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TESTING CATEGORIES AND STRONG UNIVERSALITY 

J. S ICHLER 

1. Introduction. A category A is binding (or universal) if any full category 
of algebras is isomorphic to a full subcategory of A. There are many binding 
categories: the category of all commutative rings with unit and all unit-
preserving homomorphisms [1], the category of bounded lattices [2], the 
category of semigroups [3], the category A(l , 1) of all algebras with two unary 
fundamental operations and the category of directed graphs [4], the category 
of all commutative groupoids [11] and many others. A considerable number 
of known universal categories are equational classes of algebras so that a 
question of certain importance arises: how the universal equational classes 
can be distinguished among all equational classes of algebras? The present 
paper offers one possible criterion for equational classes of unary algebras; it 
takes on the following form: 

There exists a finite category C such that the full embeddability of C into an 
equational class A of unary algebras is equivalent to the universality of A. 

We may say that the finite category C tests the universality of an equational 
class of unary algebras. The present paper is primarily concerned with the 
proof of the existence of such a testing category; it will be explicitly described 
here. The finiteness of C is the property to be emphasized for there are many 
testing categories which are not small: a category K is binding if and only if 
some binding category can be fully embedded into it. On the other hand, there 
is no small category testing universality of an arbitrary category for all the 
universal categories are large. These obvious facts force us to narrow the range 
of categories to be tested considerably; the admissible categories have to 
satisfy the conditions (0)-(6) listed below. 

Let A be a binding category with a small left adequate subcategory L and 
let F : L —> B be a full embedding to a cocomplete category B. The small 
category L appears to be a good candidate for a testing category because the 
functor F can be naturally extended by colimits of suitable diagrams to a 
functor F* : A —» B. There is, however, no reason for the functor F* to be 
one-to-one let alone full and there are indeed numerous examples of its failure 
to possess either of the two properties even if B was an equational class of 
unary algebras. The next question to ask is whether a small left adequate 
subcategory L of some particular binding category could be enlarged to a 
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subcategory C of A whose representabili ty in B would guarantee both desired 
properties of the extended functor. For tunate ly enough, this can be done: 
the finite testing category C is found among full subcategories of a binding 
subcategory of the category of all undirected graphs and all their compatible 
mappings. 

T h e categories tested for universality by this small category are not jus t 
equational classes of unary algebras. T h e criterion applies to any category K 
satisfying the conditions ( 0 ) - ( 6 ) . 

(0) K is a concrete category with a faithful functor | | : K—>Set. K a n d | | 
satisfy ( l ) - ( 6 ) below: 

(1) there are class E of epimorphisms and a class M of monomorphisms 
of K such t h a t K is a bicategory in the sense of Isbell with respect to these 
two classes (cf. [7]), 

(2) \m\ is a one-to-one mapping for every m £ M, 
(3) for every object A of K and for every bijection b : \A\ —»X there is 

an isomorphism i of K such t ha t b = \i\, 
(4) K has and | | preserves equalizers, 
(5) K is a cocomplete category, 
(6) if D : S —>• K is a diagram and (A, r) = col imK(D) (where A is an 

object of K and r : D —» cons t^ is the colimiting cone), then 

\A\ = U N(|D(s)|). 
s€Obj(S) 

All our considerations will involve a concrete category K together with one 
of its forgetful functors | |. T o emphasize the fact t ha t a part icular faithful 
functor | | has been chosen we will often write (K, | |) instead of K. 

Recall t h a t the condition (1) means t h a t 

(7) both E and M are subcategories of K, 
(8) E Pi M = Iso(K) (the class of all isomorphisms of K ) , 
(9) every morphism k of K has a decomposition k = m o e for some 

m G M and e £ E, 
(10) iff oe = mog1m^ M , e £ E, then there is h £ K such t h a t h o e = g 

(and, consequently, m o h = / ) . 

T h e condition (2) is certainly a natura l one; (3) says t ha t every object of K 
has enough isomorphic copies. All the conditions are natural ly satisfied by 
any equational class of unary algebras; let us point out t ha t the condition (6) 
is the most restrictive one - it eliminates equational classes of algebras which 
are not unary. There are, however, some other categories for which (0 ) - (6 ) 
do hold. Let us mention a t least two different types of these. 

The functor categories. Let (K, | |) be a category satisfying (0 ) - (6 ) and let C 
be a small category. Let K c denote the category whose objects are all functors 
F : c —» K and whose morphisms are all natural transformations of these 
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functors. Define a functor | |* : Kc —> Set as follows. For an object F : c —> K 
put 

| F | * = U |F (c ) |X{c} ; 
cÇObj(c) 

for a natural transformation n : F —> G, n = (nc : c Ç Obj(c)), define 
|w|* by H*(x, c) = ( H ( x ) , c ) for all c G Obj (c) and all x Ç |F(c)|. The 
functor | |* is clearly faithful and the properties (0)-(6) of (Kc, | |*) are exten
sions of the corresponding properties of (K, | |). The special case of K = Set 
is referred to in [3], where the concept of a rich small category is defined. A 
small category c is called rich if the functor category Setc is binding. Observe 
that every equational class of algebras is isomorphic to some full subcategory 
of Setc with a suitable c. 

The categories 5 (F) . Let F : Set —» Set be a covariant functor. The objects 
of the category 5(F) are all pairs (X, R) where X is a set and R is a subset of 
F(X) . A mapping/ : X -> X' is a morphism of 5(F) from (X, R) to (Xr, R') 
if F ( / ) ( # ) ç R'. The natural functor | | defined by \(X, R)\ = X and by 
| / | = / is faithful. Let E be the class of all morphisms e : (X, R) -> (X', Rf) 
with e{X) = X' and F(e)(R) = R'\ let M be the class of all one-to-one 
morphisms. It is easy to see that 5(F) becomes a bicategory which is both 
complete and cocomplete. | | preserves all limits and colimits so that all the 
properties (0)-(6) are possessed by (5(F), | |). 

Let (K, | | ) and (L, | |*) be concrete categories. A full embedding G : K —> L 
is called strong if there exists a functor F : Set —* Set such that | |* o G = F o | |. 
A category (L, | |*) is strongly binding or strongly universal if any category of 
algebras (equipped by the standard underlying-set functor as the forgetful 
one) can be strongly embedded into (L, | |*). The embeddings constructed 
here will enable us to show that every category satisfying (0)-(6) which is 
binding is also strongly binding; in particular, universality and strong univer
sality are properties equivalent for every equational class of unary algebras. 

In the second section a small category C (which will turn out to be our 
testing category) is described and its representation in a category K satisfying 
(0)-(6) modified to a form more suitable for the construction of the colimit 
construction which is discussed in Section 3. Let us point out that the purpose 
of the second section is to eliminate undesired properties of a representation 
one starts with ; every modifying step is necessary as can be shown by a series 
of examples. The fourth section shows the equivalence of universality and 
strong universality for the type of category investigated here. 

2. The testing category. We will be working within the framework of the 
Gôdel-Bernays set theory; an ordinal will be the set of all the smaller ordinals 
and cardinals will be identified with initial ordinals. The symbol V will denote 
the disjoint union. 

Let U be the category of all undirected graphs without diagonal and all 
their compatible mappings; i.e., the objects of U are all pairs (X, R) where X 
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is a set and R is a set of two-element subsets of X. A mapping / : X —» Xf 

is a morphism of U from (X, R) to (Xf, R') if {xh x2} G J? implies 
{f(xi),f(x2)} £ i?'. As a concrete category U will always be equipped by the 
natural functor | | defined by | (X, R)\ = X, \f | = / . 

Let C be the abstract category isomorphic to the full subcategory of U 
determined by the graphs 1 = ({e}, 0), 2 = ({0, 1}, {{0, 1}}) and by the full 
graph 4 with four vertices. Let us assume that B is already represented as a 
full subcategory of a category (K, | |) satisfying (0)-(6); let B, H, and T be 
the three objects of K representing 1, 2, and 4, respectively. Let 54 be the group 
of all permutations of the set 4 = {0, 1, 2, 3}. The following is a description 
of the full representation of C in K; it is easy to see that this is indeed a repre
sentation of the full subcategory of U determined by the objects 1, 2, and 4 
of U: 

K(B,B) = {1B},K(H,H) = {lH,d},K(T,T) = i ^ : ^ ^ ) , 

K(B,H) = {â 0 ,â i} ,K(5, T) = {ûi :ie 4}, 

K(H, T) = {tlj : i y£ j , i,j G 4}, and no other morphisms. 

(H) b 

B 

The composition is defined by 

(12) b o ai = âi_ t for i = 0, 1; b o b = 1H, 

(13) lij o b = tji for all lij} 

(14) lij o do = Ut and ltj o c i = ûj for all ?.̂ , 

(15) s* o ùk = wS(jfc) for all ^ G 5 4 and all ûk, 

(16) 5* o ltj = Is(i)sU) f° r a ^ s Ç 5 4 and all ?fi. 

Observe that C is a finite category. Using the above representation of C in 
(K, | | ) we will produce a new five-object subcategory of K with all the proper
ties needed for the construction discussed in the next section. 

Let l0i = toi o d be a decomposition of f0i provided for by (9), let d : H —> A, 
toi : A —> T; (10) yields the uniqueness of A up to isomorphism. Let i 7^ j 
and let 5 Ç 54 be such that s(0) = i and 5(1) = j . Put ttj = s* 0 £0i. Since 5* 
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is an isomorphism and toi £ M we may conclude with the use of (8) and (9) 
that every ttj is in the class M. Also 

(17) 5* o ttj = tsiDsd) and ltj = ttj o d for all t^. 

As d is an epimorphism of K all ttj are pairwise different; using the fact that 
K(jff, T) = {tij : i ?* jy i,j G 4} together with (17) we obtain 

(18) K(A,T) = {tiS:i*j,i,je 4}. 

Similarly, there is a morphism b : A —* A such that 

(19) ttj o b = tjiior all ttj1 bob = lAy bod = d ob. 

L e t / and g be morphisms of K such that l 0 i o / = /02 o g. Let si G <S4 be a 
permutation interchanging 1 with 3 and leaving 0 and 2 fixed ; let s2 be defined 
by 52(0) = 0, s2(l) = 2, 52(2) = 1, and s2(3) = 3. Now, *03 of = si* o /0i of = 
5i* o /o2 o g = /o2 o g and also /0i o g = s2* o /02 o g = s2* o f03 0 / = toz o / ; 
hence f0i of = t02og = toz of = toi o g. But /0i G M, so that f = g. Let 
(£, ao) = Equalizer (̂ 01, /02), put a\ — b o a0. Using the transitivity of 54* on 
K (A, P) we easily conclude that 

(20) for every i,j, k, j ^ k, (£, a0) = E q ( ^ , tlk) and (£, ax) = Eq(tjU tki). 

Another easily drawn conclusion is 

(21) \ttj\{a) = \tik\(a') implies a = a'; if j ^ k then the equality holds if 
and only if a = af = |a0|(e) f° r some e £ \E\. 

An analogous statement is valid also for | ^ | , \tki\t and |ai|. 
Since toi o d o â0 = ?oi o â0 = £02 o â0 = t02 o d o âo, (20) yields the exis

tence of a unique e : B —> E with a0 o e = J o â0; let e = m o n be its decom
position according to (9) and let P be the domain of m. We have also a\ o e = 
b o a0 o e = b o d o â0 = d ob o â0 = d o âi\ iî do o m — a\om, then ?0i o â0 = 
/01 o d o do = toi o ao o m o n = toi o a,\ o m o n = ?0i o â\, a contradiction. Put 
vt = ato m for i = 0, 1 and observe that \v0\ and |t/i| are one-to-one mappings. 
For every k Ç 4 define ^ = 4o o zv It is easy to see that 

(22) wk = tki OÎ)0 = ta o vi for all tiJc. 

Because n is an epimorphism and all wk are pairwise different, 

(23) K(P , T) = {« ,* :*£ 4}. 

Now let v : P —> A be a morphism of K. From (23) it follows that 
toiov = wk for some k £ 4. If k y^ 0, 1, then there is an involution 5 such that 
s(i) = i for i = 0, 1 and s(fe) 9^ k. Hence wk — toi o y = s* o /0i o z; = 
5* o ^ = wS(fc), a contradiction. If & = 0, then toi o v = tQ1 o vQ and v = v0 as 
foi 6 M. If i = 1, i; = »i. Thus 

(24) K ( P , ^ ) = {^0,^1}. 
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Suppose that a0of = aiOg for some / , g Ç K; then t0iO a0of = 
toi o ai o g = t2i o a\ o g = t2i o a 0 o / = /2o o a0 of = t2o oaiog. But /0i o a 0 = 
/io o 6 o a0 = /io o a i = /20 o a,\ is a monomorphism so that / = g. Put 
(Q, c) = Eq(a0, ai); using (2) and (4) we conclude that 

(25) |a0|(x) = |ai|(y) if and only if x = y = \c\(q) for some q 6 \Q\-

The modified five-object category is generated by a0, m, c, b, toi, and all s* 
(cf. (26)). 

(26) ^ ^s* 

Q £ • E a° >Q * IT1 

The above category will be used for the construction of a full embedding in 
the next section. Note that all its morphisms are monomorphisms; by (2), 
their underlying mappings are all one-to-one. 

3. The construction. An undirected graph G = (X,R) is S-colourable if 
there is a compatible mapping <p of G into the complete graph 3 with three 
vertices. G is connected if for every two distinct vertices x, y there is a finite 
sequence x = x0, . . . , xn-i, xn = y such that 

{xit x l+i} 6 R for i = 0, . . . , n — 1. 

Let G be the category of all connected 3-colourable graphs and all compatible 
mappings between them. G is a binding category; this can be proved easily 
using [5; 4], and [11] as the sources of suitable full embeddings. 

A full embedding of the category G into a category (K, | |) satisfying 
(0)-(6) will be constructed in this section as a colimit functor extending a 
representation of the modified small category of the previous section. 

To every object G = (X> R) of G a small category SG will be assigned as 
follows: 

Obj(S0) = (Ox:x £ X)\J {Oxy : (pc, y) £ X2 and {x, y] 6 R); the mor
phisms of SG beside the units are: 

Pzv '• Oxv —> OyX for each Oxy, 

doxy : Ox —> Oxy for each pair Ox, Oxyj 

a\xy : Oy ~> Oxy for each pair Oy, Oxy\ 

https://doi.org/10.4153/CJM-1973-038-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-038-3


376 J. SICHLER 

their composition is defined by 

Pxy O a0xy = aiyx, pxy O aiXy = aoyx, Pxy O fiyx = l o ^ . 

The category SG is the scheme of the diagram DG : SG—>K defined by 
VG(OX) = E, DG(0Xy) = A, DG((3xy) = b, T>G(a0xy) = a0, and DG(ai,„) = ax 

for all x and all (x, y), respectively. It is clear that DG is a well-defined functor. 
The category K is cocomplete; set (L(G), r) = colimK(D(?), where L(G) is an 
object of K and r : DG —> constL(G) is the colimiting cone. Writing rx for r0x 

and rxy for r0a;2/ one has r = (rg : 0S G Obj(ScO)- Let us note explicitly that 
rxy o b = r^, r^ oao = r ,̂ and r^ o a\ = ry for all x and (x, y), respectively. 

Let f:G-*G' = (X',R') be a morphism in G, denote (L(G'), r') = 
co l rm^D^) . The system (r/0c)' : x G I ) U irr^m ' (x, y) £ X2, {*, y} € JR) 
of morphisms of K is a natural transformation of DG into cons t L (o so that 
there is a unique morphism L ( / ) : L(G) —» L(G') such that 

(27) L ( / ) o r x = rm' for all x f l , and 
L ( / ) o r* = r/Cc)/(2/)' for all (x, 3/) G X2 with {x, y} G iî. 

Clearly, L is a functor. 
Now let (p : (X, i£) —» 4 be a colouring of (X, R), i.e., let ^ be a compatible 

mapping of the two graphs. Again, the system of morphisms 

&(*)*(») o a0 : x £ X) U (t9(xMy) : (x, y) G X2, {x, y} G R) 

is a natural transformation of DG into const T which gives a unique morphism 
ç>* of K such that 

(29) <p* o rx = tipixMy) ° ao and <p* o r^ = t^^^y) for all x G X and all 
(x, y) G X2 with {x, 3/} G R. 

The connectedness of (X, i£) was used here. 

LEMMA 1. Let {X, R) be a ^-colourable graph. Then 
(a) x = y if and only if for every colouring <p : (X, R) —>4, <p(x) = ^(3;) 

(b) {x, y) (z Rif and only if <p(x) 9^ <p(y) for every colouring <p : (X, R) —> 4. 

The connectedness of a graph G together with (6) imply that every element 
I of |L(G)| is of the form I = |rZ2/|(s) for some {x, y) G R and some x G \A\. 

LEMMA 2. Let G = (X, R) be an object of G. Let I = \rxy\ (z) and V = \rx>y> \ {%') 
be elements of \L{G)\ such that |<p*|(/) = |#>*|(0 for every colouring <p : G —> 4. 
Let W be a set and let k : \ | o DG —> const^ be a natural transformation, 
k = (kg : 0S G Obj(SG)). Then kxy(z) = kx>y>{z'). 

Proof. Let <p be a colouring of G by three colours; we may assume that 
<p(X) C {0, 1, 2} and that <£>(x) = <p(x') = 0 (all the other cases can be 
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reduced to this one by a suitable choice of the representations of /, V and by an 
application of a suitable permutat ion s G <S3). Define a new colouring \f/ of G 
by *A(£) = <?(£) f ° r aU vertices J of G different from y\ \p{yf) = 3. Let us 
observe tha t |*0,*(,)|(s) = \V o rxy\(z) = |**|(Z) = |^*|(/ ' ) = | * * o r * v | ( z ' ) = 
\tuMv')\(z') = IM0 s ' ) - There are several cases to consider now. First of all, 
assume t h a t y = y'; in this case \p(y) = 3 and z = z' because |/C3| is a one-to-
one mapping. If y ^ y', then \f/(y) ^ ^ ( / ) and (21) yields t h a t z = z' = 
|a0 |(e) for some e G | £ | . These two observations imply t h a t kxy(z) = kx>y>(zr) 
whenever x = x'. lî x 9^ xf and y = y', an argument similar to the previous 
one and using a colouring p : G —» 4 with p(x) = 0 and p(x') = 1 proves the 
equali ty again. T h e only remaining case is the case of x ^ x' and y ^ y' ; we 
know already t h a t z = z' = |a0 | (e) . Simultaneously, 

|A)i | (ko|0)) = |felP(y)Oflo|W = |p* orxyoa0\(e) = \p*\(l) = |p*|(Z') 

= | p * o r l Y O f l o | W = |/i,p(y') o a 0 | W = |*iooa0 | (e) = |*oi| (Wi\(e)). 

Since |/0i | is one-to-one, |ao|(e) = |a i | (e) ; (25) yields the existence of a q G |Q| 
such t ha t |c|(g) = e. G is a connected graph so t ha t there are vertices 
x = xo, Xi, . . . , xn = x' with {xl} xi+i} G R. T h u s 

fexy(z) = kxy(\a0\ (e)) = kxv o \a0 o c\ (q) = &Z(m o |a0 o c| (q) 

= kX0X1 o | a iOc | (g ) = kxl(\c\(q)) = . . . = &*n(|c|(g)) = kx>v>(z'). 

This finishes the proof. 

Note tha t , in particular, |<p*|(/) = |p*|(/ ') holding for all colourings <p 
implies I — V. Since the functor | | is faithful we conclude 

(30) (p* of = <p* o g for all colourings <p : G —> 4 implies t h a t / = g. 

Also, 

(31) ( |L(G)| , | H ) = c o l i m S e t ( | \oDG). 

T o prove (31), let (VF, é) = colimS e t( | | o D G ) . There is a unique mapping 
h : W -* |L(G) | such t ha t for every {x, y] in R, ho kxy = \rxy\. From (6) we 
conclude t ha t h is an onto mapping. Let w = kxy(z) and w' = kx>y>(zf) be two 
elements of W such t ha t h(w) = h(wf). I t follows | ^ | ( ^ ) = Vx'V'\(z') and 
Lemma 2 yields ze; = w'. 

T h e next lemma can be proved easily from (31) with the use of (21) and 
(25) ; it describes the functor L more explicitly. 

L E M M A 3. The composite functor | \ oh is naturally equivalent to the functor 
H : G —> S e t defined by 

U(X, R) = \Q\ V(XXI)V(RXJ); 
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if f : (X, R) —-> (Xf, R') is a morphism of G then H ( / ) has the form 

H( / ) (« ) =qforallq£ \Q\, 

H (/)(*, *') = ( / (*) , t) /or a« (*, i ) Ç l X I, 

H ( / ) ({*,?},/) = ( { / ( x l . / W l . j l / w f l l / f c j I . j l M i J X / . 

I = |£ | \ |c |( |Q|) and J = M|\( |a„ | ( |£ | ) W H ( | £ | ) ) . 

If I = 0, then |c| is onto so that c is an epimorphism ; hence a0 = a,\ which 
contradicts (24). Fix an element i of I and define a mapping 

Mu.*) : | ( X , P ) | * - + H ( X , P ) by MU.*) (* ) = (*, 0-

The system of all mappings JJLG is a natural transformation from the forgetful 
functor | |* of the category G to the functor H ; all the mappings /xG are one-to-
one. The composite functor | | o L (which is naturally equivalent to H) is 
faithful and thus L is faithful itself. The following statement is needed for the 
proof of its fulness. 

LEMMA 4. Let G = (X, R) be an object of G. Then every morphism 
h : A —» L(G) is of the form h = rxy for some {x, y] £ R. 

Proof. The first fact to be shown is that every morphism / : P —• L(G) is 
equal to some rxom (x £ X). 

L e t / be such a morphism and let p G \P\. According to (6), \f\(p) = 
\rxy\(z) for some z Ç \A\\ from (23) there it follows that <p* of = wk^) for any 
colouring ç : G —> 4. Thus 

ladite) = k*| (I/!(£)) = k*|(k*y|(z)) = lUrwrtlGO 

and since <p(x) ^ <£>(;y), either k(<p) j* v(x) or &(<£>) ^ <p(:y). Without loss of 
generality it may be assumed that k(<p) 7^ <p(x). Now 1^)^)1 (z) = \Wk(<p)\(p) = 

\tvix)kto)\(\ai\o\fn\(p)), so that z = \a,i om\(p) and \f\(p) = \rxy o ax om\(p) = 
\ry o m\(p). We conclude that for every p £ \P\ there is a x = xp such that 
\f\(P) = \rxom\(p). According to the considerations at the end of the proof of 
Lemma 2, |^|(|c|(g)) = |ry|(|c|(g)) for arbitrary x, y Ç X. Assume now that 
^ , ^ , e | P | a n d | / | ( ^ ) = | r : r | ( | m | ( ^ ) ) , | / | ( ^ ) = k , ' | ( | ^ | ( p / ) ) w i t h x ^ x , a n d b o t h 
\m\ (p) and \m\ (p') lying in / . Choose a colouring^ of G for which \p(x) ^ IA(X') 

and observe that \wky,)\(p) = \w^x)\(p), \wm)\{p') = \u>Hx>)\(P') hold for an 
arbitrary colouring \p (cf. (29) and (22)). It may be assumed without loss of 
generality that k(\f/) 9e ^(x); observing that \h(x)k(^)\(Wo om\(p)) = 
\wHx)\(P) = \wkU)\(p) = \h{x)kw\(\aiom\(p)) we conclude from (25) that 
\m\(p) = \c\(q) f° r some a £ |Q|, which is a contradiction. Thus x = x' so 
there is a unique x f I such that | / | (p) = \rx o m\ (p) for all p £ |P | ; since | | 
is a faithful functor, / = rx o m. 
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Let h : A —>L(G) be a morphism in K. The composite morphisms h ov0 

and h ovi are equal to some rx o m and rx> o ra, respectively. By (18), <p* o h = 
turfite) for an arbitrary colouring p. Hence w^) = t^)^) ov0 = ^ * O / Î O Z I 0 = 
<p* o rxoni = /*,(*),*; o a0om = t^x)tlc ov0 = w^x)l and, analogously îe/^> = 
^(x')î (23) yields i(p) = ^0*0 and j"(p) = <p(x')> In particular, <p(x) ^ <p(x') 
for every colouring <p. Lemma 1 gives {x, x'} £ R\ for an arbitrary colouring 
<pf cp* o h = ti^jte) = (̂x)̂ (ar') = ^* o rM' and from (30) we conclude that 

To prove the fulness of L, let k : L(X, R) —» L(X', .R') be a morphism in K; 
by Lemma 4, k o rxy = TV^/ for any {x, 3/} 6 R. If TV^/ = rx»V"r, then 
t<p(x')<p(V') = <P* o rx>v>' = p* o/v/y// = ^(x")^(2/")i (18) and Lemma 1 yield 
x' = x", 3;' = y". Define a mapping / : X —> X' by k o rx = k o rxy o a0 = 
rx>y>' o a0 = f/or/; since Gis connected, / is a well-defined mapping. Now 
k o rxy = rf(X)f(y)' = L ( / ) o r „ for all {x, y\ G i£; therefore / G G and 
* = L ( / ) . 

The functor L is full and faithful, but we need a functor which is also one-to-
one on the class of all objects of G. The existence of a full embedding is guaran
teed by the following modification of Lemma 5 of [9]. 

LEMMA 5 (A. Pultr). Let G be equipped by the standard forgetful functor | |* 
and let (K, | | ) satisfy (3). If h : G —> K is a full functor and if there is a mono-
transformation p : I I* —> I I o L, then there is a full embedding L* : G —* K 
naturally equivalent to L. 

The existence of a monotransformation p follows from the existence of the 
monotransformation /x : | |* —» H described earlier. The colimit-defined functor 
L determines a full embedding L* up to a natural equivalence. 

It is shown in [4] that every small category can be fully embedded into a 
binding category; this enables us to state the main result of the present paper. 

THEOREM 1. The following two conditions are equivalent for any category 
(K, I |) satisfying (0)-(6): 

(i) The finite category C is isomorphic to a full subcategory of K. 
(ii) Every full category of algebras is isomorphic to a full subcategory of K. 

In other words, the universality of such a category (K, | |) is tested by the 
full representability of C in K. 

4. Binding and strongly binding categories. Many binding equational 
classes of algebras are also strongly binding. Among the strongly binding 
classes are the class of commutative groupoids [11], the class of semigroups 
[10] and [13], and many equational classes of unary algebras. A class A (A) 
of all algebras of the type A is binding if and only if it is strongly binding. In 
this section we will show that "binding" has the same meaning as "strongly 
binding" for any category (K, | |) satisfying (0)-(6); in particular, these two 
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concepts are equivalent for any equational class of unary algebras. The general 
problem of equational classes of algebras of an arbitrary type remains unsolved; 
there are binding equational classes (e.g. the equational class of bounded 
lattices [2] and the class of commutative rings with unit [1]) for which no 
proof of their strong universality is known. On the other hand, no equational 
class is known to be universal but not strongly so. 

To prove the equivalence of these two concepts for our type of category we 
will construct a special embedding of a strongly binding category of algebras 
with two unary fundamental operations into the category G and follow it 
by the full embedding L* of G into a binding category K; the composite 
functor will turn out to be a strong embedding of a very special type (cf. 
Theorem 3 below). This will prove the equivalence since the converse 
implication is trivial. 

The category A of all connected algebras with two unary fundamental 
operations is strongly binding (for the proof, cf. [12]). A unary algebra is 
connected if the union of the graphs of its fundamental operations is a connected 
directed graph, that is a graph whose symmetrization is a connected undirected 
graph according to the definition in the previous section. A directed graph is a 
pair (X, R) in which X is a set and R Q X2. A mapping / : X —» X' is a 
morphism of the category D of all irreflexive connected directed graphs from 
(X, R) to (X', R') if (f(x)J(y)) e Rf whenever (x, y) G R. 

Given a set 5, define functors V s , K 5 , Qs from the category Set of all sets 
and mappings into itself by YS(X) = X V 5, Ys(f)(s) = s for s G 5 and 
V f l( / ) (*) = / ( * ) ; KS(X) =XXS, Ks(f)(x,s) = ( / (*) ,*) ; 0 , ( 5 ^ 0 ) 
is the covariant Hom-functor Horn(S, — ). 

First, a full embedding <ï> : A —-» D will be constructed. 
Let (X; a, b) be a connected algebra with two unary fundamental operations 

a, b : X -» X. Set $ (X; a, b) = (X X 5, R), where 

R = {((x, i), (*, i+1)) :i £ ±,x £ X}\J {((x, 0), (a(x), 2 ) ) : x G l | U 

{((x,2), ( & ( * ) f 4 ) ) : * e X}. 

If / : (X; a, b) —> (Xr; a', V) is a homomorphism of the two algebras, define 
$(/)(#> 0 = (f(x)> i) for all Î Ç 4. It is easy to see that $ is a one-to-one 
functor from A to D. To prove its fulness, consider an arbitrary morphism 
h : $(X; a, b) —» $(X'\ af, b') in D. The only vertices z for which both (z, zf) 
and (z", z) belong to R for some z\ z" are of the form (x, i) with i = 1, 2, 3; 
thus h(X X {1, 2, 3}) is contained in X' X {1, 2, 3}. If h(x, 2) = (xr, 3), 
then h(x, 3) = (xr, 4) which is impossible; similarly h(x, 2) ^ (xr, 1). Hence 
&(#, 2) = (x', 2) and this, in turn, implies that h(x, 0 = (x', i) for all i G 5. 
There is a mapping f : X —> X' such that ( / (x) , i) = h(x, i) for all these i 
and for all x Ç X. ((x, 0), (a(x), 2)) Ç i? for every x G X; since /z is a mor
phism in D, (h(x,0),h(a(x),2)) Ç ^ . But/z(x, 0) = (/(x), 0) and h(a(x), 2) = 
( / (a (x) ) ,2) so that f(a(x)) = a(f(x)). The compatibility of / with the 
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second fundamental operation is established in a similar way; h = $ ( / ) a n d / 
is a morphism of A. 

Observe that R is naturally bijective to X X 6 with respect to all morphisms 
of the graphs of the form $(X; a, b). 

The full embedding of the category of all directed irreflexive graphs into the 
category of all 3-colourable undirected graphs which is constructed in [5] 
carries connected graphs to connected undirected graphs without diagonal; 
hence its restriction t to D is a full embedding of D into G. The set Z of 
vertices of a graph (Z, T) = ^ ( F , S) is naturally bijective to the set 
F V (SX 11) and the set T of its edges is bijective naturally to the set 
S X 15. The naturality is again with respect to all morphisms between the 
graphs in question. Consider the composite functor ^ o <ï> : A —> G now; the 
undirected graph (Z, T) = (SF o $)(X; a, b) has Z bijective naturally to the 
set I X 71 ^ ( I X 5) V ( I X 66) and T is naturally bijective to 
I X 9 0 ^ ( I X 6 ) X 15. 

If the category (K, | |) is binding, then the small category C described in 
the first section is fully representable in K; let (26) be its modified representa
tion and let L* be the full embedding constructed above. The composite 
functor L* o SF o 3> is a full embedding of A into K. The functor | | o L* is 
naturally equivalent to H (see Lemma 3 and Lemma 5). Let U be the standard 
underlying-set functor of the category A of unary algebras. Taking into 
account the naturality properties of <ï> and ^ we conclude that the functor 
| | o L* o ^ o $ is naturally equivalent to the functor V | 0 | o K B o U with 
B = (I X 71) V ( / X 90); / , J, and \Q\ are the same as in Lemma 3. Conse
quently, there is a functor F : Set —» Set satisfying F o U = | | o L * o ^ o $ ; 
F is naturally equivalent to \\Q\ o KB. The full embedding L* o SF o $ is 
strong; since A is a strongly binding category, so is (K, | |). This concludes 
the proof of our second theorem. 

THEOREM 2. A category (K, | |) satisfying (0)-(6) is binding if and only if 
it is strongly binding. 

A natural question to ask now is how complicated are the set-functors 
carrying the strong embeddings of full categories of algebras into equational 
classes of unary algebras or, how simple these functors can really be. The 
next theorem shows that a very narrow class of functors is completely 
sufficient. 

THEOREM 3. Let (K, | \)beabinding category satisfying the conditions (0)-(6). 
Then 

(I) for every full category N of algebras there are sets A, B, and C and a 
strong embedding of N into (K, | |) over a set-functor naturally equivalent to 
YA o K B o O c ; 

(II) in the case of a full category N of unary algebras the strong embedding 
is carried by a functor naturally equivalent to some VA o K 5 . 
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Theorem 3 will be proved in several steps: first of all, a strong embedding 
of the category A (A) of all algebras of the type A into a suitable category of 
algebras with many unary operations will be constructed over a set-functor 
Qc with sufficiently large C. This construction is a very standard one and it 
is included here for the sake of completeness only. The second step is a strong 
embedding of this category into the category A(l , 1, 1) of all algebras with 
three fundamental unary operations over a functor KB ' . A(l , 1, 1) is in turn 
being embedded strongly into A(l , 1) and this strong embedding is carried 
by the functor K5; Theorem 1 of [12] describes a strong embedding R of 
A(l , 1) into the category A of all connected algebras with two fundamental 
unary operations whose carrying functor is V2 o K7. Composing all these 
embeddings one obtains a strong embedding 2 A '• A (A) —» A carried by a 
set-functor naturally equivalent to some VA* o KB* o Q c , since 

V z ) o K c o V B o KA 

is naturally equivalent to Y(BXC)VD O K A X C - Applying the strong embedding 
of A into K we obtain the desired result (recall that the last embedding is 
again carried by a functor of the form YA

f o R B ' and apply the above natural 
equivalence). 

A type A is a sequence of ordinal numbers indexed by an ordinal number, 
i.e., A = (ka : a G b), where a, b, and ka are ordinal numbers. The objects of 
the category A (A) are all pairs (X, (oa : a G b)) in which X is a set and 
oa : Xka —> X is a mapping for every a G b. Morphisms are all mappings 
/ : X —> X' such that oa

r (f o <p) = f(oa(<p)) for all p G Xka. A (A) is equipped 
with the standard underlying-set functor as the forgetful one; every full 
category of algebras is a full subcategory of some A (A). 

The following three lemmas describe the strong embeddings required for 
the proof of Theorem 3. The symbol + means the ordinal sum. 

LEMMA 6. Let A = (ka : a G b) be a type and let k = sup{£a : a £ b}. Set 
A' = (lc : c ^ b + k). There is a strong embedding 

G : A(A)->A(A' ) 
carried by the functor Qk. 

Proof. Observe that the replacement of every nullary operation oa by a 
constant unary operation with the value oa defines a strong embedding of 
A (A) into a category of algebras without nullary operations; the embedding 
is carried by the identity functor. Thus we may assume that ka > 0 for all 
a G b. For an algebra (X, {oa : a G b)) G A (A) set G(X, (oa : a G b)) = 
(Xk, (oc* : c G b + k)) where the unary operations 0C* : Xk —» Xk are defined 
as 

o*((p)(m) = oc{^) for every m G k, c G b\ \f/ is the restriction of <p to kc, 

oc((p)(m) = <p(c) for every m G k and c Q b. 
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The unary operations of the second group are all the projections of Xk onto its 
diagonal; it is easy to see that the mappings compatible with all of them are 
exactly all the mappings of the form Q*(/)i Q*(/) is compatible with all the 
operations of the first group if and only if / is a homomorphism in A (A); this 
shows that G is a full embedding. 

LEMMA 7. Let A = (la : a Ç k) be a type. For every set B with card(B) ^ 
card(&) there is a strong embedding S:A(A)—> A(l, 1, 1) carried by the functor 
KB. 

Proof. Combining results of [14; 4; 12] it is easy to show that there is a rigid 
connected algebra with two fundamental unary operations of any infinite 
cardinality (an object R of a category K is called rigid if YLomK(R, R) = 
{1R}). It is not difficult to construct such an algebra on a finite set: the 
symmetric group Sn (n ^ 3) has two generators and no nontrivial mapping 
commutes with all the permutations on an n-element set. 

Let B* = (B ; c, d) be a rigid connected algebra with unary operations 
c, d. There is a one-to-one mapping of k into the set B so that the operational 
symbols of the class A (A) can be indexed by the elements of B. Let 
(X, (ob : b Ç B)) be an algebra from A (A). Define 

S(X, (ob:b G B)) = (X XB;c,d,e) 
where 

c(x,b) = (x, c(b)), d(x,b) = (x, d(b)), e(x,b) = (ob(x),b) 

for all (x, b) £ X XB. 

Obviously, S is a well-defined functor which is one-to-one both on objects and 
on morphisms (S ( / ) = KB(f) for every morphism / of A(A)). Now let h be 
a homomorphism from S(X, (ob : b G B)) into S(X', (ob

f : b G B)). Note 
that ({x} X B\ cx, dx) (where cx and dx are the restrictions of c and d, respec
tively, to {x} X B) is an algebra isomorphic to B*. Any homomorphism sends 
a connected part of the algebra (X X B; c,d) into a connected part of 
(Xf X B; c', d'); the maximal connected parts of these algebras are, however, 
isomorphic to the rigid algebra B* and we conclude from this the existence of 
a mapping/ : X —> X' such that K s ( / ) = h. The compatibility of h with the 
third operation implies t h a t / is a morphism in A (A). This shows the fulness 
of S. 

LEMMA 8. A(l , 1, 1) can be strongly embedded into A(l , 1) over the set-
functor K5. 

Proof. For an algebra (X; c, d, e) in A(l , 1, 1) set T(X;c, d, e) — 
(X X 5; a, b) with a, b described by the formulae: 

a(x, i) = (x, i + 1) for all x G X and Î Ç 5; the addition is modulo 5, 

b(x, i) = (x, 1 — i) for all x G X and i = 0, 1, 

b(x, 2) = (c(x), 4), b(x, 3) = (d(x), 2), b(x, 4) = (*(*), 3) for all x £ X. 
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Define T ( / ) = K 5 ( / ) for every morphism / o f A(l , 1, 1); T is a one-to-one 
functor. Let h : T (X; c, d, e) —> T(X'; cf, à', e') be a morphism of A(l , 1). 
Since a(z) = b(z) if and only if z G X X {0}, a'(h(x, 0)) = A(a(x, 0)) = 
h(b(x, 0)) = 6'(/z(x, 0)) implies the existence of a mapping / : X —» X' such 
that &(x, 0) = ( /(#), 0). Furthermore, 

*(*,*) = A(a'(x,0)) = ( a T ( / ( * ) , 0 ) = (/(*),*) 

for all i; hence A = K 5 ( / ) . Now, (fc(x), 4) = *(c(x),4) = *(&(*, 2)) = 
b'(h(x,2)) = b'{f(x),2) = (c'f(x),4); we establish similarly t h a t / is com
patible with the other two operations. 

To finish the proof of Theorem 3, recall that the strong embedding 
0 = L * o ^ r o $ : A — > (K, | |) is carried by a set-functor YA> o KB> (with 
A', Br dependent on the representation of the testing category used to con
struct L*) and define 

2 A = R o T o S o G : A(A) -> A; 

2A is a strong embedding over the set-functor (V2 o K5) o KJ5(A) O OSUP(A). 

6 o SA is the desired strong embedding. 

5. A problem. Let us emphasize once more that the condition (6) imposes 
a strong restriction on the range of the categories admissible for testing by 
the presented method; all the equational classes not equivalent to equational 
classes of unary algebras are excluded. Is there a small category testing the 
universality of an arbitrary equational class of (finitary) algebras? 
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