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Magnitude and Holmes–Thompson
intrinsic volumes of convex bodies
Mark W. Meckes

Abstract. Magnitude is a numerical invariant of compact metric spaces, originally inspired by
category theory and now known to be related to myriad other geometric quantities. Generalizing
earlier results in �n

1 and Euclidean space, we prove an upper bound for the magnitude of a convex body
in a hypermetric normed space in terms of its Holmes–Thompson intrinsic volumes. As applications
of this bound, we give short new proofs of Mahler’s conjecture in the case of a zonoid and Sudakov’s
minoration inequality.

1 Introduction

Magnitude is a numerical isometric invariant of metric spaces recently introduced
by Leinster [19] based on category-theoretic considerations. It has rapidly found
connections with a large and growing number of areas of mathematics (see [22] for a
survey as of 2017, Sections 6.4 and 6.5 of [20] for a more recent succinct account, and
[21] for a more complete bibliography). In appropriate contexts, magnitude encodes
a number of classical geometric quantities, including volume [4, 22, 39], Minkowski
dimension [28], surface area [9], and other curvature integrals [9–11, 39].

The main result of this paper, Theorem 1.2, provides an upper bound on the
magnitude of a convex body in a hypermetric normed space in terms of its Holmes–
Thompson intrinsic volumes, generalizing the main result of [29] for convex bodies
in Euclidean spaces. (All these terms will be defined in the following paragraphs.) In
addition to generalizing some known results about magnitude from �n

1 and Euclidean
(or Hilbert) spaces to more general normed spaces, we will see that this upper bound
on magnitude can be used to quickly deduce some important known results in convex
geometry, namely Mahler’s conjecture in the case of a zonoid and Sudakov’s mino-
ration inequality. Finally, the proof of Theorem 1.2 helps elucidate the relationship
between Holmes–Thompson intrinsic volumes and Leinster’s theory of �1 integral
geometry [18], which was developed largely in order to state and prove the result from
[22] on which Theorem 1.2 is based.
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A metric space X = (X , d) is called positive definite, if the matrix [e−d(x i ,x j)]1≤i , j≤k
is positive definite for every finite collection of distinct points x1 , . . . , xk ∈ X. If X is a
compact positive definite metric space, the magnitude of X can be defined as

Mag (X , d) = sup{ μ(X)2

∫ ∫ e−d(x , y) dμ(x)dμ(y) ∣ μ ∈ M(X)} ,(1.1)

where M(X) is the set of finite signed Borel measures on X [27]. It follows immedi-
ately from this definition that Mag (X , d) ∈ [1,∞], and that magnitude is monotone
with respect to set containment for positive definite spaces.

It is a classical fact that for a normed space E, positive definiteness is equivalent
both to the property of being isometrically isomorphic to a subspace of L1, and being
hypermetric (which for general metric spaces is a stronger property than positive
definiteness; see, e.g., [7, Section 6.1]). We will refer to these spaces as hypermetric
normed spaces below. Examples include �n

p = (Rn , ∥⋅∥ p) for 1 ≤ p ≤ 2, in particular
�n

2 , which is Rn with its usual Euclidean norm.
Let Kn be the class of compact, convex subsets of Rn , equipped with the Hausdorff

distance. Recall that a convex valuation on R
n is a function V ∶Kn → R such that

V(K ∪ L) = V(K) + V(L) − V(K ∩ L),(1.2)

whenever K , L, K ∪ L ⊆Kn . A convex valuation V is said to be m-homogeneous for
m ∈ N if V(tK) = tmV(K) for every K ∈Kn and t > 0.

A consequence of Hadwiger’s classical theorem (see, e.g., [16, 33, 34]) is that up
to scalar multiples, there is a unique continuous, m-homogeneous, rigid motion-
invariant convex valuation Vm on R

n for each 0 ≤ m ≤ n. With an appropriate
normalization Vm(K) = volm(K)whenever K ∈Kn is m-dimensional and Vm is then
called the mth intrinsic volume. These quantities, under various normalization and
indexing conventions, play a central role in integral geometry.

There are multiple natural choices for the normalization of the volume (i.e.,
Lebesgue measure) on a finite-dimensional normed space E. For the purposes of
integral geometry, it turns out that the most convenient normalization is the Holmes–
Thompson volume (see, e.g., pages 207–209 of [34] for discussion and references).
If E is identified with (Rn , ∥⋅∥) and R

n is also given its usual Euclidean structure,
then the Holmes–Thompson volume of A ⊆ E is given, up to a factor depending only
on n, by

volE
HT(A) = vol2n(A× B○),(1.3)

where B is the unit ball of E, B○ = {y ∈ Rn ∣ ⟨x , y⟩ ≤ 1 for every x ∈ B} is its polar
body, and vol2n is the standard Liouville volume on R

n × (Rn)∗ (equal to the
usual normalization of Lebesgue measure on R

2n under the standard identification
(Rn)∗ ≅ Rn). The Holmes–Thompson volume is invariant under linear changes of
coordinates, and thus independent of the precise identification of E with R

n or
Euclidean structure. If F ⊆ E is an affine subspace, then we further define volF

HT(A) =
volF0

HT(A0) for A ⊆ F, where F0 is the linear subspace of E which is parallel to F and
A0 is a translate of A lying in F0. (The definition can be further extended to Finsler
manifolds, but we will not make use of that level of generality here.)
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With the normalization defined by (1.3),

vol�
n
2

HT(A) = vol2n(A× Bn
2 ) = ωn voln(A)(1.4)

and

vol�
n
1

HT(A) = vol2n(A× Bn
∞) = 2n voln(A).(1.5)

Here and below, Bn
p denotes the unit ball of �n

p for 1 ≤ p ≤ ∞ and ωn = voln(Bn
2 ). In

contrast to this, it is standard practice to introduce a factor of ω−1
n in the definition

(1.3) of volE
HT in order to force the equality vol�

n
2

HT = voln . This convention reflects the
central role of the Euclidean space �n

2 in integral geometry. However, in the theory of
magnitude, �n

1 plays a more central role, and the convention adopted above is more
convenient for the statement and proof of our main result.

The following partial analog of Hadwiger’s theorem for normed spaces is proved
in [32, 35], although it is not given a self-contained statement.

Proposition 1.1 Let E = (Rn , ∥⋅∥) be a finite-dimensional hypermetric normed space.
For each 1 ≤ m ≤ n, there is a unique even, continuous, m-homogeneous, translation-
invariant convex valuation μE

m such that μE
m(K) = volF

HT(K) whenever K ∈Kn is
m-dimensional and F ⊆ E is the affine subspace spanned by K.

As discussed in the introduction of [8], results in [2, 5] imply that Proposition 1.1
holds for certain more general normed spaces. However, it is also shown in [32] that
the valuations μE

m necessarily have some pathological properties (in particular, failure
of monotonicity) if E is not hypermetric.

We set μE
0 = 1. The valuations μE

m for 0 ≤ m ≤ n are referred to as the Holmes–
Thompson intrinsic volumes on E. Note that with our normalization convention,
μ�n

2
m = ωmVm by (1.4). We will denote by μ̃E

m = ω−1
m μE

m the usual normalization of the
Holmes–Thompson intrinsic volumes, so that μ̃�n

2
m = Vm .

We are now ready to state the main theorem of this paper.

Theorem 1.2 Suppose that E = (Rn , ∥⋅∥) is a hypermetric normed space, and let
K ∈Kn . Then,

Mag (K , ∥⋅∥) ≤
n
∑
m=0

4−m μE
m(K) ≤ e μE

1 (K)/4 .

For reference, in terms of the the usual convention for Holmes–Thompson intrin-
sic volumes, the conclusion of Theorem 1.2 states that

Mag (K , ∥⋅∥) ≤
n
∑
m=0

ωm

4m μ̃E
m(K) ≤ e μ̃E

1 (K)/2 .

Theorem 1.2 will be deduced from [22, Theorem 4.6], stated as Theorem 2.1, which
is essentially the special case of Theorem 1.2 for E = �n

1 . The case of E = �n
2 was

previously deduced from Theorem 2.1 in [29].
In Sections 3 and 4, we will combine the upper bound from Theorem 1.2 with

easy lower bounds on magnitude to obtain new proofs of results in convex geometry
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which are not obviously related to magnitude. In the rest of this section, we will
state some immediate consequences of Theorem 1.2 about magnitude itself, and in
particular for the behavior of the magnitude function t ↦Mag (tK , ∥⋅∥)when t → 0.
In contrast to this, in Section 3, we will consider the limit of the magnitude function
as t →∞, and in Section 4, we will use a specific finite value of t. This demonstrates
that the upper bound in Theorem 1.2, although not necessarily sharp at any value
of t > 0, is strong enough to yield useful consequences over the entire range of
rescalings of K.

Our first consequence of Theorem 1.2 is already known. It follows by applying the
theorem to the convex hull of X, using the monotonicity of magnitude.

Corollary 1.3 If E = (Rn , ∥⋅∥) is a finite-dimensional hypermetric normed space and
X ⊆ E is compact, then Mag (X , ∥⋅∥) < ∞, and

lim
t→0+

Mag (tX , ∥⋅∥) = 1.

The finiteness statement in Corollary 1.3 was first proved in this generality in
[22, Proposition 4.13] using Fourier analysis. In the recent paper [23], a different proof
was given of the finiteness statement which also yielded the limit statement (called the
one-point property in [23]). Like the proof of Theorem 1.2, the proof of Corollary 1.3
given in [23] is based on [22, Theorem 4.6].

Theorem 1.2 allows Corollary 1.3 to be generalized to certain infinite-dimensional
sets. If K ⊆ L1 is compact and convex, we define

μL1
1 (K) = sup{μF

1 (K ∩ F) ∣ F ⊆ L1 is a finite-dimensional affine subspace} .

This definition is natural for subsets of L1 since the Holmes–Thompson intrinsic
volumes are monotone with respect to set containment in hypermetric normed spaces
(and in fact, only in the hypermetric case [32]). Together with the facts that mag-
nitude is monotone and lower semicontinuous for compact positive definite spaces
[27, Theorem 2.6], Theorem 1.2 yields the following.

Corollary 1.4 If X ⊆ L1 is compact and μL1
1 (conv X) < ∞, then Mag (X , ∥⋅∥ 1) < ∞,

and

lim
t→0+

Mag (tX , ∥⋅∥ 1) = 1.

A version of Corollary 1.4 was proved in Corollaries 2 and 3 of [29] for subsets
of a Hilbert space, where the relevant class of sets are known as GB-bodies. Since a
separable Hilbert space embeds isometrically in L1, Corollary 1.4 generalizes those
results. The following conjecture is motivated by both Corollary 1.4 and the proof of
[23, Theorem 2.1], which gives the first known example of a compact positive definite
metric space with infinite magnitude.

Conjecture 1.5 Suppose that K ⊆ L1 is compact and convex. Then Mag (K , ∥⋅∥ 1) < ∞
if and only if μL1

1 (K) < ∞.
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The one-point property can be sharpened to the following first-order bound on the
magnitude function for small t, generalizing part of [29, Corollary 6] for the Euclidean
case.

Corollary 1.6 Suppose that E = (Rn , ∥⋅∥) is a hypermetric normed space, and let
K ∈Kn . Then

lim sup
t→0+

Mag (tK , ∥⋅∥) − 1
t

≤ 1
4

μE
1 (K).

The following conjecture, which generalizes [29, Conjecture 5], posits that the
upper bounds in Theorem 1.2 are sharp to first order for small convex sets.

Conjecture 1.7 Suppose that E = (Rn , ∥⋅∥) is a hypermetric normed space, and let
K ∈Kn . Then

lim
t→0+

Mag (tK , ∥⋅∥) − 1
t

= 1
4

μE
1 (K).

When E = �n
1 , Conjecture 1.7 holds whenever K has nonempty interior, by Theo-

rem 2.1. When E = �n
2 the conjecture holds if n is odd and K = Bn

2 , by [29, Theorem
4]. In all other cases, the conjecture is open, although the results of [9] imply that if
E = �n

2 , n is odd, and K has smooth boundary, then the limit exists.
The rest of this paper is organized as follows: in Section 2, we will prove Theo-

rem 1.2. In Sections 3 and 4, we will see how Theorem 1.2 quickly yields, respectively,
Mahler’s conjecture for zonoids and Sudakov’s minoration inequality. Finally, in
Section 5, we will make some remarks about Leinster’s �1 integral geometry, which
underlies Theorem 2.1, and its relationships to both the theory of Holmes–Thompson
intrinsic volumes and the Wills functional.

2 Proof of Theorem 1.2

To state the theorem on which the proof of Theorem 1.2 is based, we first define some
additional notation. Following [18], for 0 ≤ m ≤ n, we define the ���1 intrinsic volumes
of K ∈Kn by

V ′m(K) = ∑
P∈Gr′n ,m

volm(K∣P),

where Gr′n ,m denotes the set of m-dimensional coordinate subspaces of Rn and K∣P
denotes the orthogonal projection of K onto P. (The natural class of sets to consider
here is actually larger than convex bodies, a point that we will return to in Section 5.)
Note that if K lies in a d-dimensional subspace of �n

1 , then V ′m(K) = 0 for m > d. It
follows that

V ′m(K) =
1

m!

n
∑

i1 , . . . , im=1
volm(Pi1 , . . . , im(K)),

where Pi1 , . . . , im ∶ Rn → R
m is the linear map represented by the matrix whose rows are

the standard basis vectors e i1 , . . . , e im ∈ Rn .
The following result is part of Theorem 4.6 of [22].
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Theorem 2.1 If K ∈Kn , then

Mag (K , ∥⋅∥ 1) ≤
n
∑
m=0

2−mV ′m(K),

with equality when K has nonempty interior.

To deduce Theorem 1.2 from Theorem 2.1, we approximate a hypermetric normed
space E by a sequence of n-dimensional subspaces EN ⊆ �N

1 . To do this, we use the
following fact, which goes back to Lévy (see, e.g., [17, Section 6.1]).

Proposition 2.2 A finite-dimensional normed space E = (Rn , ∥⋅∥) is hypermetric if
and only if, there exists an even nonnegative measure ρ on Sn−1 such that

∥x∥ = ∫ ∣⟨x , y⟩∣ dρ(y),

for all x ∈ Rn .

From the perspective of convex geometry, Proposition 2.2 implies that E is hyper-
metric if and only if B○, the polar body of the unit ball of E, is a zonoid (see [33,
Theorem 3.5.3]). In that setting ρ is referred to as the generating measure of B○; we
will also refer to it as the generating measure for E. In [35], Schneider and Wieacker
investigated Holmes–Thompson intrinsic volumes for hypermetric normed spaces
with the help of generating measures. We will use the following expression they
derived (see [35, formula (64)]).

Proposition 2.3 Suppose that E = (Rn , ∥⋅∥) is a hypermetric normed space with
generating measure ρ. Then

μE
m(K) = cm ∫(S n−1)m

volm(K∣ lin(x1 , . . . , xm))
√

det(AAt) dρ(x1)⋯dρ(xm)

= cm ∫(S n−1)m
volm(AK) dρ(x1)⋯dρ(xm),

where cm depends only on m. Here, lin(x1 , . . . xn) denotes the linear span of x1 , . . . , xm ∈
R

n and A is the m × n matrix with rows x1 , . . . , xm .

Since we are using a different normalization convention than [35], the value of cm
here differs from the one stated in [35]. The proof of the following corollary shows
that for our normalization, cm = 2m

m! .

Corollary 2.4 For K ∈Kn , μm
�1

n
(K) = 2mVm′(K).

Proof The generating measure for �n
1 is ρ = 1

2 ∑
n
i=1(δe i + δ−e i ). If x1 , . . . , xm ∈

{±e1 , . . . ,±en}, then
√

det(AAt) = 1 if lin(x1 , . . . , xm) is m-dimensional, and is 0
otherwise. Proposition 2.3 therefore implies that
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μ�n
1

m (K) = cm ∫(S n−1)m
volm(K∣ lin(x1 , . . . , xm))

√
det(AAt) dρ(x1)⋯dρ(xm)

= 2−m cm
n
∑

j1 , . . . , jm=1
∑

ε1 , . . . ,εm∈{1,−1}
volm(K∣ lin(ε1e j1 , . . . , εm e jm))

= cm
n
∑

j1 , . . . , jm=1
volm(K∣ lin(e j1 , . . . , e jm))

= m!cmV ′m(K).

Now, if E ⊆ �n
1 is an m-dimensional coordinate subspace, then E is isometrically

isomorphic to �m
1 , and when K ⊆ E we have

μ�n
1

m (K) = volE
HT(K) = 2m volm(K) = 2mV ′m(K)

by (1.5) and [18, Lemma 5.2], and so cm = 2m

m! . ∎

Corollary 2.4 shows in particular that when E = �n
1 , the first inequality in Theo-

rem 1.2 reduces to Theorem 2.1. It also implies the following generalization of [18,
Lemma 5.2].

Corollary 2.5 If K ∈Kn lies in an m-dimensional subspace E ⊆ Rn , then

V ′m(K) =
volm((Bn

1 ∩ E)○)
2m volm(K),

where the polar body (Bn
1 ∩ E)○ is considered in the subspace E.

For the second inequality in Theorem 1.2, we will need the following generalization
of [23, Lemma 3.2].

Lemma 2.6 If E = (Rn , ∥⋅∥) is a hypermetric normed space and K ∈Kn , then
μE

i+ j(K) ≤
i ! j!
(i+ j)! μE

i (K)μE
j (K) for all i, j ≥ 0. Consequently, μE

m(K) ≤ 1
m! (μE

1 (K))m

for each 1 ≤ m ≤ n.

Proof Let x1 , . . . , x i+ j ∈ Rn . Writing A for the matrix with rows x1 , . . . , x i+ j , A1 for
the matrix with rows x1 , . . . , x i , and A2 for the matrix with rows x i+1 , . . . , x j , we have
AK ⊆ A1K × A2K. Proposition 2.3 then implies that

μE
i+ j(K) ≤

2i+ j

(i + j)! ∫(S n−1)i+ j
voli(A1K) vol j(A2K) dρ(x1)⋯dρ(x i+ j)

= i! j!
(i + j)! μE

i (K)μE
j (K).

This implies in particular that μE
j+1(K) ≤ 1

j+1 μE
1 (K)μE

j (K) for each j, and the second
claim now follows by induction. ∎

We are now ready to prove the main result.
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Proof of Theorem 1.2 Let ρ be the generating measure for E. We can approximate
ρ by a sequence of discrete measures

ρN =
N
∑
j=1

wN , jδθ N , j

with wN , j > 0 and θN , j ∈ Sn−1. For each N , we get a seminorm, which for sufficiently
large N ≥ n will be a norm, given by

∥x∥ EN = ∫S n−1
∣⟨x , y⟩∣ dρN(y) =

m
∑
j=1

wN , j ∣⟨x , θN , j⟩∣ =
N
∑
j=1
∣⟨x , wN , jθN , j⟩∣ .

We write EN = (Rn , ∥⋅∥ EN ). Define TN ∶ RN → R
n by TN(e j) = wN , jθN , j . Then

∥T∗N(x)∥ 1 =
N
∑
j=1
∣⟨T∗N(x), e j⟩∣ =

N
∑
j=1
∣⟨x , TN(e j)⟩∣ = ∥x∥ EN ,

so T∗N is an isometric embedding of EN into �N
1 .

We have

∥x∥ EN = ∫S n−1
∣⟨x , y⟩∣ dρN(y) N→∞%%%→ ∫

S n−1
∣⟨x , y⟩∣ dρ(y) = ∥x∥ .

This implies that (K , ∥⋅∥ EN ) → (K , ∥⋅∥) in the Gromov–Hausdorff metric (see [13,
Section 3.A]). Since magnitude is lower semicontinuous with respect to the Gromov–
Hausdorff metric on the class of compact positive definite metric spaces [27, Theorem
2.6], it follows that

Mag (K , ∥⋅∥) ≤ lim inf
N→∞

Mag (K , ∥⋅∥ EN ) = lim inf
N→∞

Mag (T∗N(K), ∥⋅∥ 1) .(2.1)

Now,

V ′m(T∗N(K)) =
1

m!

N
∑

i1 , . . . , im=1
volm(Pi1 , . . . , im T∗N(K))

= 1
m!

N
∑

i1 , . . . , im=1
wN , i1⋯wN , iN volm

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

θN , i1

⋮
θN , im

⎤⎥⎥⎥⎥⎥⎦
K
⎞
⎟
⎠

= 1
m! ∫ ⋯∫ volm(AK) dρN(x1)⋯dρN(xm)

N→∞%%%→ 1
m! ∫ ⋯∫ volm(AK) dρ(x1)⋯dρ(xm)

= 2−m μE
m(K),

(2.2)

where the last equality follows from Proposition 2.3. Here, A as before stands
for the matrix with rows x1 , . . . , xm , and the matrix in the second row has rows
θN , i1 , . . . , θN , im . The first inequality in Theorem 1.2 now follows by combining (2.1),
Theorem 2.1, and (2.2). The second inequality then follows by Lemma 2.6. ∎
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3 Application: Mahler’s conjecture for zonoids

In this and the following section, we will see how two important results in convex
geometry which make no reference to magnitude quickly follow by combining the
upper bound on magnitude from Theorem 1.2 with easy lower bounds.

Mahler conjectured in 1939 [25] that if K ∈Kn is symmetric with nonempty
interior, then

voln(K) voln(K○) ≥
4n

n!
.

Equality is attained (nonuniquely) for K = Bn
1 or K = Bn

∞. This has been proved in
various special cases and in asymptotic forms (see [15] for a proof when n = 3 and
further references), but the general case remains open.

In the proof of the following result, we compare the top-order behavior of the
first upper bound on magnitude in Theorem 1.2, which is typically not sharp for
large convex bodies, with a lower bound that is known to be asymptotically sharp.
This comparison immediately implies Mahler’s conjecture for zonoids, first proved in
[30, 31] (see also [12]).

Corollary 3.1 If Z ∈Kn is an n-dimensional zonoid, then

voln(Z) voln(Z○) ≥
4n

n!
.

Proof Let E = (Rn , ∥⋅∥) be the hypermetric normed space with unit ball B = Z○.
Theorem 1.2 implies that for t →∞,

Mag (tB, ∥⋅∥) ≤ 4−n μE
n(B)tn + O(tn−1) = 4−n voln(B) voln(B○)tn + O(tn−1).

On the other hand, for each t > 0, we have the lower bound

Mag (tB, ∥⋅∥) ≥ tn

n!
(see [19, Theorem 3.5.6] or [22, Proposition 4.13]). Combining these, we obtain

4n

n!
≤ voln(B) voln(B○) + O(t−1) = voln(Z) voln(Z○) + O(t−1),

and letting t →∞ proves the claim. ∎

Remark Although we considered Mag (tB, ∥⋅∥) in the above proof for convenience,
we could equally well consider Mag (tK , ∥⋅∥) for any n-dimensional convex body K
(with the norm still corresponding to B = Z○) and obtain the same result.

4 Application: Sudakov minoration

Our last application of Theorem 1.2 is a new proof of Sudakov’s minoration inequality,
which is a key tool in both high-dimensional convex geometry and the theory of
Gaussian processes (see, e.g., [3, 37], respectively). This application uses only the
special case of Theorem 1.2 when E = �n

2 , proved previously in [29]. In that case, the
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first upper bound in Theorem 1.2 can be combined with a stronger counterpart to
Lemma 2.6 in Euclidean space to deduce the following sharper version of the second
upper bound.

Corollary 4.1 If K ∈Kn , then

Mag (K , ∥⋅∥ 2) ≤ eCV1(K)2/3
.

Throughout this section, c, C, and C′ refer to absolute positive constants whose
values may differ from one instance to another.

Remark Corollary 4.1 can be extended to infinite-dimensional Hilbert spaces, sim-
ilarly to Corollary 1.4, but for simplicity, we will restrict attention to finite dimensions
in this section.

Proof of Corollary 4.1 It was independently shown by Chevet [6, Lemma 4.2]
and McMullen [26, Theorem 2] that the Alexandrov–Fenchel inequalities imply that
Vm ≤ 1

m! V m
1 for every m ≥ 1. As observed in formula (17) of [29], Theorem 1.2 then

implies that

Mag (K , ∥⋅∥ 2) ≤
n
∑
m=0

ωm

m!
(V1(K)

4
)

m

=
n
∑
m=0

1
�(1 + m

2 )m!
(
√

πV1(K)
4

)
m

.

We now consider the function

f (x) =
∞
∑
m=0

xm

�(1 + m
2 )m!

,

a special case of Wright’s generalized hypergeometric function. We claim that f (x) ≤
ecx2/3

for x > 0, which will complete the proof.
If x ≤ 1, then since �(1 + m

2 ) ≥
√

π
2 for every m ≥ 0, we have

f (x) ≤ exp( 2√
π

x) ≤ exp( 2√
π

x2/3) .

For x ≥ 1, Stirling’s approximation implies that

f (x) = 1 +
∞
∑
k=1

x2k

(2k)!k!
+
∞
∑
k=1

x2k−1

(2k − 1)!�(1 + 2k−1
2 )

≤ 1 +
∞
∑
k=1

ck x2k

(3k)!

= 1 +
∞
∑
k=1

(c1/3x2/3)3k

(3k)! ≤ ec1/3 x2/3
. ∎

Since V1 is 1-homogeneous, Corollary 4.1 is equivalent to the following.

Corollary 4.2 If K ∈Kn , then

V1(K) ≥ C sup
t>0

t−1(log Mag (tK , ∥⋅∥ 2))
3/2 .
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Corollary 4.3 (Sudakov’s minoration inequality) Let K ∈Kn , and suppose there exist
x1 , . . . , xN ∈ K such that ∥x i − x j∥ 2 ≥ ε whenever i ≠ j. Then

V1(K) ≥ Cε
√

log N .

Proof Assume without loss of generality that N ≥ 2, and let μ = ∑N
i=1 δx i . By (1.1),

Mag (tK , ∥⋅∥ 2) ≥
N2

∫K ∫K e−t∥x−y∥ dμ(x)dμ(y) ≥
N

1 + Ne−tε .

If t = log(2N)
ε , this implies that Mag (tK , ∥⋅∥ 2) ≥ 2

3 N , and so Corollary 4.2 implies that

V1(K) ≥ Cε
[log ( 2

3 N)]3/2

log(2N) ≥ C′ε
√

log N . ∎

Remark If the supremum in our definition (1.1) of magnitude is restricted to
positive measures μ, we obtain a quantity called the maximum diversity of (X , d),
denoted Dmax(X , d) (see [24, 27]). The above proof of Corollary 4.3 shows that

sup
t>0

t−1(log Dmax(tK , ∥⋅∥ 2))
3/2 ≥ C sup

ε>0
ε
√

log N(K , ε),

where N(K , ε) is the maximum size of a collection of ε-separated points in K. It can
similarly be shown that

sup
t>0

t−1(log Dmax(tK , ∥⋅∥ 2))
3/2 ≤ C′ sup

ε>0
ε
√

log N(K , ε)

(cf. the proof of [28, Theorem 7.1]). It follows that Sudakov’s minoration inequality is
equivalent, up to the value of the constant C, to the inequality

Dmax(K , ∥⋅∥ 2) ≤ eCV1(K)2/3
,

a weaker counterpart of Corollary 4.1.
This observation suggests trying to prove sharper lower bounds on V1(K) than

provided by Sudakov’s inequality by using Corollary 4.1 and bounding Mag (K , ∥⋅∥ 2)
from below by leveraging the fact that the supremum in (1.1) is over a space of signed
measures. We recall that optimal lower bounds on V1(K) are given by Talagrand’s
celebrated majorizing measure theorem [36] and its more recent reformulations [37],
but those bounds are not easy to apply in practice (see, e.g., [38] for discussion of
this). In general, the supremum in (1.1) is not achieved even in the space of signed
measures, but the definition of magnitude can be reformulated in several ways that
invite consideration from the perspective of distributions and partial differential
equations [28]. This perspective has led to the sharpest known results on magnitude
in Euclidean spaces [4, 9–11, 40, 41], and may be similarly fruitful in this setting.

5 Some remarks on �1 integral geometry

The Holmes–Thompson intrinsic volumes were introduced in order to find natural
generalization of results from integral geometry in Euclidean spaces to more general
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normed spaces (or still more generally, Finsler manifolds). In particular, Schnei-
der and Wieacker [35] showed that in hypermetric normed spaces, the Holmes–
Thompson intrinsic volumes satisfy versions of the classical Crofton formula (see
[2, 5] for versions in more general settings).

In [18], Leinster similarly proved a suite of results involving the �1 intrinsic volumes
which are counterparts of classical integral geometric theorems. Since Corollary 2.4
shows that up to scaling, Leinster’s �1 intrinsic volumes V ′m applied to convex sets
are precisely the Holmes–Thompson intrinsic volumes for �n

1 , one might guess that
Leinster’s theory is subsumed by Holmes–Thompson integral geometry. However,
there are at least two major parts of Euclidean integral geometry for which Leinster
proved �1 analogs in [18], but for which no general Holmes–Thompson version is
known.

The first is Hadwiger’s theorem (see, e.g., [16, 33, 34]), which states that every
continuous, rigid motion-invariant convex valuation on �n

2 is a linear combination of
the Euclidean intrinsic volumes. In general normed spaces, Proposition 1.1 classifies
only homogeneous valuations with a normalization condition that serves as a proxy
for rigid motion-invariance, whereas Hadwiger’s theorem also implies that invariant
convex valuations are linear combinations of these homogeneous valuations. In �n

1 ,
Leinster proved an exact analog of Hadwiger’s theorem assuming invariance only
under the isometry group for the �n

1 norm [18, Theorem 5.4]. To compensate for
this smaller isometry group, Leinster assumes the valuations are defined and satisfy
(1.2) on the larger class of ���1-convex sets, i.e., sets that are geodesic with respect to
the �n

1 metric. (Indeed, the fact that Leinster’s �1 intrinsic volumes satisfy (1.2) for
all �1-convex sets is crucial to the proof of Theorem 2.1, even when that theorem
is restricted to convex sets.) This suggests the possibility of stronger Hadwiger-like
theorems in normed spaces than Proposition 1.1 for valuations with suitably chosen
domains. As discussed in [18], however, the most naive generalization of the �1 and
Euclidean versions of Hadwiger’s theorem is typically false.

Second, in [18, Theorem 6.2] Leinster proved the following �1 version of Steiner’s
formula (see, e.g., [33, equation (4.1)]): if X ⊆ Rn is �1-convex, then

voln(X + t[0, 1]n) =
n
∑
m=0

V ′m(X)tn−m .(5.1)

This formula implies in particular that the �1 intrinsic volumes, like the Euclidean
intrinsic volumes, are particular instances of mixed volumes [33, Section 5.1].
Holmes–Thompson intrinsic volumes are not known to have representations as
mixed volumes in general; furthermore, a Steiner-like formula such as (5.1), which
would require the intrinsic volumes on the right-hand side to be mixed volumes of a
particularly simple form, can only hold under additional restrictions on the normed
space E. See [32, Section 5] for some partial results and discussion of these issues.

We end with a simple observation related to (5.1). As noted in [23], the quantity

W′(X) =
n
∑
m=0

V ′m(X)
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is an �1 analog of the Wills functional (see, e.g., [1]), which can be defined by

W(K) =
n
∑
m=0

Vm(K).

The Wills functional was introduced in [42], where it was conjectured that

#(K ∩Zn) ≤W(K)

for any K ∈Kn . This was shown by Hadwiger [14] to be false for sufficiently large n.
However, (5.1) implies that an �1 version of this conjecture is true in all dimensions.

Proposition 5.1 Suppose that X ⊆ Rn is compact and �1-convex. Then

#(X ∩Zn) ≤W′(X).

Proof By (5.1),

#(X ∩Zn) = voln((X ∩Zn) + [0, 1]n) ≤ voln(X + [0, 1]n) =W′(X). ∎
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