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The Co-symmedian System of Tetrahedra inscribed
in a Sphere.

By Dr W. L. MARE.

(Read and Received 18th June 1919.)

This paper deals with a system of tetrahedra in a sphere
corresponding to the co-symmedian system of triangles in a circle.
Such a system of tetrahedra, so far as the writer knows, has not
been hitherto discussed. The condition that a tetrahedron may
have a symmedian point is given in Wolstenholme's " Problems "
(1878).

1. When has a tetrahedron a symmedian point, i.e. when are
the lines joining the vertices to the poles of the opposite faces
with respect to the circumsphere concurrent 1

Let ABCD be a tetrahedron, a the pole of BCD, c the pole of
ABB. Suppose that Cc and Aa meet in K.

The points a and c lie on the tangent planes at B and D, and
therefore ac is the intersection of these tangent planes. But ac
and AC are coplanar, therefore the tangent planes at B and D
meet on AC.

But the tangent plane at D meets AC where the tangent at D
with respect to the circle ACD meets AC at X (say), and the
tangent plane at B meets AC where the tangent at B with respect
to the circle ABC meets AC also at X.

XA _ AI?__ AI?
XC ~ PC* ~ BC*

therefore AD .BC = AB. DC.
Hence, that there may be a symmedian point, the tetrahedron

must be equianharmonic (v. Harkness and Morley).

2. The symmedian point of an equianharmonic tetrahedron is
the point of intersection of the lines joining the vertices to the
symmedian points of the opposite faces.

The line from A to the pole of BD (circle ABU) is a symmedian
line of ABD. But the pole of BD lies on ca, therefore the
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symmedian line of ABB drawn from A lies in the plane of Aca,
i.e. AGK. The symmedian line of ABD from B lies in the plane
of BCK.

Therefore, if k3 be the symmedian point of ABB, it will lie on
the intersection of ACK and BCK, i.e. C, K, k3 are collinear.

Further, since klt k^, etc., lie within their triangles, K will lie
within the tetrahedron.

3. An equianharmonic tetrahedron has two Isodynamic points.
Let H be an isodynamic point, then from the foregoing the

following relations are possible :—
HA.BG^ HB.CA = HG. AB
HA.BG^ etc.; HB.AB = etc.; HB.CB = etc.,

i.e. H is the vertex of four harmonic tetrahedra, the opposite
faces being the faces of the original tetrahedron. H lies on the
circle which is the intersection of the three Apollonian spheres of
BBC and on the circle which is the intersection of the three
Apollonian spheres of ABC. These two circles lie on the
Apollonian sphere of BC and cut in two real—as will be proved
presently—points, Hx and H2.

These points are common to the six Apollonian spheres.

4. The drcumcentre is coUinear with the two isodynamic points.
The tangents from 0, the circumcentre, to the Apollonian

spheres are all equal to the radius of the circumsphere, and since
these six spheres cut in H1 and Ha the three points 0, Hu H2 must
be collinear.

5. The isodynamic points, the circumcentre, and the symmedian
point are coUinear and form, a harmonic ratio.

Consider the Apollonian sphere through A and G. The centre
of this sphere will lie on BB, viz., L. Since A (LBk3B) is
harmonic, k3 lies on the polar plane of L with respect to the
circumsphere. But LA and LC are tangents to the sphere, and
therefore AC lies on the polar plane.

Hence ACk3, i.e. ACK, is the polar plane of L with respect to
the circumsphere. Since the circum- and Apollonian spheres cut
orthogonally, ACK is the plane of intersection of the two spheres.
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Let AK meet the circumsphere again in A', etc., then
A K. A 'K = BK. B'K=etc.

But A, A', etc., are points on the Apollonian spheres, hence K
must lie on the line of intersection.

Since ACK is the polar plane of 0 with respect to the Apol-
lonian sphere whose centre is L, OHJiH^ is harmonic. As K is
within the circumsphere, it must also lie within the Apollonian
sphere, and hence H1 and Ht are real points.

6. Since the points A'BCD', as above defined, have the same
circum- and Apollonian spheres, A'B'C'J)' will have the same
symmedian points.

7. The faces of ABCD and A'B'G'D' touch an ellipsoid whose
section perpendicular to OK is circular.

If BC = a, CA = b, AB = c,

DA DB ^ DCand D
a b c '

abc
and if m = —7— it can be readily shewn that the ellipsoid is:—

x2 y2 z2 w2 yz (ax
a* b c m* 6 c3 ma

where x stands for the more usual —, y for —, p being the
Pi Pt

perpendicular on a face from a vertex.
oc

The plane of section with the sphere is — + . . . = 0, which is

the polar plane of K, and hence the ellipsoid has a circular section
perpendicular to OK.

For further convenience, let x, which stands for —, now stand
Pi

for -£-•
a Pi

8. An infinite system of tetrahedra uiith a common symmedian
point.

The equation of the sphere is now 2yz = 0, of the ellipsoid
2 or2 - 2 yz = 0. The tangent cone from D to the ellipsoid is

x2 + f + z2 - 2yz - 2zx - 2xV = 0.
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Where this tangent cone meets the plane of ABC, we have an
ellipse, and round this ellipse we have the triangle ABC, which in
turn is inscribed in a circle. We can thus have a poristic series
of triangles. Take one of these triangles and call it PQR. We
have now a new tetrahedron, DPQR.

Let QR be lx + my + nz = 0
RP be mx + ny + Iz = 0
PQ be nx + ly + mz = 0

with the condition 2 ran = 0.

The pole of DQR is given by

x — §(m + n-2l)
y = *. (n +1 - 2m)
z = \(l + m-2n)
(o = ^(l+m + n)

and P is given by x = I, y = m,z = n, o> = 0.

As the addition of the corresponding coordinates of the pole of
VQR and of P give the same result, viz., \(l + m + n), the point
',: ven by (1, 1, 1, 1), which is K, lies on the line joining P to the
pole of DQR.

Thus K is the symmedian point of DPQR.

9. A further extension.

In the last paragraph we fixed D and moved round the tangent
cone in the plane of ABC— getting a new tetrahedron, DPQR.

Start from this and fix P and change QRD into LMN (say).
Proceeding in this manner, we finally get away from ABCD and
reach an infinite series of tetrahedra with the same four points,
0, K, H,, and ZT3.

10. The constant of the system.

Consider DABC and DPQR. ABC and PQR are co-Brocardal.

Therefore j = ^ - , where Oj = QR.
abc Ofifa

The areas of ABC and PQR are in the ratio of abc to afi^. The
volumes of DABC and DPQR are also as abc to or^c,, i.e.

V abc
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But if ad = k and a^ = Aj

—_A2

(See Salmon's, 4th ed., p. 37).

abc

Consider next

This expression is equal to

abc

Further, it is symmetrical with respect to the triangles

BQR, BPQ, PQR,

A2 1&

Since - + — + ... = 3
abc Aro abc

~bc~
Proceeding in the manner of the last paragraph, we find that

this expression, viz.,

abc

is constant for any tetrahedron in the infinite system.

11. Interpretation of Constant.

The absolute values of the coordinates of K are

2, etc.

If these values be substituted for the variables in the l.h.s. of the
equation of sphere (v. Salmon) the result, viz.,

D CbOC

is equal to the rectangle AK. A'K.

Mr R. F. DAVIS, M.A., of London, has kindly contributed the
following note, which shows that if a regular tetrahedron be
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inverted, the origin of inversion is an isodynamic point of the
new tetrahedron :—

1. Let <x./3y8 be a regular tetrahedron having six equal edges
/Jy, ya., a./?, 8a, iji, Sy, and four equal equilateral faces, a./3y,
S/3y, Sy<x, &x/3.

Take any point H whatsoever within the tetrahedron. Join
HCL, 11/3, Hy, HB, and produce them respectively to A, B, G, D
in such a manner that

HA.Ha. = HB. Hfi^HC. Hy = HD.H8 = JP ,
so that ABCD is the figure inverse to a./3yS when H is the origin
and K% the constant of inversion.

Then BC : /3y = HB : Hy (for BfiyC are concyclic)
= HB.HC:Hy.HC = HB. HC/K2

and BC = (jSy/.ff'2) HB. HC
C^ = ( )HC.HA,

and so on for all six pairs of corresponding edges.
Notice BC .DA = { f HA. HB. HC. HD

= CA . DB = AB . DC, by symmetry.

2. Conversely, it may be assumed that a tetrahedron ABCD
cannot be inverted into a regular tetrahedron a/3yS unless

BC.DA=CA.DB=AB.DC
or ad = be = cf,

where BC = a, CA=b, AB = e, DA = d, BD = e, DC =/.

In this case the tetrahedron ABCD is said to be harmonic;
and if a suitable centre H of inversion be taken, we have four
harmonic tetrahedra within a harmonic tetrahedron, namely,

HABC with HA.BC = HB.CA = HC.AB
HDBC „ HD .BC = HB.CA = HC.DB
HDCA „ HD .CA = HC.AD^HA.DC
HDAB „ HD.AB=HA.BD = HB.DA.

If we put bc/d = ca / e = ab jf- fi, all these relations are
included in the one formula

which also shows that the position of H is determined as either
of the two common points of intersection of four spheres cor-
responding to the Apollonian circles.
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