , . . . , m be all 
rational primes which ramify in D but do not ramify in K/Q. Set a(i) = q(i) for 
i = 1, 2 , . . . , m. Since q(i) is ramified in K(V«(l)a(2) • • • a(m))/K then 
K(Ja(l)a(2) • • • a(m)) splits D at each q(i) for i = 1, 2 , . . . , m. 

Now consider T = {q(m +1), q(m + 2 ) , . . . , q(n)} where q(i) is odd, ramified 
in D and, G(Kq(i)IQqii))2 is not cyclic for i = m + 1 , m + 2 , . . . , n. We note that 
q(i) splits in K(Va(l)a(2) • • • a(m))/K for i = m + 1 , m + 2 , . . . , n since other
wise we would have a degree 8 extension of Qq with Galois group of the form 
Z2®Z2@Z2 which would contradict [13, 6-5-4]. Now, by hypothesis, for each 
q(i)e T there exists a maximal cyclic 2-extension F ( i ) of Q in K satisfying (a) 
and (b). Not all such F ( 0 are necessarily distinct, so we let F ( , ) for j = 
m + 1 , . . . , r with m + 1 < r < n be all distinct such fields. Now we rearrange the 
elements of T as follows. Let 

R(j) = {q(i, j)e T:i = m(j-l) + l,..., m(j) with m(m) = m and m(r) = n} 

where / = m + 1 , . . . , r, be the set of all elements of T which are not completely 
split in F 0 ) and which do not already appear in R(k) for m + l < f c < j . Since 
G(Kq(i)IQq(i))2 is not cyclic for i = m + 1 , . . . , n then it is possible to ensure as 
well that q{i, j) is completely split in F ( h ) for all h^j. Now, by hypothesis - 1 is 
a norm from F ( j ) for / = m + 1 , . . . , r. By [1, Th. 6, p. 106] F ( , ) is contained in 
M ( i ) where |M( i ) : Fii)\ = 2 and M 0 ) is cyclic over Q. Since F 0 ) is a maximal 
cyclic 2-extension Q in K then |M0)K: K| = 2 and by Kummer theory MU)K = 
Ky/fy) for some 0,- G K*. We note that since K/Q is abelian and MQ)IQ is cyclic 
then M(i)K/Q is abelian. Therefore by Kronecker-Weber iCCVft) is contained 
in a cyclotomic extension of K Now we choose a ( m ( / - l ) + l - fy and 
a ( m ( / - l ) + 2)= • • • = a(m(j)) = 1 for j = m + l , . . . , r , and set a(r + l) = 
a(r + 2) = - • - = a(n) = l . 
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Finally we consider those remaining q(i) for i = n + 1 , . . . , s which ramify in 
D. First we consider those q(i) which are either odd or for which 
G(Kqii)/Qq(i))2 is cyclic. If q(i) does not split in K(Ja(l) • • • a(i-l))/K then 
set a(i) = l. Otherwise choose a prime p(i) which is relatively prime to the 
discriminant of K(yja(l) • • • a ( i - l ) ) and such that q(i) is inert in O(Vp(0) 
while q(j) splits in Q(Vp(0) for all /<z . Such p(i) exist by Chinese remainder 
theorem considerations. 

The only possible remaining case is q(s) = 2 where G(K2/Q2)2 is not cyclic. If 
2 does not split in K(yja(l) • • • a(s-l))/K then set a(s) = l . Let y = 
a ( l ) - - - a ( s - l ) . 

Otherwise if -J-l^ K set a(5) = V—1 or a(s) = -J2 according as 2 is nonsplit 
in K(y/-ly)/K or K(yj2y)IK. We note that 2 cannot be split in K(y)/K, 
K(y/—ly)/K and K(j2y)/K since in that case 2 could be split in K(e8)/K 
contradicting -J-l 4 K. If V—1 e K and e2* for a > 1 is the largest 2-power root 
of unity in K then 2 does not split in K(e2a+iy)/K. In this case set a(s) = e2«. 

By construction L = K(\/a(l) • • • a(s)) splits D at all primes which ramify in 
D, and L is abelian over Q. It follows that L is a maximal subfield of D which 
secures the theorem. Q.E.D. 

We isolate a special case of Theorem 2.1 since it has a bearing on [11]. 

COROLLARY 2.2. Let Kbe a biquadratic extension of Q. Then every quaternion 
division algebra in U(K) has a maximal subfield which can be imbedded in a 
cyclotomic extension of Q if and only if either: 

(a) \Kq:Qq\ = 4 for at most one prime q, or 
(b) — 1 is a norm from one of the quadratic subfields of K. 

For example, for K=Q(y/-l,y/7) then only prime q with \Kq:Qq\ = 4 is 
q = l. Therefore by Corollary 2.2 every quaternion division algebra in U(K) 
has a maximal subfield which is abelian over Q. This shows that the example 
[11, p. 632] is false, and that no such algebra [D]e U(K) can be found. The 
error stems from Schacher's claim that " . . . one easily checks that G(K2/Q2) = 
G(K7/Q7) = Z2(BZ2" In fact one checks that G(K2/Q2) = Z2 since 2 splits 
in Q(V-7). 

That K is restricted to being non-real in Theorem 2.1 is a result of problems 
which occur at 2 and the infinite rational primes. Similar problems were 
encountered in [8, Th. 1, p. 108] but resolved by a suitable restriction [8, Th. 2, 
p. 112]. In §3 we shall overcome the problem by considering a special 
subgroup S(K) of B(K). 

3. Splitting fields and S(K). In this section we restrict our attention to 
division algebras D with [D]eS(K) where K/Q is finite abelian. 

In [8] we considered the following situation. Let ^ be a complex irreducible 
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character of a finite group G of exponent n. Let A(x, Q) denote the simple 
component of QG corresponding to x- We note that [A(x, Q ) ] G S ( Q ( ^ ) ) . R. 
Brauer's well known theorem which states that Q(en) is a splitting field for x, 
inspired the following demanding question: Does the division algebra underly
ing A(x, Q) have a maximal subfield L contained in Q(en)? In general the 
answer is negative, and in [8] we provided sufficient conditions for such an L to 
exist. However, for each result which we obtained we were able to find 
counterexamples to the necessity of such conditions. In this paper we relax the 
demands on L. We merely require that L/Q be abelian, i.e. L may be 
imbedded in any cyclotomic extension of Q. In [2] B. Fein found counterexam
ples to the existence of such an L for each prime p. We now present for the 
first time necessary and sufficient conditions for such an L to exist. 

THEOREM 3.1. Let K/Q be finite abelian and let D be a division algebra of 
index m with [D]e S(K). D has a maximal subfield cyclic over K and abelian 
over Q if and only if for each odd prime q which ramifies in D and for each 
prime p dividing m with G(KJQq)p non-cyclic there exists a maximal cyclic 
p-extension F of Q(epc) in K where |indq D\p = pc such that 

(a) £pc is a norm in F/Q(epc) and 
(b) q is not completely split in F/Q(epC). 

Proof. We note that if m = pîlp%2 • • • p" where the pt's are distinct primes 
then D - D i ® • • • ® D r in S(K) where the index of Dt is p* for i = 1, 2 , . . . , r. 
Thus it follows that we may assume without loss of generality that m = pb. 

First we prove the necessity of (a) and (b). Suppose G(KJQq)p is non-cyclic 
for odd q with indq D = pc where c < b. By [5, Th. 1.1, p. 273] q = 1 (mod pc). 
If D has a maximal subfield abelian over Q and cyclic over K then by 
[13,6-5-4] G(LJQq)p is forced to be of the form Z^Ç&Z^m where one of 
m(l) or m(2) is greater than c, say m = m ( l ) > c and m(2)>0. Therefore there 
exists a maximal cyclic p-extension M of Q(epc) in L with \M: Q\p > p c . Thus 
M Pi K = F is a maximal cyclic p-extension of Q(spc) in K with \M : F\p = pc. By 
[1, Th. 6, p. 106] epc is a norm in F/Q(epc) and since m>c then q is not 
completely split in F/Q(epC). This establishes the necessity. 

Suppose indq(i) D = pc ( l ) with q(i) unramified in K/Q for i = 1, 2 , . . . , m. 
That there exists a subfield Lt of K(eq(i)) with |L :K | = pc ( l ) can be verified by 
exactly the same argument as in [8, Th. 1, p. 109]. By [14, Prop. 6.2, p. 89] we 
have £pc(n is in K and so L i=K(7(i)) where y(i)pc(l)eK for i = 1, 2 , . . . , m. 
Since q(i) ramifies in LJK then L( splits D at q(i) for i = 1, 2 , . . . , m. 

Now consider those primes q(i) with ind q ( 0 D = pc ( i ) for i = m + l , . . . , n 
such that q(i) is odd, and G(Kq(0/Qq(i))p is non-cyclic. Using (a) and (b) of the 
hypothesis we can use exactly the same kind of argument as in Theorem 2.1 to 
obtain fields Lt abelian over Q and cyclic over K such that Lt splits D at q(i) 
for i = m + 1 , . . . , n. Set Lt = K(y(i)). 
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Now we consider the remaining odd primes q(i) for i = n + 1 , . . . , s with 
indq(i) D = p c ( 0 . If q(i) does not split in K(y(l) • • • y(i-l)) then set 7(1') = 1. 
Otherwise by [3, Prop. 5.2, p. 275] we may choose a prime pt = 1 (mod p) such 
that q(i) is not a pth power modulo pt but q(l), q ( 2 ) , . . . , q(i — 1) are pc(l)-th 
powers modulo pt. Thus there exists a field Mt contained in K(ePi) such that 
\Mt :K\ = p c ( 0 with q(i) inert in Mj/K and q(j) completely split in MJK for all 
j<i. By Kummer theory Mi=K(y(ji)) where Y ^ G K * . Set 7' = 7(1) * * * y(s). 
Hence K(y(l) • • • y(s)) splits D at q(i) for i = 1 , . . . , 5. 

If ind2 D = 2 and ind^ D = 1 then set 7' = a if 2 does not split in K(y')/K and 
set V - I 7 ' = « otherwise. We note that by [14, Th. 5.11(11), p. 81] 2 is ramified 
in KU-1)/K. Hence if 2 splits in K(y')/K then 2 ramifies in K(J-ly)/K. 

If indoo D = 2 and ind2 D = 1 then set 7' = a if KX7') is non-real, and set 
y/-ly' = a otherwise. Clearly K(a) splits D at 00. 

Suppose ind^ D = 2 = ind2 D. If 2 is not split in K(y')/K and KX7') is not real 
then set 7' = a. If 2 splits in K(y')/K then 2 ramifies in K(y/-ly')/K, (ibid.). In 
this case set y/—ly' = a. We note that by the choice of 7' it is not possible to 
have the case where K(y') is non-real but K(-J-ly') is real. Hence K(a) splits 
D at 2, and 00. 

We are left with the case where ind2 D - indoo D = 2 and 2 does not split in 
K(y')/K, where ^(7 ' ) is real. Then we consider 2 cases: 

(a) 2 does not split in K(y/ — 2y')/K. In this case set yj-2y' = a. 

(b) 2 splits in K(-J~2y')/K. Therefore 2 splits in K(>/2)K. Since K is real 
then K contains a quadratic subfield Q(Vd) where d is an even square-free 
integer. Suppose Q(er) is the smallest root of unity field containing K, with 
|r|2 = 2 f; t>2. In this case choose \/-l(82t+l + e2tll)7 , = a. By [14, Prop. 7.5, p. 
103] K(a) is not real and 2 ramifies in K(a)/K. Thus K(a) splits D at 2 and 00. 

Since m=pb then indq(i) D = pb for some i. Thus |Lf : K| = pb for some i which 
implies |iC(a):K| = pb. By construction L = K(a) splits D at each q(i) for 
i = 0, 1, . . . , s , LIK is cyclic, and L/Q is abelian. It follows that L is the 
required maximal subfield of D. Q.E.D. 

Now that we have necessary and sufficient conditions for the existence of a 
maximal subfield L of D to be abelian over Q and cyclic over K we ask: Once 
we have L, is it possible to find a suitable factor set a such that D — (LIK, a) in 
S{K)1 The answer is yes in general, see [10]. If, however, we require the more 
demanding restriction that a be a root of unity in K then the answer is 
negative in general. Although Yamada [14, p. 33] has shown that every 
element A with [A]eS(K) is equivalent to a cyclotomic algebra it is not 
necessarily the case that the division algebra underlying A is also cyclotomic. 
This is in fact what we are requiring by our more demanding restriction on a. 
In Mollin [9] we have provided necessary and sufficient conditions for a 
division algebra to be cyclotomic. 

It is natural to ask whether Theorem 3.1 holds for a larger class of elements 
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than those in S(K). M. Schacher [11, Th. 1, p. 630] provides a counter
example of exponent p, one for every prime p. However, there is an error in his 
proof. The following is a counter-example to [11, Th. 1, p. 630]. 

Let q be an odd prime such that 2 is a primitive root modulo q, and let p be 
an odd prime such that q = 1 (mod p2). Let K be the unique subfield of Q(eq) 
which has degree p over Q. We define [D]e U(K) as follows: 

ind2 D = 1/p and indq D = 1/p and indr D = 1 for all r^2,q. 

Since q = \ (mod p2) then K is contained in a subfield L of Q(eq) such that 
\L:K\ = p. Since 2 is a primitive root modulo q then \L2 : K2| = p and clearly 
\Lq:Kq\ = p. Thus L is a maximal subfield of D, cyclic over K and abelian over 
Q, contradicting [11, Th. 1, p. 630]. 

The error in Schacher's proof arises essentially from one of his references, 
viz. Serre's [12, Prop. 5, p. 92] in which there is a misprint. Serre's result 
should read " . . . N0(Ç) = Çl..." which translates in Schacher's notation to: 
N0(£) = £p. We see therefore, that if q # l (modp2) then his proof fails. We 
note however that if q # 1 (mod p2) then, with the correct interpretation of [12, 
Prop. 5, p. 92] his proof would hold. Dr. Serre has informed me in a recent 
letter that the aforementioned misprint has been corrected in the English 
edition. 
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