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NOTE ON STRONGLY REGULAR NEAR-RINGS

by MOTOSHI HONGAN

(Received 29th May 1985)

Let S be a semigroup. An element a of S is called right (resp. left) regular if a=a2x
(resp. a = xa2) for some xeS. If a is regular and right (resp. left) regular, a is called
strongly right (resp. left) regular. As is well known, if a is strongly regular (i.e., right and
left regular) then it is regular, more precisely, there exists uniquely an element x such
that a = a2x, x = x2a and ax = xa, and a is contained in a subgroup of S (and
conversely).

Following M. Petrich [2], a semigroup S is called weakly commutative if for each
pair of elements x,y in S there exists a positive integer m and an element z in S such
that (xy)m = yzx. Let a be an element of a weakly commutative semigroup S. Then a is
strongly regular if (and only if) as (a}2, where <a> is the ideal of S generated by a, or
equivalently, a = uavaw for some u,v,weSl, the semigroup obtained from S by adjoining
an identity. Actually, there exist positive integers k, I and x,yeSl such that (uav)k = avxu
and (wcuaw*)' = av/yvxu. Hence a = uavaw = (uav)kawk = avxuaw* = a(vxuawk)1 = a2vPyvxu;
similarly, a is left regular.

An element a of S is called 7t-regular if there exists a positive integer n such that a" is
regular, and right (resp. left) re-regular if there exists a positive integer n such that a" is
right (resp. left) regular; a is strongly re-regular if a is both right and left ^-regular. And,
a is called strongly right (resp. left) re-regular if there exists a positive integer n such that
a" is strongly right (resp. left) regular, namely, an = a2nxan (resp. an = d>xa2n) for some
xeS. The semigroup S is called 7t-regular if every elements of S is 7r-regular, and right
(resp. left) re-regular if every element of S is right (resp. left) 7t-regular; S is strongly ir-
regular if every element of S is strongly 7i-regular. Similarly, S is called strongly right
(resp. left) re-regular if every element of S is strongly right (resp. left) re-regular. As is
easily seen, S is strongly right (resp. left) re-regular if and only if S is re-regular and right
(resp. left) re-regular.

In view of [2, Theorem IV. 1.6] (see also Theorem 2 below), every strongly right (or
left) regular semigroup is strongly regular. As an application of this result, we shall
prove the following which includes [3, Theorem 12 and Proposition 13]:

Theorem 1. Let N be a (left) near-ring. Then the following are equivalent:

(1) AT is strongly regular.

(2) N is right regular.

(3) N is left regular and right n-regular.
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(4) N is strongly right regular.
(5) N is strongly left regular.

(6) N is regular and ae = eaefor any idempotent e and any element a in N.

In advance of proving Theorem 1, we state the following:

Lemma 1. Let N be a right (resp. left) regular near-ring, and let a and b be elements
ofN.

(1) Ifab = 0 then ba = 0a.
(2) If ab = Q and b" = Obfor some n>l, then b = 0. In particular, N contains no non-zero

nilpotent element.

Proof. (1) There exists xeN such that ba=(ba)2x = 0ax (resp. ba = x(ba)2 = 0a). Then
0a = aba = aOax=Oax = ba.

(2) There exists yeN such that b = b2y = bnyn~l = 0bf-1 (resp. b = yb2=f~1bn =
J;"-10fc = 0b). Then 0b = bn = bn-10bf-1 =Obf~1 = b, and so b=0b = a0b = ab = 0.

Proof of Theorem 1. Obviously, (1) implies (2)-(6) (see Lemma 1 (2)), and [2,
Theorem IV. 1.6] shows that (1), (4) and (5) are equivalent.

(3)=>(2). Let a be an arbitrary element of N. Then there exists a positive integer n and
xeN such that a" = an + 1x If n > l then a"-1(a"-1-a"x) = 0. By Lemma 1 (1), (a""1-
anx)a"-1 = 0an'1 and (a""1 -a"x)a"x = 0a"x, and hence (an~i-anx)2 = 0(a"-i -a"x).
Then, Lemma 1 (2) proves that a"~1=a"x. Continuing this procedure, we obtain
eventually a — a2x.

(2)=>(4). Let a be an arbitrary element of N, and a = a2x. Since a(a—axa) = 0=
axa(a — axa), we have (a — axa)a = 0a and (a — axa)axa = 0axa (Lemma 1 (1)), and hence
(a — axa)2 = 0(a—axa). Then Lemma 1 (2) shows that a = axa.

(6)=>(2). Given aeN, there exists xeN such that a = axa. Note that ax and xa are
idempotents. Then, by (6), we have a = axa = a(x-ax)a = a{ax-x-ax)a = a2{x2ax)a.

Remark. In [3], a near-ring N is called right (resp. left) regular if for every a there is
an x in N such that a = a2x (resp. a = xa2) and a = axa, and JV is called right (resp. left)
strongly regular if N is right (resp. left) regular in our sense. Obviously, if JV is right
(resp. left) regular in the sense of [3] then it is strongly right (resp. left) regular.

In view of a theorem of Zoschinger-Dischinger (see, e.g., [1, Proposition 2]), every
right (or left) 7c-regular ring is strongly re-regular. It seems difficult to extend this result
to semigroups without any restriction. We shall give the following generalization of
[2, Theorem IV. 1.6.].

Theorem 2. A semigroup S is strongly n-regular if it is strongly right (or left) n-
regular.

Proof. It suffices to show that if a = a2xa then a is left regular. There exists a positive
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integer n and yeS such that {ax)"={ax)2ny{axy. Then a = aaxa = a"a(xa)" =
a"(ax)"a = a"(ax)2''y(ax)"a = {a"(ax)na}x(ax)n~1 y(ax)"a = ax(ax)"~l y(ax)na=(ax)ny(ax)na
= (ax)2ny{(ax)''y(ax)na} = (ax)2nya. Since ax = a(ax)2 = a2n~i(ax)2n, we see that a =

"-1 • ax • ya = (ax)2n-1a2n-1{(ax)2'1ya} =(ax)2n~ 1a2n.

Corollary 1. Let S be a subsemigroup of a left (resp. right) it-regular semigroup T.IfS
is right (resp. left) it-regular, then it is strongly n-regular.

Proof. Given aeS, there exists a positive integer n,seS and te T such that a2ns =
a" = ta2n. Since ans = ta2ns = tan, we see that an = ta2n = ansan. Hence, S is strongly 7i-regular,
by Theorem 2.
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