A NOTE ON PROXIMINALITY IN $C(S \times T)$ WITH THE L_1 -NORM

by W. A. LIGHT

(Received 4th February 1985)

1. Introduction

Let S and T be compact Hausdorff spaces and G and H finite-dimensional subspaces of C(S) and C(T) respectively. Suppose μ and ν are regular Borel measures on S and T respectively such that $\mu(S) = \nu(T) = 1$. The product measure $\mu \times \nu$ will be denoted by σ . Set $U = G \otimes C(T)$, $V = C(S) \otimes H$ and W = U + V. If G and H possess continuous proximity maps, then U and V are proximinal subspaces of $C(S \times T)$ when this linear space is equipped with the L_1 -norm, [4, Lemma 2]. That is, every $z \in C(S \times T)$ possesses at least one best approximation from U and from V. A metric selection $A_U: C(S \times T) \to U$ is a mapping which associates each $z \in C(S \times T)$ with one of its best approximations in U. The metric selection A_V is similarly defined. In [4] the behaviour of the Diliberto–Straus algorithm was investigated. For a given $z \in C(S \times T)$ this algorithm generates a sequence $\{z_n\}$ by taking $z_1 = z$ and setting

$$z_{2n} = z_{2n-1} - A_U z_{2n-1}, \quad n = 1, 2, 3, \dots$$

 $z_{2n+1} = z_{2n} - A_V z_{2n}, \quad n = 1, 2, 3, \dots$

Under suitable hypothesis on G, H, A_U, A_V and z it was established in [4] that $||z_n|| \rightarrow \operatorname{dist}(z, W)$. An essential ingredient of the proof was an application of the Ascoli Theorem to the sequence $\{z_n\}$. It is clear from the construction of this sequence that it is bounded in the L_1 -norm. However, the Ascoli Theorem requires boundedness in the supremum norm. This is not an obvious result and was only established implicitly by the discussion in [4]. In this note we establish a result which is sufficient to guarantee this boundedness explicitly. It also has applications to questions about proximinality in $C(S \times T)$ with the L_1 -norm. These results parallel those of Respess and Cheney [6] in the same linear space with the usual supremum norm.

2. Notation and the basic result

We shall retain much of the notation of [4]. In particular unadorned norm symbols will always denote the L_1 -norm. Select bi-orthonormal bases $\{g_i, \phi_i\}_1^n$ for $\{h_i, \psi_i\}_1^m$ for G and G respectively, where each is equipped with the L_1 -norm. Assume that there are (supremum norm) continuous proximity maps $A_G: C(S) \to G$ and $A_H: C(T) \to H$. Then these can be extended by Lemma 2 of [4] to proximity maps $A_U: C(S \times T) \to U$ and $A_V: C(S \times T) \to V$ by taking $(A_Uz)(s,t) = (A_Gz')(s)$ and $(A_Vz)(s,t) = (A_Hz_s)(t)$. Here z', z_s are

the sections of z defined by z'(s) = z(s,t) and $z_s(t) = z(s,t)$. We shall need to assume that $A_U(z+u) = A_Uz + u$ for all $z \in C(S \times T)$ and $u \in U$ with a similar assumption for A_V . These requirements are met if A_G and A_H satisfy the corresponding properties (i.e. for A_G , for example, we have $A_G(x+g) = A_Gx + g$ for all $x \in C(S)$ and $g \in G$).

Definition 2.1.

- (i) A sequence $\{z_k\}$ in $C(S \times T)$ is said to be admissible if there is some $z \in C(S \times T)$ such that $z z_k \in W$ for all $k \in \mathbb{N}$, and $||z_k|| \le ||z||$ for all k.
- (ii) Let $\{z_k\}$ be a sequence in $C(S \times T)$. Then its derived sequence $\{z_k'\}$ is defined by $z_k' = (I A_V)(I A_U)z_k$, $k \in \mathbb{N}$.

Lemma 2.2. There exists a constant c such that each element $w \in W$ has a representation w = u + v, with $u \in G \otimes C(T)$, $v \in C(S) \otimes H$ and $||u|| + ||v|| \le c||w||$.

Proof. Take $w \in W$. Then w is in the larger space $G \otimes L_1(T) + L_1(S) \otimes H$ which is closed in $L_1(S \times T)$, [3, Lemma 4.2]. Hence there is a constant c such that each element $w \in W$ can be written w = u + v where $u \in G \otimes L_1(T)$, $v \in L_1(S) \otimes H$ and $||u|| + ||v|| \le c ||w||$. Now we claim $u \in U$, $v \in V$. It will suffice to show $u \in G \otimes C(T)$. Write $u = \sum g_i y_i$ and $v = \sum x_i h_i$ with $x_i \in L_1(S)$ and $y_i \in L_1(T)$. Then

$$||x_i|| = \int |x_i(s)| ds = \int |\psi_i(v_s)| ds \le \int ||v_s|| ds = ||v||.$$

Also,

$$\begin{aligned} ||v^{t} - v^{\tau}|| &= ||\sum x_{i} [h_{i}(t) - h_{i}(\tau)]|| \\ &\leq \sum ||x_{i}|| ||h_{i}(t) - h_{i}(\tau)| \leq ||v|| \sum |h_{i}(t) - h_{i}(\tau)|. \end{aligned}$$

Now

$$|y_{i}(t) - y_{i}(\tau)| = |\phi_{i}(u^{t} - u^{\tau})|$$

$$= |\phi_{i}(w^{t} - v^{t} - w + v^{\tau})|$$

$$\leq ||w^{t} - w^{\tau}|| + ||v^{t} - v^{\tau}||$$

$$\leq ||w^{t} - w^{\tau}||_{\infty} + ||v|| \sum |h_{i}(t) - h_{i}(\tau)|.$$

This inequality demonstrates the continuity of y_i and hence of u.

Lemma 2.3. Suppose $z_1 \in C(S \times T)$ and $z_1 = z - u - v$ for some $u \in U$, $v \in V$, where $||u|| + ||v|| \le c||z||$. If $A_V z_1 = 0$ then $||v||_{\infty} \le cM ||z||_{\infty}$ while if $A_U z_1 = 0$ then $||u||_{\infty} \le cM ||z||_{\infty}$. Here $M = 4 \sum ||h_i||_{\infty} \sum ||g_i||_{\infty}$.

Proof. We consider the case $A_U z_1 = 0$, the other case being similar. Set $u = \sum g_i y_i$ and $v = \sum x_i h_i$. Then

$$||x_i|| = \int |x_i(s)| ds = \int |\psi_i(v_s)| ds \le \int ||v_s|| ds = ||v|| \le c ||z|| \le c ||z||_{\infty}.$$

Also

$$||v^t|| = ||\sum h_i(t)x_i|| \le \sum |h_i(t)|||x_i|| \le c||z||_{\infty} \sum ||h_i||_{\infty}.$$

Now $0 = A_U z_1 = A_U (z - v) - u$, and so $u = A_U (z - v)$ and $u^t = A_G (z^t - v^t)$. Thus

$$|y_i(t)| = |\phi_i(u^t)| \le ||u^t|| \le 2||z^t - v^t|| \le 2||z^t|| + 2||v^t||$$

$$\le 2||z||_{\infty} + 2c||z||_{\infty} \sum ||h_i||_{\infty}.$$

This gives

$$||u||_{\infty} \leq \sum ||g_i||_{\infty} ||y_i||_{\infty} \leq (2||z||_{\infty} + 2c||z||_{\infty} \sum ||h_i||_{\infty}) \sum ||g_i||_{\infty}$$

$$\leq 4c||z||_{\infty} \sum ||h_i||_{\infty} \sum ||g_i||_{\infty} = cM||z||_{\infty}.$$

Theorem 2.4. Let $\{z_k\}$ be an admissible sequence in $C(S \times T)$ and let $\{z'_k\}$ be its derived sequence. Then there is a constant M such that $\|z'_k\|_{\infty} \leq M$ for all $k \in \mathbb{N}$.

Proof. Since $\{z_k\}$ is admissible we may write $z-z_k=w$ where $w \in W$ and by 2.2 we may set w=u+v where

$$||u|| + ||v|| \le c ||w|| \le c ||z - z_k|| \le 2c ||z|| \le 2c ||z||_{\infty}.$$

Now set $u^* = A_U(z - v)$ and $v^* = A_V(z - u^*)$. Then

$$z_k - A_U z_k = z_k - A_U (z - u - v) = z - u - v + u - A_U (z - v) = z - u^* - v.$$

Also

$$z'_k = z - u^* - v - A_V(z - u^* - v) = z - u^* - v + v - A_V(z - u^*) = z - u^* - v^*.$$

Now

$$||u^*|| \le 2||z-v|| \le 2(1+c)||z|| \le 4c||z||$$

and,

$$||v^*|| \le 2||z-u^*|| \le 2(1+4c)||z||,$$

so that,

$$||u^*|| + ||v^*|| \le 14c||z||$$
.

Since $A_V z_k' = 0$ we can apply 2.3 to get $||v^*||_{\infty} \le 14cM ||z||_{\infty}$. Similarly

$$||u^*|| + ||u|| \le 6c||z||$$

and $A_{\nu}(z-u^*-v)=0$. Thus 2.3 again gives $||u^*||_{\infty} \le 6cM||z||_{\infty}$. Finally

$$||z'_k||_{\infty} \le ||z||_{\infty} + ||u^*||_{\infty} + ||v^*||_{\infty} \le 21cM||z||_{\infty}.$$

If we now return to the algorithm we see that

$$z_{2n+1} = z_{2n} - A_{\nu} z_{2n} = z_{2n-1} - A_{\nu} z_{2n-1} - A_{\nu} (z_{2n-1} - A_{\nu} z_{2n-1}) = (I - A_{\nu})(I - A_{\nu}) z_{2n-1}.$$

This shows that the odd iterates in the algorithm are members of the sequence derived from the odd iterates (except, of course for z_1). Similarly the even iterates are derived from the previous ones by

$$z_{2n+2} = (1 - A_U)(I - A_V)z_{2n}$$

Thus 2.4 and its symmetric counterpart give:

Corollary 2.5. The iterates in the L_1 -version of the Diliberto-Straus algorithm in $C(S \times T)$ are bounded in the supremum norm.

We now consider the question of proximinality and obtain the analogue of the "Sitting Duck Theorem" of Respess and Cheney [6].

3. Proximinality in $C(S \times T)$ with the L_1 -norm

We shall continue with the notation established in Section 2 with two additional hypotheses. Firstly, we shall assume that G has a Lipschitz continuous proximity map. Thus we shall assume that there is a constant λ such that $||A_Gx_1-A_Gx_2||_{\infty} \le \lambda ||x_1-x_2||_{\infty}$ for all x_1, x_2 in C(S). Secondly, we shall assume H possesses a continuous proximity map with respect to the supremum norm. This has the force of making the mapping from U to V defined by $u \to A_V(z-u)$ continuous for fixed z in $C(S \times T)$; see Lemma 3 of [4] for details.

Lemma 3.1. Let $\{z_k\}$ be an admissible sequence in $C(S \times T)$. Let $\{z'_k\}$ be its derived sequence and let $\{z''_k\}$ be the derived sequence of $\{z'_k\}$. Then $\{z''_k\}$ is a bounded, equicontinuous sequence in $C(S \times T)$.

Proof. The sequence $\{z'_k\}$ is certainly admissible and so 2.4 shows that both $\{z'_k\}$ and

 $\{z_k''\}$ are bounded. From the proof of 2.4 we may write

$$z'_k = z - u_k - v_k$$
 where $||u_k||_{\infty} \le M$ and $||v_k||_{\infty} \le M$
 $z''_k = z - a_k - b_k$ where $||a_k||_{\infty} \le M, ||b_k||_{\infty} \le M$

and

$$a_k = A_U(z - v_k), b_k = A_V(z - a_k).$$

Now,

$$\begin{aligned} |a_{k}(s_{1}, t_{1}) - a_{k}(s, t)| &\leq |a_{k}(s_{1}, t_{1}) - a_{k}(s_{1}, t)| + |a_{k}(s_{1}, t) - a_{k}(s, t)| \\ &\leq ||a_{k}^{t_{1}} - a_{k}^{t}||_{\infty} + ||(a_{k})_{s_{1}} - (a_{k})_{s}||_{\infty} \\ &= ||A_{G}(z - v_{k})^{t_{1}} - A_{G}(z - v_{k})^{t}||_{\infty} + ||(a_{k})_{s_{1}} - (a_{k})_{s}||_{\infty} \\ &\leq \lambda ||z^{t_{1}} - z^{t}||_{\infty} + \lambda ||v_{k}^{t_{1}} - v_{k}^{t}||_{\infty} + ||(a_{k})_{s_{1}} - (a_{k})_{s}||_{\infty}. \end{aligned}$$

Now set $v_k = \sum x_i h_i$ and $a_k = \sum g_i y_i$. Then

$$|x_i(s)| = |\psi_i(v_s)| \le ||v_s|| \le ||v||_{\infty} \le M$$

and so

$$||v_k^{t_1} - v_k^t||_{\infty} \leq \sum ||x_i||_{\infty} |h_i(t_1) - h_i(t)| \leq M \sum |h_i(t_1) - h_i(t)|.$$

In a similar manner,

$$||(a_k)_{s_1} - (a_k)_s||_{\infty} \le \sum ||y_i||_{\infty} |g_i(s_1) - g_i(s)| \le M \sum |g_i(s_1) - g_i(s)|.$$

Hence

$$|a_k(s_1,t_1)-a_k(s,t)| \le \lambda ||z^{t_1}-z^{t_1}||_{\infty} + \lambda M(\sum |h_i(t_1)-h_i(t)| + \sum |g_i(s_1)-g_i(s)|).$$

Now the sections $\{z^t:t\in T\}$ form an equicontinuous family in C(S) and so given ε we may force the three terms on the right to be each at most $\varepsilon/3$ by taking (s_1,t_1) sufficiently close to (s,t). Hence the $\{a_k\}$ form an equicontinuous family in $C(S\times T)$. Thus $\{z-a_k\}$ is also an equicontinuous family and so, since A_{ν} is a continuous mapping, $\{b_k\}$ forms an equicontinuous family. Finally, these combine to give $\{z_k''\}$ equicontinuous.

One of the results from [6] which is always needed in this type of problem is that the subspace W is closed. This only rests on the finite-dimensionality of G and H.

Theorem 3.2. Let G be a finite dimensional subspace of C(S) having a Lipschitz continuous proximity map. Let H be a finite dimensional subspace of C(T) having a continuous proximity map. Then $C(S) \otimes H + G \otimes C(T)$ is proximinal in $C(S \times T)$ when the L_1 -norm is employed.

Proof. Fix $z \in C(S \times T)$ and pick a minimising sequence $\{w_k\}$ in $W = C(S) \otimes H + G \otimes C(T)$ such that $||z - w_k|| \downarrow \operatorname{dist}(z, W)$. Set $z_k = z - w_k$. Then $\{z_k\}$ is an admissible sequence. Let its derived sequence be $\{z_k'\}$ and the derived sequence of $\{z_k'\}$ be $\{z_k''\}$. Then we have $||z_k''|| \le ||z_k|| \le ||z_k||$, and so $\{z_k''\}$ is also a minimising sequence. It is also bounded and equicontinuous and so, by the Ascoli theorem, has a cluster point. This cluster point is in W, since W is closed, and is a best approximation to z from W.

It is easy to provide examples of the above result. If G is a one-dimensional subspace generated by a function g which is bounded away from zero then the proximity map A_G is Lipschitz continuous. If H is a Chebyshev subspace of C(T) with respect to the L_1 -norm (i.e. each element g possesses a unique best g possesses a unique best g possesses a unique set g possesses a unique best g possesses a

Corollary 3.3. Let G be a one-dimensional subspace of C(S) generated by a function which is bounded away from zero. Let H be a finite dimensional Chebyshev subspace of C(T) with respect to the L_1 -norm. Then $C(S) \otimes H + G \otimes C(T)$ is proximinal in $C(S \times T)$ under the L_1 -norm.

An example of subspaces G and H which satisfy the conditions of 3.3 are π_0 and π_n respectively, where π_n denotes the subspace of C(S) or C(T) consisting of polynomials of degree at most n. That A_G is Lipschitz may be found in [5] while the Chebyshev property of H is an old result of Jackson [2].

Corollary 3.4. The subspace $C(S) \otimes \pi_n + \pi_0 \otimes C(T)$ is proximinal in $C(S \times T)$ under the L_1 -norm.

This result includes a result from [5] which stated that C(S) + C(T), which is of course shorthand for $C(S) \otimes \pi_0 + \pi_0 \otimes C(T)$, is proximinal in $C(S \times T)$ when the L_1 -norm is used.

REFERENCES

- 1. R. B. Holmes, A Course on Optimisation and Best Approximation (Springer Verlag, 1972).
- 2. D. Jackson, A note on a class of polynomials of approximation, *Trans. Amer. Math. Soc.* 22 (1921), 320-326.
- 3. W. A. Light and E. W. Cheney, Some best approximation theorems in Tensor-Product Spaces, *Math. Proc. Camb. Philos. Soc.* 89 (1981), 385-390.
- **4.** W. A. Light and S. M. Holland, The L_1 -version of the Diliberto-Straus algorithm in $C(T \times S)$, *Proc. Edinburgh Math. Soc.* **27** (1984), 31-45.

- 5. W. A. Light, J. H. McCabe, G. M. Phillips and E. W. Cheney, The approximation of bivariate functions by sums of univariate ones using the L_1 -metric, *Proc. Edinburgh Math. Soc.* 25 (1982), 173–181.
- 6. J. R. Respess, Jr. and E. W. Cheney, Best approximation problems in Tensor-Product Spaces, *Pacific J. Math.* 102 (1982), 437-446.

DEPARTMENT OF MATHEMATICS University of Lancaster Lancaster, LA1 4YL