A NOTE ON PROXIMINALITY IN $C(S \times T)$ WITH THE L_{1}-NORM

by W. A. LIGHT
(Received 4th February 1985)

1. Introduction

Let S and T be compact Hausdorff spaces and G and H finite-dimensional subspaces of $C(S)$ and $C(T)$ respectively. Suppose μ and v are regular Borel measures on S and T respectively such that $\mu(S)=v(T)=1$. The product measure $\mu \times v$ will be denoted by σ. Set $U=G \otimes C(T), \quad V=C(S) \otimes H$ and $W=U+V$. If G and H possess continuous proximity maps, then U and V are proximinal subspaces of $C(S \times T)$ when this linear space is equipped with the L_{1}-norm, [4, Lemma 2]. That is, every $z \in C(S \times T)$ possesses at least one best approximation from U and from V. A metric selection $A_{U}: C(S \times T) \rightarrow U$ is a mapping which associates each $z \in C(S \times T)$ with one of its best approximations in U. The metric selection A_{V} is similarly defined. In [4] the behaviour of the DilibertoStraus algorithm was investigated. For a given $z \in C(S \times T)$ this algorithm generates a sequence $\left\{z_{n}\right\}$ by taking $z_{1}=z$ and setting

$$
\begin{aligned}
& z_{2 n}=z_{2 n-1}-A_{U} z_{2 n-1} \\
& z_{2 n+1}=z_{2 n}-A_{V} z_{2 n}
\end{aligned} \quad n=1,2,3, \ldots
$$

Under suitable hypothesis on G, H, A_{U}, A_{V} and z it was established in [4] that $\left\|z_{n}\right\| \rightarrow \operatorname{dist}(z, W)$. An essential ingredient of the proof was an application of the Ascoli Theorem to the sequence $\left\{z_{n}\right\}$. It is clear from the construction of this sequence that it is bounded in the L_{1}-norm. However, the Ascoli Theorem requires boundedness in the supremum norm. This is not an obvious result and was only established implicitly by the discussion in [4]. In this note we establish a result which is sufficient to guarantee this boundedness explicitly. It also has applications to questions about proximinality in $C(S \times T)$ with the L_{1}-norm. These results parallel those of Respess and Cheney [6] in the same linear space with the usual supremum norm.

2. Notation and the basic result

We shall retain much of the notation of [4]. In particular unadorned norm symbols will always denote the L_{1}-norm. Select bi-orthonormal bases $\left\{g_{i}, \phi_{i}\right\}_{1}^{n}$ for $\left\{h_{i}, \psi_{i}\right\}_{1}^{m}$ for G and H respectively, where each is equipped with the L_{1}-norm. Assume that there are (supremum norm) continuous proximity maps $A_{G}: C(S) \rightarrow G$ and $A_{H}: C(T) \rightarrow H$. Then these can be extended by Lemma 2 of [4] to proximity maps $A_{U}: C(S \times T) \rightarrow U$ and $A_{V}: C(S \times T) \rightarrow V$ by taking $\left(A_{U} z\right)(s, t)=\left(A_{G} z^{l}\right)(s)$ and $\left(A_{V} z\right)(s, t)=\left(A_{H} z_{s}\right)(t)$. Here z^{t}, z_{s} are
the sections of z defined by $z^{t}(s)=z(s, t)$ and $z_{s}(t)=z(s, t)$. We shall need to assume that $A_{U}(z+u)=A_{U^{\prime}} z+u$ for all $z \in C(S \times T)$ and $u \in U$ with a similar assumption for A_{V}. These requirements are met if A_{G} and A_{H} satisfy the corresponding properties (i.e. for A_{G}, for example, we have $A_{G}(x+g)=A_{G} x+g$ for all $x \in C(S)$ and $\left.g \in G\right)$.

Definition 2.1.

(i) A sequence $\left\{z_{k}\right\}$ in $C(S \times T)$ is said to be admissible if there is some $z \in C(S \times T)$ such that $z-z_{k} \in W$ for all $k \in \mathbb{N}$, and $\left\|z_{k}\right\| \leqq\|z\|$ for all k.
(ii) Let $\left\{z_{k}\right\}$ be a sequence in $C(S \times T)$. Then its derived sequence $\left\{z_{k}^{\prime}\right\}$ is defined by $z_{k}^{\prime}=\left(I-A_{V}\right)\left(I-A_{U}\right) z_{k}, k \in \mathbb{N}$.

Lemma 2.2. There exists a constant c such that each element $w \in W$ has a representation $w=u+v$, with $u \in G \otimes C(T), v \in C(S) \otimes H$ and $\|u\|+\|v\| \leqq c\|w\|$.

Proof. Take $w \in W$. Then w is in the larger space $G \otimes L_{1}(T)+L_{1}(S) \otimes H$ which is closed in $L_{1}(S \times T)$, [3, Lemma 4.2]. Hence there is a constant c such that each element $w \in W$ can be written $w=u+v$ where $u \in G \otimes L_{1}(T), v \in L_{1}(S) \otimes H$ and $\|u\|+\|v\| \leqq c\|w\|$. Now we claim $u \in U, v \in V$. It will suffice to show $u \in G \otimes C(T)$. Write $u=\sum g_{i} y_{i}$ and $v=\sum x_{i} h_{i}$ with $x_{i} \in L_{1}(S)$ and $y_{i} \in L_{1}(T)$. Then

$$
\left\|x_{i}\right\|=\int\left|x_{i}(s)\right| d s=\int\left|\psi_{i}\left(v_{s}\right)\right| d s \leqq \int\left\|v_{s}\right\| d s=\|v\| .
$$

Also,

$$
\begin{aligned}
\left\|v^{t}-v^{\tau}\right\|= & \left\|\sum x_{i}\left[h_{i}(t)-h_{i}(\tau)\right]\right\| \\
& \leqq \sum\left\|x_{i}\right\|\left|h_{i}(t)-h_{i}(\tau)\right| \leqq\|v\| \sum\left|h_{i}(t)-h_{i}(\tau)\right| .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|y_{i}(t)-y_{i}(\tau)\right|= & \left|\phi_{i}\left(u^{t}-u^{\tau}\right)\right| \\
& =\left|\phi_{i}\left(w^{t}-v^{t}-w+v^{\tau}\right)\right| \\
& \leqq\left\|w^{t}-w^{\tau}\right\|+\left\|v^{t}-v^{\tau}\right\| \\
& \leqq\left\|w^{t}-w^{\tau}\right\|_{\infty}+\|v\| \sum\left|h_{i}(t)-h_{i}(\tau)\right| .
\end{aligned}
$$

This inequality demonstrates the continuity of y_{i} and hence of u.
Lemma 2.3. Suppose $z_{1} \in C(S \times T)$ and $z_{1}=z-u-v$ for some $u \in U, v \in V$, where $\|u\|+$ $\|v\| \leqq c\|z\|$. If $A_{V} z_{1}=0$ then $\|v\|_{\infty} \leqq c M\|z\|_{\infty}$ while if $A_{U} z_{1}=0$ then $\|u\|_{\infty} \leqq c M\|z\|_{\infty}$. Here $M=4 \sum\left\|h_{i}\right\|_{\infty} \sum\left\|g_{i}\right\|_{\infty}$.

Proof. We consider the case $A_{U} z_{1}=0$, the other case being similar. Set $u=\sum g_{i} y_{i}$ and $v=\sum x_{i} h_{i}$. Then

$$
\left\|x_{i}\right\|=\int\left|x_{i}(s)\right| d s=\int\left|\psi_{i}\left(v_{s}\right)\right| d s \leqq \int\left\|v_{s}\right\| d s=\|v\| \leqq c\|z\| \leqq c\left\|_{z}\right\|_{\infty}
$$

Also

$$
\left\|v^{t}\right\|=\left\|\sum h_{i}(t) x_{i}\right\| \leqq \sum\left|h_{i}(t)\right|\left\|x_{i}\right\| \leqq c\|z\|_{\infty} \sum\left\|h_{i}\right\|_{\infty} .
$$

Now $0=A_{U} z_{1}=A_{U}(z-v)-u$, and so $u=A_{U}(z-v)$ and $u^{t}=A_{G}\left(z^{t}-v^{t}\right)$. Thus

$$
\begin{aligned}
\left|y_{i}(t)\right| & =\left|\phi_{i}\left(u^{t}\right)\right| \leqq\left\|u^{t}\right\| \leqq 2\left\|z^{t}-v^{t}\right\| \leqq 2\left\|z^{t}\right\|+2\left\|v^{t}\right\| \\
& \leqq 2\|z\|_{\infty}+2 c\|z\|_{\infty} \sum\left\|h_{i}\right\|_{\infty} .
\end{aligned}
$$

This gives

$$
\begin{aligned}
\|u\|_{\infty} & \leqq \sum\left\|g_{i}\right\|_{\infty}\left\|y_{i}\right\|_{\infty} \leqq\left(2\|z\|_{\infty}+2 c\|z\|_{\infty} \sum\left\|h_{i}\right\|_{\infty}\right) \sum\left\|g_{i}\right\|_{\infty} \\
& \leqq 4 c\|z\|_{\infty} \sum\left\|h_{i}\right\|_{\infty} \sum\left\|g_{i}\right\|_{\infty}=c M\|z\|_{\infty} .
\end{aligned}
$$

Theorem 2.4. Let $\left\{z_{k}\right\}$ be an admissible sequence in $C(S \times T)$ and let $\left\{z_{k}^{\prime}\right\}$ be its derived sequence. Then there is a constant M such that $\left\|z_{k}^{\prime}\right\|_{\infty} \leqq M$ for all $k \in \mathbb{N}$.

Proof. Since $\left\{z_{k}\right\}$ is admissible we may write $z-z_{k}=w$ where $w \in W$ and by 2.2 we may set $w=u+v$ where

$$
\|u\|+\|v\| \leqq c\|w\| \leqq c\left\|z-z_{k}\right\| \leqq 2 c\|z\| \leqq 2 c\|z\|_{\infty} .
$$

Now set $u^{*}=A_{U}(z-v)$ and $v^{*}=A_{V}\left(z-u^{*}\right)$. Then

$$
z_{k}-A_{U} z_{k}=z_{k}-A_{U}(z-u-v)=z-u-v+u-A_{U}(z-v)=z-u^{*}-v .
$$

Also

$$
z_{k}^{\prime}=z-u^{*}-v-A_{V}\left(z-u^{*}-v\right)=z-u^{*}-v+v-A_{v}\left(z-u^{*}\right)=z-u^{*}-v^{*} .
$$

Now

$$
\left\|u^{*}\right\| \leqq 2\|z-v\| \leqq 2(1+c)\|z\| \leqq 4 c\|z\|
$$

and,

$$
\left\|v^{*}\right\| \leqq 2\left\|z-u^{*}\right\| \leqq 2(1+4 c)\|z\|,
$$

so that,

$$
\left\|u^{*}\right\|+\left\|v^{*}\right\| \leqq 14 c\|z\| .
$$

Since $A_{V} z_{k}^{\prime}=0$ we can apply 2.3 to get $\left\|v^{*}\right\|_{\infty} \leqq 14 c M\|z\|_{\infty}$. Similarly

$$
\left\|u^{*}\right\|+\|u\| \leqq 6 c\|z\|
$$

and $A_{U}\left(z-u^{*}-v\right)=0$. Thus 2.3 again gives $\left\|u^{*}\right\|_{\infty} \leqq 6 c M\|z\|_{\infty}$. Finally

$$
\left\|z_{k}^{\prime}\right\|_{\infty} \leqq\|z\|_{\infty}+\left\|u^{*}\right\|_{\infty}+\left\|v^{*}\right\|_{\infty} \leqq 21 c M\|z\|_{\infty} .
$$

If we now return to the algorithm we see that

$$
z_{2 n+1}=z_{2 n}-A_{V} z_{2 n}=z_{2 n-1}-A_{U} z_{2 n-1}-A_{V}\left(z_{2 n-1}-A_{U} z_{2 n-1}\right)=\left(I-A_{V}\right)\left(I-A_{U}\right) z_{2 n-1}
$$

This shows that the odd iterates in the algorithm are members of the sequence derived from the odd iterates (except, of course for z_{1}). Similarly the even iterates are derived from the previous ones by

$$
z_{2 n+2}=\left(1-A_{U}\right)\left(I-A_{V}\right) z_{2 n} .
$$

Thus 2.4 and its symmetric counterpart give:
Corollary 2.5. The iterates in the L_{1}-version of the Diliberto-Straus algorithm in $C(S \times T)$ are bounded in the supremum norm.

We now consider the question of proximinality and obtain the analogue of the "Sitting Duck Theorem" of Respess and Cheney [6].

3. Proximinality in $C(S \times T)$ with the L_{1}-norm

We shall continue with the notation established in Section 2 with two additional hypotheses. Firstly, we shall assume that G has a Lipschitz continuous proximity map. Thus we shall assume that there is a constant λ such that $\left\|A_{G} x_{1}-A_{G} x_{2}\right\|_{\infty} \leqq \lambda\left\|x_{1}-x_{2}\right\|_{\infty}$ for all x_{1}, x_{2} in $C(S)$. Secondly, we shall assume H possesses a continuous proximity map with respect to the supremum norm. This has the force of making the mapping from U to V defined by $u \rightarrow A_{V}(z-u)$ continuous for fixed z in $C(S \times T)$; see Lemma 3 of [4] for details.

Lemma 3.1. Let $\left\{z_{k}\right\}$ be an admissible sequence in $C(S \times T)$. Let $\left\{z_{k}^{\prime}\right\}$ be its derived sequence and let $\left\{z_{k}^{\prime \prime}\right\}$ be the derived sequence of $\left\{z_{k}^{\prime}\right\}$. Then $\left\{z_{k}^{\prime \prime}\right\}$ is a bounded, equicontinuous sequence in $C(S \times T)$.

Proof. The sequence $\left\{z_{k}^{\prime}\right\}$ is certainly admissible and so 2.4 shows that both $\left\{z_{k}^{\prime}\right\}$ and
$\left\{z_{k}^{\prime \prime}\right\}$ are bounded. From the proof of 2.4 we, may write

$$
\begin{gathered}
z_{k}^{\prime}=z-u_{k}-v_{k} \text { where }\left\|u_{k}\right\|_{\infty} \leqq M \text { and }\left\|v_{k}\right\|_{\infty} \leqq M \\
z_{k}^{\prime \prime}=z-a_{k}-b_{k} \text { where }\left\|a_{k}\right\|_{\infty} \leqq M,\left\|b_{k}\right\|_{\infty} \leqq M
\end{gathered}
$$

and

$$
a_{k}=A_{\mathbf{U}}\left(z-v_{k}\right), b_{\mathbf{k}}=A_{V}\left(z-a_{k}\right) .
$$

Now,

$$
\begin{aligned}
\left|a_{k}\left(s_{1}, t_{1}\right)-a_{k}(s, t)\right| & \leqq\left|a_{k}\left(s_{1}, t_{1}\right)-a_{k}\left(s_{1}, t\right)\right|+\left|a_{k}\left(s_{1}, t\right)-a_{k}(s, t)\right| \\
& \leqq\left\|a_{k}^{t_{1}}-a_{k}^{t}\right\|_{\infty}+\left\|\left(a_{k}\right)_{s_{1}}-\left(a_{k}\right)\right\|_{s} \|_{\infty} \\
& =\left\|A_{G}\left(z-v_{k}\right)^{t_{1}}-A_{G}\left(z-v_{k}\right)^{t}\right\|_{\infty}+\left\|\left(a_{k}\right)_{s_{1}}-\left(a_{k}\right)_{s}\right\|_{\infty} \\
& \leqq \lambda\left\|z^{t_{1}}-z^{t}\right\|_{\infty}+\lambda\left\|v_{k}^{t_{1}}-v_{k}^{t}\right\|_{\infty}+\left\|\left(a_{k}\right)_{s_{1}}-\left(a_{k}\right)_{s}\right\|_{\infty}
\end{aligned}
$$

Now set $v_{k}=\sum x_{i} h_{i}$ and $a_{k}=\sum g_{i} y_{i}$. Then

$$
\left|x_{i}(s)\right|=\left|\psi_{i}\left(v_{s}\right)\right| \leqq\left\|v_{s}\right\| \leqq\|v\|_{\infty} \leqq M
$$

and so

$$
\left\|v_{k}^{t_{1}}-v_{k}^{t}\right\|_{\infty} \leqq \sum\left\|x_{i}\right\|_{\infty}\left|h_{i}\left(t_{1}\right)-h_{i}(t)\right| \leqq M \sum\left|h_{i}\left(t_{1}\right)-h_{i}(t)\right| .
$$

In a similar manner,

$$
\left\|\left(a_{k}\right)_{s_{1}}-\left(a_{k}\right)_{s}\right\|_{\infty} \leqq \sum\left\|y_{i}\right\|_{\infty}\left|g_{i}\left(s_{1}\right)-g_{i}(s)\right| \leqq M \sum\left|g_{i}\left(s_{1}\right)-g_{i}(s)\right|
$$

Hence

$$
\left|a_{k}\left(s_{1}, t_{1}\right)-a_{k}(s, t)\right| \leqq \lambda\left\|z^{t_{1}}-z^{t}\right\|_{\infty}+\lambda M\left(\sum\left|h_{i}\left(t_{1}\right)-h_{i}(t)\right|+\sum\left|g_{i}\left(s_{1}\right)-g_{i}(s)\right|\right) .
$$

Now the sections $\left\{z^{t}: t \in T\right\}$ form an equicontinuous family in $C(S)$ and so given ε we may force the three terms on the right to be each at most $\varepsilon / 3$ by taking (s_{1}, t_{1}) sufficiently close to (s, t). Hence the $\left\{a_{k}\right\}$ form an equicontinuous family in $C(S \times T)$. Thus $\left\{z-a_{k}\right\}$ is also an equicontinuous family and so, since A_{V} is a continuous mapping, $\left\{b_{k}\right\}$ forms an equicontinuous family. Finally, these combine to give $\left\{z_{k}^{\prime \prime}\right\}$ equicontinuous.

One of the results from [6] which is always needed in this type of problem is that the subspace W is closed. This only rests on the finite-dimensionality of G and H.

Theorem 3.2. Let G be a finite dimensional subspace of $C(S)$ having a Lipschitz continuous proximity map. Let H be a finite dimensional subspace of $C(T)$ having a continuous proximity map. Then $C(S) \otimes H+G \otimes C(T)$ is proximinal in $C(S \times T)$ when the L_{1}-norm is employed.

Proof. Fix $z \in C(S \times T)$ and pick a minimising sequence $\left\{w_{k}\right\}$ in $W=C(S) \otimes H+$ $G \otimes C(T)$ such that $\left\|z-w_{k}\right\| \downarrow$ dist (z, W). Set $z_{k}=z-w_{k}$. Then $\left\{z_{k}\right\}$ is an admissible sequence. Let its derived sequence be $\left\{z_{k}^{\prime}\right\}$ and the derived sequence of $\left\{z_{k}^{\prime}\right\}$ be $\left\{z_{k}^{\prime \prime}\right\}$. Then we have $\left\|z_{k}^{\prime \prime}\right\| \leqq\left\|z_{k}^{\prime}\right\| \leqq\left\|z_{k}\right\|$, and so $\left\{z_{k}^{\prime \prime}\right\}$ is also a minimising sequence. It is also bounded and equicontinuous and so, by the Ascoli theorem, has a cluster point. This cluster point is in W, since W is closed, and is a best approximation to z from W.

It is easy to provide examples of the above result. If G is a one-dimensional subspace generated by a function g which is bounded away from zero then the proximity map A_{G} is Lipschitz continuous. If H is a Chebyshev subspace of $C(T)$ with respect to the L_{1} norm (i.e. each element y possesses a unique best L_{1}-approximation in H) then an old result (see, for example, Holmes [1]) guarantees that A_{H} is continuous.

Corollary 3.3. Let G be a one-dimensional subspace of $C(S)$ generated by a function which is bounded away from zero. Let H be a finite dimensional Chebyshev subspace of $C(T)$ with respect to the L_{1}-norm. Then $C(S) \otimes H+G \otimes C(T)$ is proximinal in $C(S \times T)$ under the L_{1}-norm.

An example of subspaces G and H which satisfy the conditions of 3.3 are π_{0} and π_{n} respectively, where π_{n} denotes the subspace of $C(S)$ or $C(T)$ consisting of polynomials of degree at most n. That A_{G} is Lipschitz may be found in [5] while the Chebyshev property of H is an old result of Jackson [2].

Corollary 3.4. The subspace $C(S) \otimes \pi_{n}+\pi_{0} \otimes C(T)$ is proximinal in $C(S \times T)$ under the L_{1}-norm.

This result includes a result from [5] which stated that $C(S)+C(T)$, which is of course shorthand for $C(S) \otimes \pi_{0}+\pi_{0} \otimes C(T)$, is proximinal in $C(S \times T)$ when the $L_{1}-$ norm is used.

REFERENCES

1. R. B. Holmes, A Course on Optimisation and Best Approximation (Springer Verlag, 1972).
2. D. Jackson, A note on a class of polynomials of approximation, Trans. Amer. Math. Soc. 22 (1921), 320-326.
3. W. A. Light and E. W. Cheney, Some best approximation theorems in Tensor-Product Spaces, Math. Proc. Camb. Philos. Soc. 89 (1981), 385-390.
4. W. A. Light and S. M. Holland, The L_{1}-version of the Diliberto-Straus algorithm in $C(T \times S)$, Proc. Edinburgh Math. Soc. 27 (1984), 31-45.
5. W. A. Light, J. H. McCabe, G. M. Phillips and E. W. Cheney, The approximation of bivariate functions by sums of univariate ones using the L_{1}-metric, Proc. Edinburgh Math. Soc. 25 (1982), 173-181.
6. J. R. Respess, Jr. and E. W. Cheney, Best approximation problems in Tensor-Product Spaces, Pacific J. Math. 102 (1982), 437-446.
Department of Mathematics
University of Lancaster
Lancaster, LA1 4YL
