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Abstract

This paper compares the behavior of individuals playing a classic two-person deterministic prisoner’s dilemma (PD)
game with choice data obtained from repeated interdependent security prisoner’s dilemma games with varying proba-
bilities of loss and the ability to learn (or not learn) about the actions of one’s counterpart, an area of recent interest
in experimental economics. This novel data set, from a series of controlled laboratory experiments, is analyzed using
Bayesian hierarchical methods, the first application of such methods in this research domain.

We find that individuals are much more likely to be cooperative when payoffs are deterministic than when the out-
comes are probabilistic. A key factor explaining this difference is that subjects in a stochastic PD game respond not
just to what their counterparts did but also to whether or not they suffered a loss. These findings are interpreted in the
context of behavioral theories of commitment, altruism and reciprocity. The work provides a linkage between Bayesian
statistics, experimental economics, and consumer psychology.
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1 Introduction
Interdependent security (IDS) games are social multi-
player games with stochastic payoffs where each player
must decide whether or not to mitigate her own risks.
More specifically, each player knows that even if she fully
protects herself by investing in a risk-reducing measure,
she may still be subject to indirect losses by being “con-
taminated” by one of the other players who chose not
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to invest. As Heal and Kunreuther (2005) have shown,
there are a wide variety of significant current problems
that fit into an IDS framework ranging from investing in
airline or port security, protecting oneself against disease
through vaccinations, individual users incurring software
security costs when connected to a network, and divisions
of firms undertaking risky investments that could cause
the entire firm to become insolvent or bankrupt (as in the
current financial crisis).

Kunreuther and Heal (2003) have shown that IDS
games can have either multiple Nash equilibria or just
a single Nash equilibrium. In a Nash equilibrium both
players’ strategies are the best response to each other’s
strategies (Gibbons, 1992). This paper presents the re-
sults and analysis of controlled laboratory experiments
involving two players in an IDS game where there is a
single Nash equilibrium. If both players invest in a risk-
reducing measure, there is no chance that either will suf-
fer a loss. However, if either or both players do not in-
vest in the protective measure, then there is some likeli-
hood (hence the stochastic part) that both individuals will
suffer a loss. Furthermore the dominant strategy of both
players, if they are risk neutral (i.e., neither risk averse
nor risk seeking), is not to invest in the protective mea-
sure, despite the fact that had they taken this step, their
expected values would have been higher than if they had
not.

This IDS game can be viewed as a stochastic pris-
oner’s dilemma (SPD) game, an area of increased interest
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in experimental economics (e.g., Bereby-Meyer & Roth,
2006). In the standard deterministic prisoner’s dilemma
game, two prisoners face the dilemma of testifying for the
prosecution against each other and admitting their own
crime, or remaining silent; the Nash equilibrium strat-
egy is for each prisoner to testify against each other even
though both would be better off if they agreed to cooper-
ate with each other by remaining silent. In an IDS game,
investing in a risk-mitigating measure is analogous to co-
operating in the classic prisoner’s dilemma game.

In our experiment, subjects were assigned to play one
of three types of prisoner’s dilemma games: (i) a stan-
dard deterministic prisoner’s game; (ii) a full feedback
stochastic prisoner’s dilemma game based on an IDS
model where the players receive feedback about their
counterparts’ actions and payoffs (each round); and (iii)
a partial feedback stochastic prisoner’s dilemma game
where the players receive feedback only about their coun-
terparts’ payoffs but not their actions. Subjects were ran-
domly paired to play ten prisoner’s dilemma games of
their assigned type against each other; this is called a re-
peated prisoner’s dilemma game or a supergame.

In the deterministic prisoner’s dilemma game, there is
considerable evidence from controlled experiments that if
players play repeated prisoner’s dilemma games against
each other, i.e., a supergame, cooperation can emerge,
even though they would be likely to defect in a single
period game (Axelrod, 1984). Each subject in our experi-
ment played multiple (3–10) supergames of the same type
(i.e., deterministic, stochastic full feedback or stochas-
tic partial feedback) with randomly chosen counterparts.
More details on our experimental design are provided in
Section 3.

Our interest in this research area is both substantive
and methodological. From a substantive perspective, we
would like to compare the behavior of individuals in a
standard deterministic prisoner’s dilemma (DPD) multi-
period supergame with their behavior in an SPD su-
pergame based on an IDS model. Our interest is in de-
termining whether stochastic payoffs weaken coopera-
tion, and how feedback affects cooperation. Specifically,
we compare behavior in a full feedback stochastic game
(where each player learns about both her counterpart’s
actions and payoffs) with behavior in a partial feedback
game (where each player only learns about her counter-
part’s payoffs). In this partial feedback game, a player
may or may not be able to infer her counterpart’s action
based on the payoffs received by both players, and so the
ability to “pin the loss” on the counterpart may be ob-
scured.

Behavior in a partial feedback game is of considerable
interest today where each decision maker knows only
what has happened to her but is unclear as to the cause.
In such social dilemmas each individual receives a higher

payoff for making a socially defecting choice (e.g. pol-
luting the environment) than for pursuing a socially co-
operative choice no matter what the other individuals in
society do. Furthermore, all individuals are better off if
they all cooperate than if they all defect (Dawes, 1980).

From a methodological perspective, we utilize a
Bayesian hierarchical model to understand more fully the
factors that influence individuals to invest in socially ben-
eficial protective measures over time, and whether there
are significant differences in behavior when payoffs are
deterministic versus stochastic. To the best of our knowl-
edge this is the first time that Bayesian hierarchical meth-
ods have been applied to the analysis of repeated pris-
oner’s dilemma game experiments. (Stockard, O’Brien
& Peters, 2007, applied a hierarchical mixed model to
repeated prisoner’s dilemma games, similar to our ap-
proach, but did not use Bayesian methods.) From a scien-
tific perspective such an analysis enables us to understand
more fully how different treatments in a controlled exper-
imental design affect the distribution of individual-level
parameters, e.g., an individual’s likelihood of retaliating
against a counterpart.

There are several attractive features of utilizing
Bayesian hierarchical models for analyzing repeated pris-
oner’s dilemma game experiments. They include the abil-
ity to perform exact small-sample inference where sam-
ple sizes are likely to be small, to incorporate within-
person dependence with repeated-measures data, and to
understand drivers of heterogeneity by tying in covari-
ates of subjects and the context of their decisions to their
individual-level parameters. These are classic advantages
of Bayesian methods (Gelman, Carlin, Stern & Rubin,
2004) and ones that are particularly salient and relevant
to the analysis of repeated prisoner’s dilemma game ex-
periments.

To foreshadow the results of our detailed analysis, we
summarize the key findings of the paper as follows. In
a two person prisoner’s dilemma game, individuals are
much more likely to be cooperative when payoffs are de-
terministic (the DPD game) than in the SPD games where
the outcomes are stochastic. A key factor behind this dif-
ference is that subjects in the SPD games respond not just
to what their counterparts did, but also to whether or not
they suffered a loss. When a person does not invest but
his or her counterpart does, the individual is less likely
to reciprocate the counterpart’s investment in the next pe-
riod if he or she does not suffer a loss. In comparing the
two aforementioned SPD games, one with full feedback
on the counterpart’s behavior and the other with only par-
tial feedback on the counterpart’s behavior, the overall
amount of cooperation (investment) was similar. How-
ever, we found that the pattern of cooperation was differ-
ent in the two types of games. In particular, when sub-
jects in the partial feedback game could learn their coun-
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terpart’s actions implicitly, they were less likely to recip-
rocate their counterparts’ behavior than in analogous sit-
uations in the full feedback game where subjects learned
their counterparts’ behavior explicitly.

The remainder of the paper proceeds as follows. Sec-
tion 2 provides a brief summary of theoretical and empiri-
cal studies on prisoners’ and social dilemmas with a focus
on recent experiments in a noisy or stochastic environ-
ment. In Section 3 we describe a general formulation for
an interdependent security (IDS) two-player game, show-
ing under what conditions it takes the form of a stochastic
prisoner’s dilemma game. After characterizing our ex-
perimental design for a set of controlled laboratory ex-
periments (Section 4), we then specify a set of between-
treatment hypotheses and test them using regression anal-
ysis (Section 5). In Section 6, we build a Bayesian hi-
erarchical model that enables us to test hypotheses with
respect to within-subject behavior. Section 7 summarizes
the findings, discusses their prescriptive implications and
suggests areas for future research. The Appendix pro-
vides the details of our experiments, making them repro-
ducible by others interested in studying stochastic IDS
games.

2 Background on deterministic and
stochastic prisoner’s dilemma
games

In this section we review the literature on repeated pris-
oner’s dilemma games and explain the contribution of our
experiments to this literature.

2.1 Deterministic multi-period games and
the emergence of cooperation

We first consider deterministic prisoner’s dilemma (DPD)
games. In a single period DPD game, defecting is the
only Nash equilibrium and experiments have shown that
players learn to play this Nash equilibrium in a series
of games in which a player is matched with a different
player in each period (e.g., Cooper et al., 1996). But
in supergames, as we study here, in which a player is
matched with the same player for repeated periods, play-
ers learn to reciprocate cooperative behavior as they gain
experience (Selten & Stoecker, 1986; Andreoni & Miller,
1993; Hauk & Nagel, 2001). Cooperation tends to break
down near the end of the supergame, however, due to so-
called “end-game effects.” In a tournament setting, Axel-
rod and Hamilton (1981) and Axelrod (1984) showed that
the tit-for-tat (TFT) strategy, where a player cooperates
on the first move and thereafter does whatever the other
player did on the previous move, generates a fair amount

of cooperation. Kreps et al. (1982) have addressed the
theoretical issue of whether it can be rational for players
to cooperate in a finitely repeated game. Our research
provides further empirical tests of these theories.

2.2 Stochastic versus deterministic games
A recent paper by Bereby-Meyer and Roth (henceforth
B&R) (2006) compared cooperation in a multi-period
DPD to cooperation in a multi-period stochastic pris-
oner’s dilemma game in which the payoffs were random,
but the expected payoffs were that of the DPD and the
players learned the action that their counterparts took
(i.e., there was full feedback). B&R hypothesized that
because the SPD provides only partial reinforcement for
cooperating when one’s counterpart cooperates, players
would learn to cooperate more slowly (if at all) in the
SPD compared to the DPD. B&R confirmed their hypoth-
esis and showed that players’ decisions in the SPD at time
t are affected by the lottery that determined their random
playoff at time t-1 in addition to their counterpart’s action
at time t-1. Our results provide additional confirming ev-
idence and insights into why players cooperate less in an
SPD game.

2.3 Partial feedback versus full feedback
In the usual DPD and B&R’s SPD games, players know
what actions their counterparts have taken in previous
rounds. But in many real situations, decision makers
are uncertain about their counterparts’ actions. Moti-
vated by this issue, Bendor, Kramer and Stout (1991)
conducted a multi-period prisoner’s dilemma game tour-
nament modeled after Axelrod (1984) but with random
payoffs and where players only learned about their own
payoff. Players received no feedback regarding either
their counterpart’s action or payoff. Bendor et al. found
that the TFT strategy, which outperformed other strate-
gies in Axelrod’s DPD tournament, fared rather poorly
in this SPD tournament with partial feedback. Axelrod
and Dion (1988) note that when there is uncertainty in
outcomes, then cooperation may avoid unnecessary con-
flict but can invite exploitation. Axelrod (1984) and Don-
ninger (1986) also presented results of tournaments of
SPDs with partial feedback, finding that TFT could still
perform well if there is only a small amount of noise in
the payoffs.

Bendor (1987, 1993), Molander (1985), and Mueller
(1987) studied SPDs with partial feedback from a theo-
retical perspective. Bendor (1993) showed that, although
uncertainty about one’s counterpart’s actions hinders co-
operation in some circumstances, there are other situa-
tions in which the uncertainty can enhance cooperation
by allowing reciprocating but untrusting strategic play-
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ers to begin cooperating because of unintended conse-
quences (i.e. a random “cooperative-looking” event oc-
curs). Our research provides further insights in this di-
rection.

2.4 The contributions of our experiments

Our experiments are the first that we know of to com-
pare side-by-side a DPD multi-period game, an SPD with
full feedback (SPD-FF) multi-period game and an SPD
with partial feedback (SPD-PF) multi-period game. The
shared losses in our SPD game may affect players’ psy-
chological reaction to the outcome of the game and the
other player’s action. In our SPD game with partial feed-
back, players learn only their counterpart’s loss and not
their counterpart’s action. For some combinations of a
player’s strategy and the losses of both players, it is possi-
ble to infer what actions one’s counterpart took; for other
combinations, it is impossible. To our knowledge, our
experiments are the first to consider an SPD with par-
tial feedback among live players. Furthermore, for the
SPD-FF and SPD-PF games, we vary the probability of
experiencing a loss so that we can decompose the direct
effects of the existence of stochasticity from the magni-
tude (value of p) of the likelihood of the negative event.

Our first goal is to compare the overall levels of co-
operation (investment in protection) in the information
conditions DPD, SPD-FF and SPD-PF, which we study
in Section 5. Our second goal is to understand the source
of any differences in cooperation between the three infor-
mation conditions in terms of how players respond to dif-
ferent situations, which we study in Section 6. Because
individuals are endowed with a large sum of “money” at
the beginning of each supergame, and because the losses
in each of the rounds are relatively small (despite whether
neither, one or both individuals decide to cooperate), we
assume that the subjects behave as if they are risk neutral
in determining what action to pursue in any period t. In
future research, as we discuss in the concluding section,
we will consider games in which there are small probabil-
ities of loss yet high losses when they occur; risk aversion
may play a more significant role in this context. The next
three sections respectively characterize the nature of IDS
games, our experimental design and hypotheses.

3 IDS games

To motivate our experiments in the context of interdepen-
dent security models we focus on two identical individu-
als, A1 and A2, each maximizing her own expected value
in a one-period model and having to choose whether to
invest in a protective measure. Such an investment by
individual i costs c and reduces the probability of expe-

riencing a direct loss to 0. Let p be the probability of a
direct loss to an individual who does not invest in pro-
tection. If one individual experiences a direct loss, there
is some probability q≤ p that the second individual will
also experience an indirect loss from the first individual
even if the second individual has invested in protection.
That is, q is defined to be the unconditional probability
of an indirect loss to the second individual when the first
does not invest in protection. For example, an apartment
owner who has invested in a sprinkler system to prevent
fire damage may still suffer a loss indirectly from a neigh-
boring unit that does not invest in this form of protection
and experiences a fire. The direct or indirect loss to each
player is L.

Let Y be the assets of each individual before she in-
curs any expenditures for protection or suffers any losses
during the period. Assume that each individual has two
choices: invest in protection, I, or do not invest, NI, and
makes her decision so as to maximize expected value.
The four possible expected outcomes from these deci-
sions are depicted in Table 1.

To illustrate the nature of the expected returns consider
the upper left hand box where both individuals invest in
security (I, I). Then each individual incurs a cost of c and
faces no possible losses so that each of their net returns
is Y-c. If A1 invests and A2 does not, then this outcome
is captured in the upper right hand box (I, NI). Here A1

incurs an investment cost of c but there is still a chance p
that a loss will occur to A2 so that A1’s expected loss from
damage from a negative externality is pqL. The lower left
box (NI, I) has payoffs which are just the mirror image of
these.

Suppose that neither individual invests in protection
(NI, NI) — the lower right hand box in Table 1. Then
each has an expected return of Y- pL -(1-p)pqL. The ex-
pected losses can be characterized in the following man-
ner. The term pL reflects the expected cost of a direct
loss. The second term reflects the expected cost from an
indirect loss originating from the other individual (pqL)
and is multiplied by (1-p) to reflect the assumption that
a loss can only occur once. In other words, the risk of
contamination only matters to an individual when that in-
dividual does not experience a direct loss (“you can only
die once”).

Assuming each individual wants to maximize her ex-
pected returns, the conditions for her to invest in protec-
tion are that c<pL and c<p(1-pq)L. The first constraint is
exactly what one would expect if the individual could not
be contaminated by the other person. Adding a second
individual tightens the constraint by reflecting the pos-
sibility of contamination should this person decide not to
invest in protection. The resulting Nash equilibrium (NE)
for this IDS model can be determined as follows:

• If c<p(1-q)L then (I, I) is a NE
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Table 1: Expected returns associated with investing and not investing in protection.

Individual 2 (A2)
I NI

Individual 1 (A1)
I Y − c, Y − c Y − c− pqL, Y − pL

NI Y − pL, Y − c− pqL Y − [pL+ (1− p)pqL], Y − [pL+ (1− p)pqL]

• If c>pL then (NI, NI) is an NE

• If p(1-pq)L <c< pL then both (I, I) and (NI, NI) are
NE

An IDS game becomes an SPD game when pL + (1-
p)pqL> c >pL so that (NI, NI) is a dominant solution but
both individuals would be better off if they had decided to
invest in protection (I, I). For the experiments described
below, we set q = 1 so that, if one individual suffers a
loss, the other individual is certain to also experience this
same loss. We also choose values of p and L so that the
IDS game takes the form of an SPD game with only one
stable equilibrium.

4 Experimental design
The experiments were carried out in the behavioral lab-
oratory of a large, northeastern university using a web-
based computer program. The pool of subjects recruited
for the experiment consisted primarily of undergraduate
students, though a small percentage of the 520 subjects
were graduate students and students from other area col-
leges.1

The studies were run with three different experimental
conditions (DPD, SPD-FF, SPD-PF). Between three and
seven pairs of subjects participated in specific sessions. A
session consisted of a set of supergames, each consisting
of 10 periods. The computer program randomly paired
the subjects before the start of each supergame.

A person played a 10-period supergame with his/her
anonymous partner; and at the conclusion of the su-
pergame the person was then told that she would be ran-
domly paired again before the start of the next supergame.
The number of supergames in each session ranged from
three to ten depending on how long the session ran and
how rapidly the pairs of players were able to complete

1Of those who provided the information, here are the numbers in
each category: Male: 226; female: 293; Asian or Pacific Islander: 205;
black, not of Hispanic origin: 37; Hispanic: 24; white, not Hispanic:
229; other: 24; 17 yrs old: 6; 18: 84; 19: 101; 20: 92; 21: 71; 22:
38; 23: 20; 24: 9; 25: 7; over 25: 88; Undergraduate student, business:
164; undergraduate, arts & sciences: 158; undergraduate, engineering:
65; undergraduate, nursing: 6; graduate student, arts & sciences: 17;
graduate student, engineering: 10; graduate student, other (med, law,
etc.): 38; other/non-student: 63.

each supergame. More than half the participants partici-
pated in exactly eight supergames in their given session.

Each subject was given an initial surplus of 300
“talers” (described below) at the beginning of every su-
pergame. Before the experiment began, every subject was
told that each supergame consisted of 10 periods. The
number of supergames was not announced at the begin-
ning of the experiment nor was the final supergame an-
nounced when it began. Subjects were also told that, at
the end of the entire session, one supergame and one pair
playing that supergame would be chosen at random, and
each individual from the selected pair would receive the
dollar equivalent of his/her final payoff from that 10 pe-
riod game. The lucky pair received these payments in ad-
dition to the fixed fee of $8-$12 (depending on the length
of the session) that each person received for participating
in the experiment.

The initial surplus and payoffs presented to the sub-
jects during the experiment were in an artificial currency
called “talers,” and these were converted to dollars (10
talers = $1) at the end of the experiment for the randomly
selected lucky pair. The average earnings per person from
the game, for the pairs chosen at random to receive their
final payoff, was $25.55. Screen shots of the instruction
pages for all conditions, as well as decision and payoff
screens, are presented in the Appendix. We next describe
each of these experimental treatment conditions in detail.

Information Condition 1: Deterministic Prisoner’s
Dilemma (DPD) Game. Subjects in the DPD condition
were presented the payoff matrix depicted in the online
appendix (Figure B1). In this condition, the cost of in-
vesting in protection is c=12 talers. A loss of L=10 talers
(in addition to any investment costs) occurs for both play-
ers if exactly one player does not invest. A loss of L=16
talers occurs for both players if both players do not invest.
Both individuals would be better off if they had each in-
vested rather than not invested; however (NI, NI) is the
Nash equilibrium.

Information Condition 2: Stochastic Prisoner’s
Dilemma Game with Full Feedback on Counterpart’s
Decision (SPD-FF). The stochastic conditions repli-
cated the effect of p (the probability of a random nega-

https://doi.org/10.1017/S1930297500001200 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500001200


Judgment and Decision Making, Vol. 4, No. 5, August 2009 Deterministic and stochastic prisoner’s dilemmas 368

Table 2: Scenarios related to Decisions in Period t and
whether or not it is possible to infer the decision of one’s
counterpart in the Stochastic Partial-Feedback Condition.

Scen-
ario

Player 1
decision

Player 2
decision

Color Loss or
No loss?

Player 1
can infer

decision of
Player 2?

1 I I Red No loss Yes
2 I I Orange No loss No
3 I I Green No loss No
4 I NI Red Loss Yes
5 I NI Orange No loss No
6 I NI Green No loss No
7 NI I Red Loss No
8 NI I Orange No loss Yes
9 NI I Green No loss No
10 NI NI Red Loss No
11 NI NI Orange Loss Yes
12 NI NI Green No loss No

tive event each period as described in Table 1) by means
of a random number. In order to understand the impact of
the probability and magnitude of a loss on behavior in the
SPD game, we ran sessions where p=.2, p=.4 and p=.6.
The cost of investing in protection remained at c=12 (as
in condition 1 above) for each of these cases; however
the respective losses were set at L=50, 25 and 19 so that
the expected payoff matrices were essentially equivalent
across the three experimental conditions.2 This was done
so that we could isolate the impact of the change in loss
probability on one’s decision to invest and not have it be
confounded by the magnitude of the expected loss.

The exact payoff matrix presented to subjects in the
SPD-FF condition, sub-treatment p=0.2, is depicted in
the online appendix (Figure B5); the payoff matrix for
sub-treatment p=0.4 is depicted in (Figure B8); and the
payoff matrix for sub-treatment p=0.6 is depicted in (Fig-
ure B9).

At the end of each period t, each player was told
whether his/her counterpart had chosen I or NI (hence

2Note that it is impossible for the expected payoffs to be exactly
equal in all of the risk treatments. The expected value of your loss is pL
in the (NI, I) case and L(1-(1-p)2) in the (NI, NI) case. To match the de-
terministic matrix (where your outcomes of (NI, I) and (NI, NI) are 10
and 16 respectively), it is necessary to find values of p and L such that
both pL=10 and L(1-(1-p)2)=16. For p=.4, we find L=25 holds for both
equations. But for p=.2 and p=.6, no value of L will satisfy both equa-
tions simultaneously. For instance, for p=.2 and L=50, your expected
loss in (NI, NI) is 18 (slightly higher). We are assuming the differences
in expected value are so small that they shouldn’t affect individuals’
behavior.

full feedback). If either (or both) players had chosen NI,
then the computer would draw a random number from
1 to 100 and highlight this number on a table on each
subject’s screen indicating whether or not a loss had oc-
curred.3 Each player was then shown her cumulative bal-
ance in talers and her counterpart’s cumulative balance
for period t and all previous periods in the supergame (see
the example in the online appendix).

Information Condition 3: Stochastic Prisoner’s
Dilemma Game with Partial Feedback on Counter-
part’s Decision (SPD-PF). This game is identical to
the SPD-FF game except that after each period t the ran-
dom number generates an outcome even if both players
invested in protection (i.e. (I,I)). Each player is then told
whether or not she suffered a loss but not what action her
counterpart had taken. Each player is reported only her
own cumulative balance in talers for period t and all the
previous periods. For some outcomes in period t it is pos-
sible for a player to infer what action her counterpart had
taken that period. For example, if Player 1 invests in pro-
tection (I) but still suffers a loss, then she can deduce that
Player 2 must not have invested (NI). In other cases it is
impossible for the other player to infer what her counter-
part has done. For example, if a green (no-loss) random
number is drawn, then there is no loss whether or not ei-
ther player invested in protection. Table 2 summarizes
the twelve combinations of investment-color configura-
tions that could arise each period, and whether Player 1
can infer whether or not her counterpart has invested in
that period (a symmetric table exists for Player 2).

4.1 General overview of the data collected
for all conditions

Table 3 indicates the number of individuals who partici-
pated in experiments in each of the three treatment con-
ditions and as a function of p for the SPD experiments

Each individual played several supergames in the same
treatment condition. (e.g. SPD-FF, p=.4). Thus for each
subject there exists a vector of person-level covariate data
about that subject (age, gender, race, etc.), plus a vector of

3A single three-color probability table was used for both (1) the case
where one player invests and the other doesn’t, and (2) the case where
both players do not invest. In the first case, the red area represents the
probability that a negative event occurs to the player who does not invest
(p); in the second case, the red and orange squares combined represent
the probability that a negative event occurs to either or both players (
p(1-p) + (1-p)p + p2 = 1-(1-p)2). We could not use two different tables
(i.e. one table for the first case which would indicate p in red and 1-p in
green, and another table for the second case which would indicate 1-(1-
p)2 in red and (1-p)2 in green) because then the choice of table would
immediately reveal the counterpart’s decision, a situation which needs
to be avoided in the partial feedback treatment (Information Condition
3).
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Table 3: Number of individuals in each experimental con-
dition.

Condition Number of
Supergames

Number of
Individuals

DPD 84 104
SPD-FF
(all)

140 210

p=0.2 40 54
p=0.4 40 76
p=0.6 60 80
SPD-PF
(all)

140 206

p=0.2 40 52
p=0.4 50 96
p=0.6 50 58

TOTAL 324 520

treatment-level covariate data for the subject (determin-
istic condition vs. stochastic full-feedback vs. stochas-
tic partial-feedback, and p=0.2 vs. p=0.4 vs. p=0.6), plus
a series of 10-period supergame vectors, each of which
contain the data about (a) the decision the subject made
in each period (I or NI), (b) the decision her counterpart
made in each period (I or NI), (c) the color that appeared
on the random-number grid for that round (red, orange,
or green), and (d) the number of points (talers) deducted
from the subject’s account each period. In addition to
these four decision-level pieces of information collected
during the experiment, we also added a binary variable
indicating whether or not the subject was able to infer the
decision of her counterpart; this “infer” indicator can be
calculated based on Table 2.

5 Analyses of between-treatment
hypotheses

We first postulate between treatment hypotheses that can
be tested with marginal analyses and simple regressions.
These include (a) how levels of investment differ between
the DPD, SPD-FF and SPD-PF conditions and (b) how
levels of investment differ as the probability of a negative
random event (p) increases from 0.2 to 0.4 to 0.6.

5.1 Specific between-treatment hypotheses
H1: The probability of investment will be greater
in the DPD game than in either of the SPD games.
Bereby-Meyer and Roth (2006), (B&R) found evidence

Table 4: Percentage of individuals investing in protection
in the three conditions.

Condition (Loss) Total
Decisions

Total I
Decisions

I/Total

DPD (L=10) 8800 5039 0.57
SPD-FF (all) 14800 4626 0.31
P=0.2 (L=50) 4320 1094 0.25
P=0.4 (L=25) 4440 1211 0.27
P=0.6 (L=19) 6040 2321 0.38
SPD-PF (all) 13600 4753 0.35
P=0.2 (L=50) 4140 1092 0.26
P=0.4 (L=25) 5400 1809 0.34
P=0.6 (L=19) 4060 1852 0.46

All P=0.2 (L=50) 8460 2186 0.26
All P=0.4 (L=25) 9840 3020 0.31
All P=0.6 (L=19) 10100 4173 0.41

that there was less cooperation in an SPD-FF game than
in a DPD game. They ascribe this finding to the fact that
stochastic games provide only partial reinforcement for
cooperation. We expect to find similar results.

H2: The probability of investment will be greater in
the SPD-FF game than in the SPD-PF game. We hy-
pothesize that the lack of complete information in the
SPD-PF game and hence the inability to infer what one’s
counterpart has done in many scenarios (see Table 2) will
limit the emergence of stable cooperation between the
two players.

H3: For either SPD-FF or SPD-PF, the probability
of investment will be greater in the p=0.4 treatment
than in the p=0.2 treatment, and will be greater in
the p=0.6 treatment than in the p=0.4 treatment. As
p increases, the likelihood that a non-investing subject
will experience a loss increases. There is considerable
evidence from other studies that experiencing a loss in-
creases the incentive to invest in protection. Kunreuther
(2006) has shown that homeowners are likely to purchase
earthquake or flood insurance after a recent disaster even
when they indicate that the probability has not increased
(flood) or may even be lower in the immediate future
(earthquake). Because subjects who do not invest in the
previous period are more likely to experience a loss as p
increases, this would lead them to invest in the next pe-
riod, other things being equal.
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Figure 1: Mean, .05 and .95 quantiles of investment in
different conditions. The ends of the boxes show the .05
and .95 quantiles of the distribution of subject investment
proportions in a condition, where the investment propor-
tion for a given subject is computed using all supergames
the subject played. The dark line in the middle of the box
shows the mean investment across subjects in the condi-
tion.

5.2 Marginal analyses

Before formally testing the between-treatment hypothe-
ses, we first explore the data at its marginal level. Table
4 describes the proportion of times individuals invested
in protection (cooperated) in the different conditions of
our experiment. Figure 1 displays these mean investment
levels along with the .05 and .95 quantiles of the distri-
bution of subject investment levels in a condition, where
the subject investment level for a given subject is the pro-
portion of times the subject invested across the subject’s
supergames. The investment proportions were highest in
the DPD game, with roughly similar investment propor-
tions in SPD-FF and SPD-PF games.

Nonparametric Wilcoxon tests for differences in the
investment proportions among subjects in the different
conditions show that there is strong evidence for a dif-
ference between the DPD and SPD-FF conditions (p <
0.0001) and between the DPD and SPD-PF conditions
(p < 0.0001), but there is not strong evidence for a dif-
ference between the SPD-FF and SPD-PF conditions (p-
value = 0.23). The analysis described in Section 6 will
demonstrate that, although there is not a large difference
in overall investment between individuals in the SPD-FF
and SPD-PF conditions, there are systematic differences
in investment behavior between subjects in these two con-
ditions when the ability (or not) to infer what one’s coun-
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Figure 2: Estimated probability of investment in su-
pergame 1 (top) and 8 (bottom).

terpart has done in the previous round is taken into ac-
count. A Bayesian statistical model applied to these data
will help uncover these patterns, controlling for individ-
ual differences.

In the SPD conditions, the investment proportion in-
creases with the probability of loss. There is a substan-
tial amount of heterogeneity of investment among differ-
ent individuals within a given condition; for example for
DPD, the 5%-quantile of investment proportion is 0.10
and the 95%-quantile of investment proportion is .95. Al-
though there is substantial heterogeneity among individu-
als within a condition, there are clear patterns of different
mean investment levels across conditions.

We now explore how the probabilities of investment
change as the period increases from 1 to 10. We show
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Table 5: Confidence intervals for contrasts in proportion of investment between.

Contrast Estimated difference 95% CI

(SPD-FF, p=.2) — DPD −0.34 (−0.41,-0.27) R1
(SPD-PF, p=.2) — DPD −0.30 (−0.37,-0.23) R2
(SPD-FF, p=.4) — DPD −0.29 (−0.40,-0.18) R3
(SPD-PF, p=.4) — DPD −0.25 (−0.36,-0.14) R4
(SPD-FF, p=.6) — DPD −0.18 (−0.29,-0.07) R5
(SPD-PF, p=.6) — DPD −0.13 (−0.02,-0.25) R6
(SPD-FF,p=p*) — (SPD-PF,p=p*) for p*=(.2,.4,.6) −0.04 (−0.09,0.00) R7
p=.6 — p=.2 for fixed SPD game 0.16 (0.10,0.22) R8
p=.6 — p=.4 for fixed SPD game 0.12 (0.06,0.17) R9
p=.4 — p=.2 for fixed SPD game 0.05 (−0.01,0.10) R10

these probabilities in Figure 2 for the first and last su-
pergames, 1 and 8.

For the DPD in supergame 1, investment generally de-
clines gradually as the periods increase. For the DPD
in supergame 8, investment declines gradually from peri-
ods 1 to 8 and then declines sharply in periods 9 and 10.
This behavior of declining investment as a function of pe-
riod mirrors the findings of Selten and Stoecker (1986),
Andreoni and Miller (1993), Hauk and Nagel (2001) and
B&R (2006). For the SPDs in supergame 1, investment
declines from period 1 to 3 and then stays relatively flat.
For the SPDs in supergame 8, investment generally de-
clines gradually. This is similar to B&R’s finding that
in an SPD, investment declines gradually as the period
increases. In other words there is less of a drop in in-
vestment from period 1 to period 10 for the SPD than the
DPD game.

5.3 Regression analyses
To more formally test the between treatment hypothe-
ses H1-H4, we fit a regression of the proportion of
times each subject invested as a function of the sub-
ject’s information condition (DPD, SPD-FF or SPD-
PF), the subject’s probability of loss condition if in
one of the stochastic information conditions SPD-FF
or SPD-PF ((p=.2)*stochastic, (p=.4)*stochastic and
(p=.6)*stochastic, where stochastic = 1 if in a stochastic
condition and 0 otherwise) and interactions between the
information condition and the probability of loss condi-
tion.4 The interaction terms in the regression were not
significant (p-value for F-test = 0.63) and hence were

4We recognize that taking logits would yield a dependent variable
more in line with the assumptions of ordinary regression, however, we
wanted to provide exploratory results using the original scale. Model-
based analyses, presented at the end of Section 5 and in Section 6, are
based on logistic regressions, more appropriate to the 0/1 nature of the
data.

dropped from the regression. Table 5 shows confidence
intervals for a variety of interesting contrasts in the pro-
portion of investment between conditions.

The data in Table 5, R1-R6 provide strong evidence
for H1. There was a higher mean investment proportion
in the deterministic information condition than in either
of the two stochastic information conditions for each of
the three probability of loss levels. In some cases there is
substantially more investment in the DPD condition than
in the SPD cases. For example, the estimated difference
is 0.29 between the DPD and (SPD-FF, p=.4) (R3), and
0.25 between the DPD and (SPD-PF, p=.4), (R4).

The data do not support H2, as there was slightly less
investment in the full feedback SPD than the partial feed-
back SPD. The estimated difference is 0.04 [95% confi-
dence interval: (0.00, 0.09)] and the sign of the difference
between full feedback and partial feedback SPD is the op-
posite of what we hypothesized in H2, albeit the effect is
quite small.

We now consider hypothesis H3, that subjects’ mean
investment level increases as the probability of loss in-
creases. Comparing the probability of loss conditions
among subjects playing a given SPD game, there was
substantially more investment when the probability of
loss was .6 than when it was .4 or .2; the estimated dif-
ference in mean investment proportion is 0.16 for p=.6
compared to p=.2 (R8) and 0.12 for p=.6 compared to
p=.4 (R9), and both differences are statistically signifi-
cant (p<0.05). There was slightly more investment for
p=.4 compared to p=.2 — the estimated difference is .05,
but the difference is not statistically significant. Thus,
there is evidence for part of H3 that the subjects’ mean
investment level increases as the probability of loss in-
creases from p=.2 or p=.4 to p=.6, but there is no strong
evidence that the mean investment level increases as p in-
creases from .2 to .4.
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6 Bayesian analyses of within-
treatment hypotheses

In order to gain further insight into the reasons for the
differences in investment across the treatment conditions,
we formulated a set of within treatment hypotheses that
could be tested using Bayesian analyses.

6.1 Specific hypotheses

H4: There will be substantial variability between sub-
jects in their tendency to invest, holding other fac-
tors fixed. This hypothesis characterizes how subjects
within the same experimental treatment differ among
each other in their aggregate investment levels, holding
other factors fixed. It is supported by the findings of An-
dreoni and Miller (1993) who showed that some individ-
uals were naturally cooperative even if they knew their
counterpart was non-cooperative while others were non-
cooperative even if they were aware their counterpart was
cooperative.

The next set of hypotheses examine within-subject
comparisons on how individuals change their investment
decision in period t as a function of their decision to in-
vest or not invest in period t-1, their counterpart’s deci-
sion to invest or not invest in period t-1 (when this can be
learned) and the interaction between investment decisions
in period t-1 and whether or not an individual experienced
a loss in period t-1.

H5: Subjects will tend to maintain the same invest-
ment behavior over time, holding their counterparts’
decisions fixed. There is a large body of empirical and
experimental evidence suggesting that individuals main-
tain the status quo even though they may be able to im-
prove their expected profits by modifying their behavior
(Samuelson & Zeckhauser, 1988; Kahneman, Knetsch &
Thaler 1991).

H6: A subject will be more likely to invest in period
t if she learns that her counterpart invested in period
t-1. In spite of people’s tendency to persist in their ac-
tions (as stated in H5), there is evidence that people can
learn to cooperate in repeated prisoner’s dilemma games
(Axelrod, 1984). A theoretical model as to how cooper-
ation can emerge in repeated prisoner’s dilemma games
was presented by Kreps et al. (1982). Such cooperation
is expected to emerge here.

H7: If a subject experienced a loss in period t-1, she
will be more likely to invest period t than if she had
not experienced a loss in period t-1, holding all other

conditions fixed. We can further divide H7 into four
(interaction) sub-hypotheses.

H7A: In the SPD-FF, when a subject invested and her
counterpart did not invest in period t-1.

H7B: In the SPD-FF, when a subject did not invest and
her counterpart invested in period t-1.

H7C: In the SPD-FF, when a subject did not invest
and her counterpart also did not invest in period t-1.

H7D: In the SPD-PF, when a subject did not invest in
period t-1 and could not infer her counterpart’s in-
vestment decision.

The reasoning behind hypothesis H7 was discussed in
the context of H3. There is considerable evidence from
other studies that experiencing a loss increases the incen-
tive to invest in protection. Note that the situation de-
scribed in H7D is the only situation in the SPD-PF when
a subject’s response to a loss holding all other conditions
fixed can be studied (see Table 2). Specifically, Scenarios
7 and 10 in Table 2 are the two cases where a subject has
not invested in the previous period, experiences a loss,
and cannot infer what her counterpart has done. These
two scenarios can be compared with Scenarios 9 and 12
where the individual has not invested, has not suffered a
loss, and has no idea what her counterpart has done.

H8: A subject who experienced a loss and did not in-
vest in period t-1 is more likely to invest in period t
if she knows that her counterpart invested in period
t-1. We hypothesize that a subject experiencing a loss
in period t-1 is likely to feel more regret if she knows she
is fully responsible for the loss because she did not invest
and her counterpart did. Note that H8 can be tested only
in the SPD-FF.

6.2 A Bayesian hierarchical model for indi-
vidual investment decisions

To examine these hypotheses we build a Bayesian hierar-
chical model for how subjects make investment decisions
as a function of their previous experience and the treat-
ment condition they are in. We recognize that a more gen-
eral modeling framework would look at the entire path
of investment decisions an individual participant made
within a supergame. There is some empirical basis for fo-
cusing on just the previous round’s decision. In examin-
ing experiments on coordination games, Crawford (1995)
and Crawford and Broseta (1998) found that, in making
a decision in period t, there was a much higher weight
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placed on the decision in period t than in periods t − j;
j ≥ 2. Bostian, Holt and Smith (2007) obtained a sim-
ilar result for laboratory experiments on the newsvendor
problem. It is important to note that our Bayesian mod-
eling framework is completely general and could easily
incorporate decisions over a more complex set of past
variables.

The following notation characterizes a model of indi-
vidual (investment) choice:

Let i = 1, . . . , I index subjects participating in the ex-
periment (I = 936);
t = 1, . . . , T index periods in a supergame (T = 10);
r = 1, . . . , R index the round of the supergame played

in one participant session (e.g., r = 1, . . . , 8) with differ-
ing opponents;
g = the information condition associated with the

game [1 = deterministic prisoner’s dilemma (DPD), 2 =
stochastic prisoner’s dilemma with full feedback (SPD-
FF), 3 = stochastic prisoner’s dilemma with partial feed-
back (SPD-PF)]; and
z = 1, . . . , Z index the probability of loss level (z = 1,

p = 0.2); (z = 2, p = 0.4); (z = 3, p = 0.6).
The outcomes of the experiments are characterized as

follows:
Yitrgz = 1 if participant i in period t of supergame r in

information condition g and in probability of loss level z
chooses to invest in protection; 0 otherwise.

Litrgz = 1 if participant i in period t of supergame r in
information condition g and in probability of loss level z
experiences a stochastic loss; 0 otherwise.

Mitrgz = 1 if participant i in period t of supergame r in
information condition g and in probability of loss level z
could have learned his or her counterpart’s choice and 0
otherwise.

Yitrgz
c= 1 if the counterpart c of participant i in period

t of supergame r in information condition g and in prob-
ability of loss level z chooses to invest and 0 otherwise.

6.3 Analyzing the prisoner’s dilemma
games using the Bayesian model

We model the probability of investing in protection in pe-
riod t as a function of a set of independent variables that
includes: (i) one’s loss experience in period t-1, (ii) one’s
own behavior in period t-1, (iii) whether one can learn
whether one’s counterpart has invested in period t-1, (iv)
the decision made by one’s counterpart c in period t-1 if
it can be learned, all varying by the different information
conditions g, supergames r, and probability of loss con-
ditions z. More formally we are interested in estimating
the parameters of the following general model:

Probability(Yitrgz = 1) =
f(Lit−1rgz,Mit−1rgz, Yit−1rgz, Y

c
it−1rgz) (1)

We can examine the relative importance of the vari-
ables specified in (1) using the data from our experiments
and “running that data” through the lens of a Bayesian
hierarchical model. The coefficients associated with each
of the variables are modeled as differing from subject-to-
subject (reflecting heterogeneity, e.g., some subjects are
more or less influenced by their counterpart’s choices),
and are assumed to be drawn from a multivariate normal
distribution with general covariance matrix. By allowing
for a covariance matrix among the individual-level pa-
rameters5, we can further assess, whether an individual
who is influenced more by his or her counterpart’s non-
investment decision is also more likely to invest following
a loss.

We also model the expected value of a subject’s co-
efficients as a function of both person-level covariates
such as age, gender, race, and undergraduate major and
treatment-level covariates such as the probability of a
loss, z, and whether the subject is playing a DPD, SPD-
FF or SPD-PF game, g. In this manner, we can answer
the question of “why” certain individuals respond in the
way they do (based on individual-level characteristics)
and maybe, more importantly, as a function of the treat-
ments (probability and information condition, and their
interaction) that are imposed upon them.

Before laying out the model, we note that an advantage
of building a Bayesian hierarchical model for our data is
that we can control for confounding variables in assessing
the importance of certain factors on investment decisions.
As an example, a marginal analysis might show that sub-
jects are more likely to invest after having invested in
the previous round. However, suppose that investment
propensity declines as the period in the game increases.
Then, the effect of period is confounded with the effect
of previous investment decisions. Our Bayesian hierar-
chical model enables us to assess the effect of previous
investment decisions, holding the period fixed.

In particular, we model the log odds of the proba-
bility of a participant investing (i.e., logit(Pitrgz) =
ln(Pitrgz/(1 − Pitrgz))) as a function of fixed and ran-
dom effects as shown in Table 6. The random effects
(βi1, βi2, βi3, βi4, βi5, βi6, βi7) are modeled as coming
from a multivariate normal distribution with a mean that
depends linearly on the following observed covariates:

(1) person-level covariates: age, gender, race, dummy
variable for undergraduate, dummy variable for business
major and interaction between business major and under-
graduate,

(2) treatment-level covariates: information condi-
tion (dummy variables for deterministic condition and
stochastic partial feedback condition), probability of a

5Since the model is Bayesian, we put a prior on the covariance ma-
trix of the multivariate normal distribution; the prior is reasonably non-
informative.
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Table 6: Explanation of model.

Term Explanation Random/Fixed
logit(P itrgz) =

βi1+ Participant-level propensity Random

δt+ Varying propensity by period Fixed

κtg+ Interactions between period and information condition Fixed

γr+ Varying propensity by supergame Fixed

κrg+ Interactions between supergame and information condition Fixed

βi2 ∗ Yit−1,rgz+ Effect of subject’s own decision in previous period Random

βi3 ∗Mi,t−1,rgz ∗
Y c

i,t−1,rgz+
Effect of counterpart investing in previous period when subject is able to
learn this

Random

βi4 ∗Mi,t−1,rgz ∗
Yi,t−1,rgz ∗ Y c

i,t−1,rgz+
Interaction between subject’s decision and counterpart’s decision when
subject is able to learn counterpart’s decision

Random

βi5 ∗ Li,t−1,rgz∗
(1− Yi,t−1,rgz)+

Effect of experiencing a loss when subject did not invest in previous
round

Random

βi6 ∗ Li,t−1,rgz ∗
Yi,t−1,rgz+

Effect of experiencing a loss when subject did not invest in previous
round

Random

βi7 ∗ Li,t−1,rgz∗
(1− Yi,t−1,rgz) ∗
Y c

i,t−1,rgz ∗Mi,t−1,rgz

Interaction between experiencing a loss, subject’s investment decision
and counterpart’s investment decision for when subject is able to learn
counterpart’s decision

Random

ψ ∗ βi1 ∗ Period dummy Additional effect of participant level propensity in period 1 to account
for there being no Yi,t−1,rgz in period 1

Fixed

loss level (dummy variables for p=0.2 and p=0.6) and
interactions between the information condition and the
probability of a loss level (dummy variables for the com-
binations of deterministic condition and p=.2, determin-
istic condition and p=.6, stochastic partial feedback con-
dition and p=.2 and stochastic partial feedback condition
and p=.6).

In other words,

E(βij |i, g, z) =
π0j + π1jagei + π2jgenderi + π3jracei +
π4jI(i is undergraduate) +
π5jI(i is business major) +
π6jI(i is undergraduate and business major) +
π7jI(g=Deterministic(Det)) +
π8jI(g=Stochastic Partial Feedback (SPF)) +
π9jI(z = 0.2) + π10,jI(z = 0.6) +
π11,jI(g=Det,z = 0.2) +

π12,jI(g=SPF, z = 0.2) +
π13,jI(g=Det, z = 0.6) +
π14,jI(g=SPF, z = 0.6)

where I(x) = 1 if condition x is true, 0 otherwise. We note,
as previously mentioned, the “scientific importance” of
equation (2) as it allows us to answer ‘whys’, i.e. what
is the impact of the treatment on people’s investment
propensities?

We put the following relatively non-informative prior
distributions on the parameters. For the period and
supergame round effects, we used independent stan-
dard normal priors. For the covariance matrix of
(βi1, βi2, βi3, βi4, βi5, βi6, βi7), we used an inverse-
Wishart prior with 7 degrees of freedom and scale ma-
trix 10 ∗ I7, where I7 denotes the 7x7 identity matrix.
For the coefficients on the covariates that affect the mean
of (βi1, βi2, βi3, βi4, βi5, βi6, βi7), we used independent
standard normals.

We used the WinBUGS software (http://www.mrc-
bsu.cam.ac.uk/bugs/) to obtain draws from the posterior
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Table 7: Median (across respondent) posterior odds of
investing given ones counterpart invested in the previous
period.

Information
Condition

Posterior Median
of βi3

95% Credibility
Interval for βi3

DPD 1.37 (0.99, 1.82)
SPD-FF 0.87 (0.58, 1.12)
SPD-PF 0.03 (−0.45, 0.43)

distribution using Markov chain Monte Carlo (MCMC).
We ran three chains of 25,000 draws each, taking the first
20,000 draws of each chain as burn-in and the last 5,000
draws of each chain as draws from the posterior distri-
bution. We assessed convergence of the MCMC chains
using Gelman-Rubin’s (1992) potential scale reduction
statistic. The code and further computational details are
available from the authors upon request.

6.4 Experimental findings
We now use the Bayesian hierarchical model to test H4
through H8. For each of the hypotheses, we indicate the
coefficient in the logit model that is used to test whether
or not the experimental data provide support for it, hold-
ing all the other factors fixed. It is through the direct map-
ping of parameters to hypotheses that inference under the
Bayesian model is made straightforward.

6.4.1 Testing H4

There is strong support that some individuals are much
more likely (i.e., over 5 times) to invest than others, hold-
ing other factors fixed. In our model, the parameter βi1

measures subject i’s propensity to invest. H4 says that
there is substantial variability in βi1. The posterior mean
of the standard deviation of βi1 is 0.79 with a 95% credi-
bility interval of (0.67, 0.92). This means that if we con-
sider two subjects, subject 1 with βi1 one standard devia-
tion above the mean and subject 2 with βi1 one standard
deviation below the mean, then when all previous invest-
ments, losses and learning are held fixed, the odds ratio
for subject 1 to invest compared to subject 2 to invest is
estimated to be exp(2*0.79)=4.85, a large effect.

6.4.2 Testing H5

There is strong evidence that there is persistence in in-
vestment behavior. The parameter βi2 measures persis-
tence since it reflects the effect on investment in period
t of having invested in period t-1, holding other fac-
tors fixed. We have thus hypothesized that the mean

of βi2 is positive. The posterior median (across sub-
jects) for the mean of βi2 across the information con-
ditions is 2.05 with a 95% credibility interval of (1.83,
2.25). This means that, for the average subject, the
odds ratio for the subject to invest if he or she invested
in the previous round compared to if he or she did
not invest, holding all other factors fixed, is estimated
to be exp(2.05)=7.78 with a 95% credibility interval of
(exp(1.83), exp(2.25))=(6.23,9.49).

6.4.3 Testing H6

The parameter βi3 reflects how an individual’s likelihood
of investing in period t is impacted by learning that her
counterpart invested in period t-1, holding other factors
fixed. H6 says that the mean of βi3 is positive. Table 7
shows the posterior median for the mean of βi3 (across
subjects) in the three information conditions.

There is strong evidence that for the DPD and the SPD-
FF, the average subject is more likely to invest if his or
her counterpart invested in the previous round than if his
or her counterpart did not. For the DPD, the median of
the odds ratios among different subjects for the subject
to invest if his or her counterpart invested in the previ-
ous period compared to if his or her counterpart did not
is estimated to be exp(1.37)=3.94; for the SPD-FF, the
median odds ratio is estimated to be somewhat smaller,
exp(0.87)=2.39, but still significant. For the SPD-PF,
there is not strong evidence that a subject is more likely
to invest if his or her counterpart invested in the previous
round than if his or her counterpart did not; the median
odds ratio is estimated to be only exp(0.03)=1.03. The
differences in the impact of learning about one’s coun-
terpart investing between SPD-FF and SPD-PF might be
explained by the implicit learning in SPD-PF not being as
effective as the explicit learning in DPD and SPD-FF. The
explicit learning of the SPD-FF compared to the implicit
learning of the SPD-PF will make subjects more likely to
reciprocate if their counterparts cooperate. As shown in
Table 2 a subject can only learn that his or her counterpart
has invested in an SPD-PF game when the subject has not
experienced a loss (Scenarios 1 and 8).

6.4.4 Testing the four versions of H7

For the most part, we found support that experiencing a
loss makes subjects more likely to invest in the future,
holding all other conditions fixed. The only situation in
which we did not find strong support for H7 was when a
subject invested but his or her counterpart did not invest
(H7A).

H7A: There is only moderate evidence that the mean
of βi6 is positive for subjects in SPD-FF. The posterior
median for the mean of βi6 for subjects in SPD-FF is 0.28
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with a 95% credibility interval of (-0.02, 0.58).

H7B: There is strong evidence that the mean of βi5 +
βi7 is positive for subjects in SPD-FF. The posterior me-
dian for the mean of βi5 + βi7 for subjects in SPD-FF is
0.51 with a 95% credibility interval of (0.28,0.85). The
estimated median odds ratio for the effect of a loss in the
situation of H8B is exp(0.51)=1.67, a 67% increase.

H7C: There is strong evidence that the mean of βi5

is positive for subjects in SPD-FF. The posterior median
for the mean of βi5 is 0.39 with a 95% credibility interval
of (0.16, 0.59). The estimated median odds ratio for the
effect of a loss in the situation of H8C is exp(0.39)=1.48,
a 48% increase.

H7D: There is strong evidence that the mean of βi5 is
positive for subjects in SPD-PF. The posterior median for
the mean of βi5 for subjects in SPD-PF is 0.33 with a 95%
credibility interval of (0.12, 0.54). The estimated median
odds ratio for the effect of a loss in the situation of H8D
is exp(0.33)=1.39, a 39% increase. Although we cannot
determine why an individual chose to invest in period t af-
ter not investing and suffering a loss in t–1, one plausible
reason would be that the person wanted to avoid the regret
next period that she experienced at having not taking an
action that could have prevented the loss in the previous
period. This has been demonstrated in some recent neu-
roimaging studies of choice behavior between two gam-
bles (Coricelli et al., 2005).

6.4.5 Testing H8

We did not find strong evidence that the effect of a loss
was greater when the subject’s failure to invest was the
sole cause of the loss as compared to when both players
share some blame for the loss. This hypothesis can be
tested only for subjects in SPD-FF. The odds ratio for a
subject to invest in the current period if the subject did
not invest in the previous period, experienced a loss and
the counterpart invested compared to the same conditions
but the subject did not experience a loss is exp(βi5+βi7).
The odds ratio for a subject in SPD-FF to invest in the cur-
rent period if the subject did not invest in the previous pe-
riod, experienced a loss and the counterpart did not invest
compared to the same conditions but the subject did not
experience a loss is exp(βi5). H8 is hypothesizing that
the former odds ratio is larger than the latter odds ratio
on average. Thus, H8 is hypothesizing that the mean of
βi7 is greater than zero for subjects in SPD-FF. The pos-
terior median for the mean of βi7 for subjects in SPD-FF
is 0.13 with a 95% credibility interval of (−0.17, 0.49).
Thus, although the point estimate supports H8, there is
not strong evidence for H8.

6.4.6 Effects of person-level covariates

We now describe for each of the random subject coeffi-
cients βi1, . . . , βi7 which of the six person level covari-
ates (age, gender, race, undergraduate, business major
and the interaction between undergraduate and business
major), if any, had statistically significant effects on the
mean of the random coefficient at a 95% confidence level.

1. βi1 (propensity to invest): None of the person level
covariates had a significant effect.

2. βi2 (persistence of investment): Age had a positive
effect on persistence. The mean of βi2 was estimated to
increase by 0.03 for each year of age with a 95% credibil-
ity interval for this effect of (0.01, 0.06). Men were more
persistent than women on average. The mean of βi2 was
estimated to be 0.35 higher for men than women with a
95% credibility interval of (0.03, 0.66).

3. βi3 (increase in investment when counterpart in-
vests): Whites increase their investment when the coun-
terpart invests less (are less cooperative) than non-whites
on average. The mean of βi3 was estimated to be 0.46
lower for whites than non-whites with a 95% credibility
interval of (0.18, 0.75).

4. βi4 (interaction between subject’s and counterpart’s
decision to invest): Whites have more of an interaction
between subject’s and counterpart’s decision to invest
than minorities on average. The mean of βi4 was esti-
mated to be 0.44 higher for whites than minorities with a
95% credibility interval of (0.11, 0.79).

5. βi5 (effect of loss when subject does not invest): Un-
dergrads respond less to losses than graduate students and
non-students on average. The mean of βi5 was estimated
to be 0.34 lower for undergrads with a 95% credibility
interval of (0.09,0.59).

6. βi6 (effect of loss when subject does invest): None
of the person level covariates had a significant effect.

7. βi7 (additional effect of loss when subject does not
invest and counterpart invests): None of the person level
covariates had a significant effect.

While these covariate effects are quite suggestive, we
believe that further study with a broader population is
necessary, and also presents a possibility for public policy
implications in the future.

7 Interpretation of key findings
This paper provides evidence that, in a two person pris-
oner’s dilemma game, individuals are much more likely
to be cooperative when payoffs are deterministic (the
DPD game) than when there is some chance that one will
not suffer a loss, even if one does not invest in protection
(the SPD games).

There are several reasons why individuals may decide
to undertake cooperative action in some period t of a DPD
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or SPD game even though non-cooperative behavior with
its inferior payoffs is the Nash equilibrium. An individ-
ual might decide to choose actions that she would most
like the other person to choose so that both parties gain
in the process. This commitment theory implies that in a
two person DPD or SPD game individual A will choose to
cooperate under the assumption that individual B will do
the same; the expected payoffs to A and B of this action
is higher than if both persons did not cooperate (Laffont,
1975; Harsanyi, 1980). This may be the principal rea-
son why there was more cooperative behavior in the DPD
game than in the SPD games and why there is more co-
operation in an SPD game with full feedback than in one
with partial feedback. (See H1 and H4). Commitment
theories are consistent with voluntary behavior in social
dilemmas such as water conservation (Laffont, 1975), tax
evasion (Baldry, 1987) and voting (Struthers & Young,
1989).

An alternative view of such behavior is that an individ-
ual will be altruistic by being concerned with her coun-
terpart’s welfare and trying to enhance it. In a two person
game, individual A might be altruistic so that a higher
return obtained by individual B is treated positively as
an attribute in A’s utility function (Becker, 1974; An-
dreoni, 1989, 1990). Altruistic behavior has been used
by economists to explain intergenerational bequests and
social security (Coate, 1995) as well helping others em-
ployees in a workplace setting (Rotemberg, 1994).

A more self-interested view of behavior would be an-
ticipated by reciprocity whereby individual A decides to
cooperate in period t-1 with the expectation that B will
then cooperate in period t. Models of reciprocity have
been used to explain helping in the work place (Frey,
1993) and labor markets (Akerlof, 1982) as well as vol-
untary contributions to public goods (Sugden, 1982). The
above theory of reciprocity might also imply retaliation,
so that if individual A learned that B did not cooperate
in period t then A would also decide not to cooperate in
period t+1. One reason that there may have been more
cooperation in a DPD world than in an SPD environment
(H1) is that individuals knew that if they followed such a
tit-for-tat (TFT) strategy they could hurt the other oppo-
nent. In an SPD game if one learned that an opponent had
not cooperated, a TFT strategy may not punish the other
player since there is some chance of not suffering a loss
even if both players do not cooperate (i.e. do not invest
in protection).

8 Suggestions for Future Research

An IDS setting with two equilibria opens up the possi-
bility of tipping behavior in the spirit of Schelling (1978)
and others. Future experiments could study when tipping

is likely to occur if all players in the group are identical
or when there is heterogeneity among the players. In ei-
ther situation one could force one or more of the players
to make a decision as to whether or not to invest, as Hess,
Holt and Smith (2007) did this in their sequential model
where the probability of suffering an indirect loss is un-
certain (i.e. q<1). One could then determine whether tip-
ping occurs because other players follow suit. A related
line of experiments would examine individual behavior in
either a simultaneous or sequential game when the prob-
ability of a loss is very low (i.e. p, q < .1) and the loss L
is very high. One could also vary the size of the loss de-
pending on whether the cause is due to one’s own failure
to invest or from the counterpart’s decision not to protect
herself.

At a prescriptive level one could also design experi-
ments that induced one or more players to invest in pro-
tection by imposing positive economic incentives (e.g.
subsidies) to encourage this actions or negative sanctions
(e.g. fines) for failure to do so. Given the much larger
proportion of pairs of individuals who failed to invest in
protection when outcomes were uncertain than when they
were deterministic, it may be necessary to intervene in
these ways to improve both individual and social welfare
in the many IDS-like situations that we are facing in to-
day’s interdependent world.

This research represents only one data point in the
large “hypercube” of possible IDS games. We expect
very soon to complete a web-based IDS tool that will al-
low researchers from other universities and research in-
stitutions to run IDS games with differing values of p,
q, c, L, vary the number of players, examine context ef-
fects as well as undertake other analyses. We would also
add process survey questions to understand why individ-
uals behaved as they did. This promises to provide addi-
tional clarity as to individuals’ decision processes when
there are uncertain outcomes and use these findings to
suggest ways of inducing cooperation among agents, thus
improving both individual and social welfare.
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Appendix. Instructions to subjects

1. Instructions Presented to Subjects in the Deterministic Prisoner’s Dilemma Condition

[Opening Instruction Page:]

This is a game in which the outcomes of your decisions depend not only on what you do, but also on what your
counterpart does.

You will be paired with another person in the room whose identity is not known to you. In each of 10 rounds, you
and your counterpart will independently make a decision about whether or not to invest funds to avoid a financial loss
from a negative event.

• If both of you choose to INVEST then it will cost each of you 12 talers, but neither of you will experience a financial
loss from a negative event.

• If one of you INVESTS and the other does NOT INVEST, it will cost the one who INVESTS 12 Talers. In addition,
both people will suffer an equal financial loss of 10 Talers from a negative event.

• If both of you choose to NOT INVEST, then each of you suffers an equal financial loss of 16 Talers from a negative
event.

Below is the summary of the possible outcomes:

Your Counterpart
INVEST NOT INVEST

You
INVEST • You lose 12. • Your counterpart loses 12. • You lose 22. • Your counterpart loses 10.
NOT INVEST • You lose 10. • Your counterpart loses 22. • You lose 16. • Your counterpart loses 16.

You and your counterpart are each given 300 Talers (10 talers = $1) before you start making decisions. You will not
know the decision your counterpart has made until the end of the round. Before the start of the next round you will
be given feedback on what each of you did and the status of your assets.

One pair will be chosen at random to receive the dollar equivalent of the talers they have at the end of the game (10
talers = $1).

[Each subject sees the following screen before making his/her decision for the first round:]
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[After each person in the pair has made a decision, subjects see their decisions and payoffs highlighted in a table:]

[In subsequent rounds each subject sees a history report of past decisions in the supergame. The subject sees this on
the decision screen:]

2a. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition (for p=0.2):6

[Opening Instruction Page:]
6For the L=50, p=0.2 condition it is possible for a subject to more than deplete her entire surplus after 10 rounds. In this case the subject’s final

cumulative balance would be set to zero. This situation never occurred in any of the games played
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This is a game in which the outcomes of your decisions depend not only on what you do, but also on what your
counterpart does.

You will be paired with another person in the room whose identity is not known to you. In each of 10 rounds, you
and your counterpart will independently make a decision about whether or not to invest funds to avoid a financial loss
from a random negative event.

Financial losses will be measured in a fictitious currency called “Talers.”

• If both you and your counterpart choose to INVEST, then the investment cost to each of you is 12 talers.

• If you INVEST and your counterpart does NOT INVEST, then there is a 20% chance that your counterpart will lose
50 talers and you will lose 62 talers; and there is an 80% chance that your counterpart will lose 0 talers and you will
lose 12 talers.

• If you do NOT INVEST and your counterpart INVESTS, then there is a 20% chance that your counterpart will lose
62 talers and you will lose 50 talers; and there is an 80% chance that your counterpart will lose 12 talers and you will
lose 0 talers.

• If both you and your counterpart choose to NOT INVEST, then each of you has an 36% chance of losing 50 talers,
and a 64% chance of losing 0 talers.

Probabilistic outcomes will be determined by the following Random Number Generator, where it is equally likely that
any number between 1 and 100 is chosen.

For Example: If the Random Number generated is 6, then 6 will flash as follows:

Below is a summary of the possible outcomes:

Your Counterpart
INVEST NOT INVEST

You

INVEST
• You lose 12 talers.
• Your counterpart loses 12 talers.

• You definitely lose 12 talers and have a 20%
chance of losing an additional 50 talers.
• Your counterpart has a 20% chance of losing 50
talers and an 80% chance of losing 0 talers.

NOT
INVEST

• You have a 20% chance of losing 50 talers
and an 80% chance of losing 0 talers.
• Your counterpart definitely loses 12 talers
and has a 20% chance of losing an additional
50 talers.

• You have a 36% chance of losing 50 talers and
a 64% chance of losing 0 talers.
• Your counterpart has a 36% chance of losing 50
talers and a 64% chance of losing 0 talers.

You and your counterpart are each given 300 Talers before you start making decisions. You will not know the decision
your counterpart has made until the end of each round. Before the start of the next round you will be given feedback
on what each of you did, whether or not a negative event occurred and the status of your assets.

One pair will be chosen at random to receive the dollar equivalent of the talers they have at the end of the game (10
talers = $1).
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[The payoff screen (what each pair sees after making their decisions for a round) looks like this:]

[The “Results of previous rounds” history table on the decision screen looks like this:]

Round Negative
Event

Your
Decision

Your
Outcome

Your
Ending
Balance

Counterpart’s
Decision

Counterpart’s
Outcome

Counterpart’s
Ending
Balance

1 No Not Invest -0 300 Not Invest -0 300
2 Yes Invest -62 238 Not Invest -50 250
3 No Not Invest -0 238 Invest -12 238
4 No Not Invest -0 238 Not Invest -0 238

2b. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition (for p=0.4):

[Opening Instruction Page is analogous to the p=0.2 condition, but with the following changes to the color-grid and
the payoff matrix:]
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Your Counterpart
INVEST NOT INVEST

You

INVEST
• You lose 12 talers.
• Your counterpart loses 12 talers.

• You definitely lose 12 talers and have a 40%
chance of losing an additional 25 talers.
• Your counterpart has a 40% chance of losing 25
talers and a 60% chance of losing 0 talers.

NOT
INVEST

• You have a 40% chance of losing 25 talers
and a 60% chance of losing 0 talers.
• Your counterpart definitely loses 12 talers
and has a 40% chance of losing an additional
25 talers.

• You have a 64% chance of losing 25 talers and
a 36% chance of losing 0 talers.
• Your counterpart has a 64% chance of losing 25
talers and a 36% chance of losing 0 talers.

[Other screens are formatted analogously to those shown above for p=0.2.]

2c. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition (for p=0.6):

[Opening Instruction Page is analogous to the p=0.2 and p=0.4 conditions, but with the following changes to the
color-grid and the payoff matrix:]

Your Counterpart
INVEST NOT INVEST

You

INVEST
• You lose 12 talers.
• Your counterpart loses 12 talers.

• You definitely lose 12 talers and have a 60%
chance of losing an additional 19 talers.
• Your counterpart has a 60% chance of losing 19
talers and a 40% chance of losing 0 talers.

NOT
INVEST

• You have a 60% chance of losing 12 talers
and a 40% chance of losing 0 talers.
• Your counterpart definitely loses 12 talers
and has a 60% chance of losing an additional
19 talers.

• You have an 84% chance of losing 19 talers and
a 16% chance of losing 0 talers.
• Your counterpart has an 84% chance of losing
19 talers and a 16% chance of losing 0 talers.

[Other screens are formatted analogously to those shown above for p=0.2.]

3. Instructions Presented to Subjects in the Stochastic Partial-Feedback Condition:

[The Stochastic Partial-Feedback condition differs from the Full-Feedback as follows:]

[1. Opening Instructions in the Partial-Feedback condition are the same as in the Full-Feedback condition except that
the penultimate paragraph reads as follows:]

You and your counterpart are each given 300 Talers before you start making decisions. You will not know the decision
your counterpart has made. Before the start of the next round you will be given feedback on what you did and the
status of your assets.

[2. The payoff screen does not indicate counterpart’s decision or counterpart’s talers lost.]

[3. The history table (“Results of previous rounds”) does not show columns relating to counterpart information.]
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