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Mallows permutations as stable matchings
Omer Angel, Alexander E. Holroyd, Tom Hutchcroft, and Avi Levy
Abstract. We show that the Mallows measure on permutations of 1, . . . , n arises as the law of the
unique Gale–Shapley stable matching of the random bipartite graph with vertex set {1, . . . , n} ×
{♂, ♀} conditioned to be perfect, where preferences arise from the natural total ordering of the
vertices of each gender but are restricted to the (random) edges of the graph. We extend this
correspondence to infinite intervals, for which the situation is more intricate. We prove that almost
surely, every stable matching of the random bipartite graph obtained by performing Bernoulli
percolation on the complete bipartite graph KZ,Z falls into one of two classes: a countable family
(σn)n∈Z of tame stable matchings, in which the length of the longest edge crossing k is O(log ∣k∣) as
k → ±∞, and an uncountable family of wild stable matchings, in which this length is exp Ω(k) as
k → +∞. The tame stable matching σn has the law of the Mallows permutation of Z (as constructed
by Gnedin and Olshanski) composed with the shift k ↦ k + n. The permutation σn+1 dominates
σn pointwise, and the two permutations are related by a shift along a random strictly increasing
sequence.

1 Introduction

In this paper, we will establish a connection between two classical objects: the Mallows
measure on permutations and Gale–Shapley stable marriage. The Mallows measure
Maln

q on permutations of {1, . . . , n} with parameter q ∈ [0, 1] is the probability mea-
sure that assigns to each permutation σ ∈ Sn a probability proportional to qinv(σ),
where inv(σ) is the inversion number of σ , given by

inv(σ) = #{(i , j) ∈ {1, . . . , n}2∶ i < j but σ(i) > σ( j)}.

More generally, we define the Mallows measure MalI
q on permutations of a general

finite interval I ⊆ Z by shifting the index. The Mallows measure was extended to
permutations of infinite intervals by Gnedin and Olshanski [10, 11], who showed that
for q ∈ [0, 1) and an infinite interval I ⊆ Z, the measures MalI∩[−n ,n]

q converge weakly
(with respect to the topology of pointwise convergence) to a probability measure MalI

q
on permutations of I. We call this limit the Mallows measure on permutations of I
with parameter q. They also characterised the Mallows permutation of Z, together
with its compositions with shifts, as the unique random permutations of Z with
a property that they called q-exchangeability, which is equivalent to being a Gibbs
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measure on permutations of Z with respect to the Hamiltonian H(σ) = inv(σ) and
inverse temperature β = − log q.

The Mallows measure was originally introduced in the context of statistical ranking
theory [16]. It has recently enjoyed substantial interest among both pure and applied
mathematicians. In particular, analysis has been carried out of the cycle structure [9]
and the longest increasing subsequence [2, 4, 17] of a Mallows permutation, of the
longest common subsequence of two independent Mallows permutations [15], and of
mixing times of related Markov chains [3, 6]. The Mallows permutation has also been
studied as a statistical physics model [18, 19], and has found applications in learning
theory [5] and in the theory of finitely dependent processes [13]. The Mallows measure
also arises as a stationary measure of the asymmetric exclusion process (ASEP) [1].

In this paper, we show that, for both finite and infinite intervals, the Mallows
permutation arises as a stable matching of the random bipartite graph on the interval.
In particular, we obtain a new construction of the Mallows permutation of an infinite
interval. The finite case follows in a straightforward way by consideration of known
algorithms for sampling from the Mallows distribution, while the infinite case is more
subtle and requires a more delicate treatment.

The notion of stable matching was introduced in the hugely influential work of
Gale and Shapley [8]. Since then, thousands of articles on the topic have been written,
and Nobel Memorial Prizes in Economics have been awarded to Roth and Shapley for
related work.

Let us now describe informally the random stable matchings with which we will
be concerned. Suppose that we have a set of males and a set of females who seek to be
matched into heterosexual pairs, in accordance with preferences defined as follows.
Both the set of males and the set of females are ranked according to a universally
agreed order of attractiveness. However, each male-female pair has a probability
q ∈ [0, 1) of being incompatible, independently of all other pairs, meaning that neither
will consider the other as a partner under any circumstances. Attractiveness and
compatibility are the only factors affecting preferences. In particular, if each set is
finite, a female’s first choice for partner is the most attractive male she is compatible
with, her second choice is the second most attractive male she is compatible with, and
so on. A matching is a collection of compatible pairs such that each individual is in at
most one pair. A matching is stable if there does not exist a compatible male-female
pair who would both prefer to be matched to each other over their current status,
where any compatible partner is preferred to being unmatched.

We now introduce notation in order to make these definitions more formal. A
matching of a graph G is a set of edges no two of which share a vertex. A matching is
perfect if every vertex has a partner. Given intervals I, J ⊆ Z, we write KI , J for the graph
whose vertex set is (I × {♂}) ∪ (J × {♀}) and whose edge set is {{(i , ♂), ( j, ♀)} ∶
i ∈ I, j ∈ J}. We say that (i , ♂) is more attractive than ( j, ♂) if i > j, and similarly
that (i , ♀) is more attractive than ( j, ♀) if i > j. If G is a subgraph of KI , J , we say
that (i , ♂) and ( j, ♀) are compatible if there is an edge between them in G. Thus, a
matching of KI , J is a matching of G if and only if every matched pair is compatible. We
identify each matching of KI , J with a function σ ∶ I → J ∪ {−∞} by setting σ(i) = j if
(i , ♂) is matched to ( j, ♀) and setting σ(i) = −∞ if (i , ♂) is unmatched. The function
σ−1 ∶ J → I ∪ {−∞} is defined similarly by interchanging the roles of ♂ and ♀. In
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Figure 1: Two realizations of the random bipartite graph K10,10(0.6), with more attractive
individuals at the top, together with their unique stable matchings, shown by thick blue
lines. The matching is perfect in the left figure, but not in the right figure. Orange discs
indicate unmatched individuals. Thin grey (solid and dotted) lines represent edges connecting
incompatible pairs. Edges between compatible individuals that are not in the matching are
not shown. The matching can be computed without examining all edges: those that need to
be examined are the edges of the matching (whose endpoints are compatible), and the solid
grey edges (which are all those edges whose endpoints must be incompatible in order for the
matching to be stable). In the case of a perfect matching, these solid grey edges are simply all
those that connect the upper endpoints of a crossing pair of edges of the matching. Colour can
be seen in theonline version of this paper.

particular, if I = J and the matching is perfect, then σ is a permutation of I and σ−1 is its
inverse; this yields a bijection between perfect matchings of KI ,I and permutations of I.
A matching of a subgraph G of KI , J is stable if there does not exist a pair {(i , ♂), ( j, ♀)}
such that (i , ♂) is compatible with ( j, ♀), σ(i) < j, and σ−1( j) < i.

Given p ∈ [0, 1], we let KI ,I(p) be the random subgraph of KI ,I with the same
vertex set as KI ,I and where each edge is included independently at random with
probability p.

Proposition 1.1 Let p ∈ (0, 1], let q = 1 − p, and let I ⊆ Z be an interval that is bounded
above. Then the following hold.
(i) Every subgraph of KI ,I has a unique stable matching, so that in particular KI ,I(p)

has a unique stable matching almost surely.
(ii) If I is finite, then the unique stable matching of the random subgraph KI ,I(p) is

perfect with probability∏∣I∣k=1(1 − qk).
(iii) If I is infinite, then the unique stable matching of KI ,I(p) is perfect almost surely.
(iv) Conditional on the event that the unique stable matching of KI ,I(p) is perfect, it is

distributed as a Mallows permutation of I with parameter q.

We remark that the limit (q)∞ ∶= ∏∞k=1(1 − qk) as ∣I∣ → ∞ of the probabilities
appearing in Proposition 1.1(ii) is positive but strictly less than 1 for each q ∈ (0, 1).
We also remark, as a point of general interest, that this infinite product is known to
satisfy the asymptotics

(q)∞ ∶=
∞

∏
k=1
(1 − qk) ∼

√
2π(1 − q) exp [ − π2

6(1 − q)] as q ↗ 1;
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see e.g., the famous work of Hardy and Ramanujan [12] and references therein. The
function (q)∞ is the reciprocal of the generating function of integer partitions. It is
also known as both the q-Pochhammer symbol and the Euler function, owing to its role
in Euler’s pentagonal number theorem [7].

The situation for intervals that are unbounded from above (so that there do
not exist maximally attractive individuals) is very different and is the main topic
of this paper. Indeed, for p ∈ (0, 1), the random graph KZ,Z(p) has uncountably
many stable matchings, and even uncountably many stable matchings that are not
perfect. We will prove, however, that the stable matchings of KZ,Z(p) fall into two
sharply distinguished classes: a countable family of tame matchings that correspond
to compositions of the Mallows permutation of Z with shifts, and an uncountable
family of wild stable matchings. Moreover, the tame and wild stable matchings have
quantitatively very different behaviours.

To state these results, we introduce some more definitions. For an interval I ⊆ Z, a
matching σ of KI ,I , and i ∈ I, we define the quantities

L+(σ , i + 1
2) = #{ j ≤ i + 1

2 such that σ( j) ≥ i + 1
2},

L−(σ , i + 1
2) = #{ j ≥ i + 1

2 such that σ( j) ≤ i + 1
2}.

That is, L+(σ , i + 1
2 ) and L−(σ , i + 1

2 ) are the numbers of edges crossing over i + 1
2 in

each direction. We say that the matching σ is locally finite if L+(σ , i + 1
2 ) + L−(σ , i +

1
2 ) is finite for some (and hence every) i ∈ I. Note that matchings of intervals other
than Z are always locally finite. If σ is perfect and locally finite, we define the flow of
σ to be

Fl(σ) = L+(σ , i + 1
2) − L−(σ , i + 1

2),
which is easily seen to be independent of i. We say that σ is balanced if it is perfect,
locally finite, and has flow zero.

Let I ⊆ Z be an interval that is unbounded from above. For each matching σ of KI ,I
and each i ∈ I, we also define

M(σ , i + 1
2 ) =max{∣σ( j) − j∣ ∶ j ∈ I and either

j < i+ 1
2 < σ( j) or −∞ < σ( j) < i+ 1

2 < j}

to be the length of the longest edge in the matching crossing i + 1
2 , where the

maximum of the empty set is taken to be zero. We say that a matching σ of KI ,I is
tame if it is locally finite and

lim sup
i→±∞

M(σ , i + 1
2)

log ∣i∣ < ∞,

that is, if the maximum length of an edge of σ crossing i + 1
2 is at most logarithmically

large in i. On the other hand, we say that a matching σ of KI ,I is wild if

lim inf
i→+∞

log M(σ , i + 1
2)

i
> 0,
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Figure 2: A portion of the balanced tame stable matching of KZ,Z(p), for p = 0.2 (left), p = 0.4
(middle), and p = 0.6 (right), shown by blue lines. The law of the matching corresponds to the
Mallows measure on permutations of Z. Thin grey lines indicate edges whose endpoints must
be incompatible for this matching to be stable. Other edges are omitted. Colour is shown in the
online version of this paper.

that is, if the maximum length of an edge crossing i + 1
2 grows at least exponentially

as i → +∞. In particular, every matching that is not locally finite is wild. (Note that
these definitions also apply to matchings of KI ,I(p), since these matchings may also be
considered as matchings of KI ,I .) There is a wide gulf between tameness and wildness;
it is easy to construct matchings of KZ,Z that are neither tame nor wild. However, our
stable matchings are either tame or wild.

Theorem 1.2 (Tame/wild dichotomy) Let p ∈ (0, 1], let q = 1 − p, and consider the
random bipartite graph KZ,Z(p). Almost surely, every locally finite stable matching of
KZ,Z(p) is perfect, and every stable matching of KZ,Z(p) is either tame or wild.

Simulated examples of tame and wild matchings of KZ,Z(p) are depicted in Figures
2, 3, and 4. Note that the definition of wildness is asymmetric and does not say
anything about the behaviour as i → −∞. In fact, we will show that for every perfect,
locally finite stable matching σ of KZ,Z(p), there is a tame stable matching that
agrees with σ at all sufficiently large negative i; see Corollary 3.8. Next, we relate the
tame matchings of KZ,Z(p) to the Mallows permutation and describe some of their
properties.

Theorem 1.3 (Classification of tame matchings) Let p ∈ (0, 1], let q = 1 − p, and
consider the random bipartite graph KZ,Z(p). Almost surely, the tame stable matchings
of KZ,Z(p) form a countable family (σn)n∈Z with the following properties.
(i) For each n ∈ Z, the matching σn is perfect and has flow n.

(ii) The stable matching σn is the almost sure pointwise limit of the unique stable
matching σn ,m of K(−∞,m],(−∞,m+n](p) as m →∞.

(iii) The matching σn is distributed as the composition σ with the shift i ↦ i + n, where
σ is a Mallows-distributed permutation of Z with parameter q.

(iv) If n ≤ n′, then the males do no better in σn than in σn′ , and the females do no worse.
That is, σn(i) ≤ σn′(i) and σ−1

n ≥ σ−1
n′ (i) for every i ∈ Z. Moreover, for every n ∈ Z,
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Figure 3: Far left: the balanced tame matching σ0 of KZ,Z(0.4). Middle left: a matching equal
in law to the matching σ1 of flow 1 is obtained by composing σ0 with a shift by 1 (depicted as
an upward shift of vertices on the right). Middle right: the matching σ1 for the same realization
of the graph KZ,Z(0.4). Far right: the two matchings σ0 and σ1 superimposed. Edges unique
to σ0 and σ1 are shown by thick blue and red lines, respectively, while edges common to both
matchings are shown by thin purple lines. The symmetric difference consists of a single bi-
infinite path that is increasing on both sides. Colour can be seen in the online version of this
paper.

Figure 4: Portions of wild matchings of KZ,Z(0.1). Left: a perfect matching that is not locally
finite. Middle: a non-perfect matching. Right: a perfect, balanced wild matching.

the matchings σn and σn+1 agree except on a strictly increasing sequence (in ,k)k∈Z,
for which σn(in ,k) = σn+1(in ,k+1) for all k ∈ Z.

In particular, note that while σn+1 is distributed as the shift of σn , it is not equal
to the shift of σn (see Figure 3). Theorem 1.3(iii) is reminiscent of the situation for
stable matchings with general preferences on finite sets, where there are two extremal
matchings, one of which is female-optimal and male-pessimal, while the other is male-
optimal and female-pessimal [8].

Finally, we prove that wild stable matchings do indeed exist. (The fact that tame
matchings also exist is part of Theorem 1.3.)
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Theorem 1.4 (Existence of wild matchings) Let p ∈ (0, 1), let q = 1 − p, and consider
the random bipartite graph KZ,Z(p). Almost surely, there exist stable matchings of
KZ,Z(p) in each of the following categories:
• not perfect,
• perfect but not locally finite,
• perfect and locally finite, but wild.
Indeed, there almost surely exist uncountably many stable matchings in each category.
Also, if I is an infinite interval that is bounded from below, then KI ,I(p) has uncountably
many wild stable matchings almost surely.

Matchings satisfying the conditions of Theorem 1.4 can be constructed via a simple
and explicit algorithm. (In particular, no appeal to the axiom of choice is required.)

We remark that Theorems 1.2 and 1.4 are sharp in the sense that, disregarding
constants, the definitions of tame and wild cannot be strengthened without the
theorem becoming false. In other words, the tame stable matchings of KZ,Z(p) have
logarithmically long edges, and there exist wild stable perfect matchings of KZ,Z(p)
in which the longest edge crossing i + 1

2 is at most exponentially large in i. See
Propositions 3.9 and 5.1, respectively, for the precise statements.

About the proofs Recall from Proposition 1.1 that there is a unique stable matching
of every interval that is bounded from above. A central step in the proofs of Theorems
1.2 and 1.3 is to prove that the unique stable matchings of two different intervals,
both bounded from above, coincide for all sufficiently large negative i, and moreover,
that the distance elapsed before they couple in this way has an exponential tail.
In particular, we will prove that if σ and σ ′ are the unique stable matchings of
K(−∞,0],(−∞,0](p) and K(−∞,n],(−∞,n](p) for some n ≥ 0, then

P(σ(−i) = σ ′(−i) for all i ≥ k) ≥ 1 − [1 − (1 − q)(q)∞2]k .(1.1)

Note that the bound on the right of (1.1) does not depend on n. The exact statement
required for the proofs of Theorems 1.2 and 1.3 is a little more general than this and is
given in Proposition 3.3.

To prove this proposition, we consider the mutual cuts of σ and σ ′. If σ is a
permutation of Z, we say that i + 1

2 is a cut for σ if σ fixes the sets { j ∈ Z ∶ j < i + 1
2}

and { j ∈ Z ∶ j > i + 1
2}. If, in the setting above, i ≥ 0 and −i + 1

2 is a cut for both σ and
σ ′, then it follows from Proposition 1.1 that σ(− j) = σ ′(− j) for all j ≥ i. Thus, to prove
(1.1), it suffices to prove that

(1[ − i + 1
2 is a cut for both σ and σ ′])

i≥0
(1.2)

stochastically dominates an i.i.d. Bernoulli process with parameter (1 − q)(q)∞2.
The proof of these results also yields the following variation of this result concern-

ing a single permutation, which is of independent interest.

Proposition 1.5 Let q ∈ [0, 1), let I be an infinite interval, and let σ be a ran-
dom permutation of I drawn from the Mallows distribution with parameter q. Then
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Figure 5: Two matchings of equal flow agree at all sufficiently negative locations. Here, p = 0.3,
the two matchings have cuts at − 1

2 and − 3
2 , respectively, and only negative integer locations

are shown. Edges unique to one or other matching are shown by thick blue and red lines,
respectively, while edges common to both matchings are shown by thin purple lines. The
symmetric difference (restricted to negative locations) consists of a single path with a unique
locally minimal edge. Colour can be seen in the online version of this paper.

the process

(1[i + 1
2 is a cut for σ])

i∈Z

stochastically dominates an i.i.d. Bernoulli process with parameter (1 − q)(q)∞.

We note that if σ is a Mallows permutation of Z, then

P(i + 1
2 is a cut for σ) = (q)∞

for every i ∈ Z; this is an immediate consequence of Proposition 1.1 and Theorem 1.3,
and is also an easy consequence of the q-shuffling algorithm for sampling the Mallows
permutation [11]. Thus, the density of the cuts of σ and of the Bernoulli process that
Proposition 1.5 states that they dominate differ by a factor of 1 − q.

We now briefly discuss the proofs of the results about cut-times we have just
discussed, namely, Propositions 3.3 and 1.5. Proposition 1.1 naturally leads to several
algorithms for sequentially sampling the Mallows permutation, depending on the
order in which we choose to reveal the status of the edges in KI ,I(p). Different
algorithms lend themselves to studying different aspects of the permutation. For
example, the diagonal exposure algorithm of Gladkich and Peled [9], which is well
suited to studying the cycle structure of the Mallows permutation, is of this form.
To prove Proposition 1.5, we introduce a new algorithm for sequentially sampling
the Mallows permutation that is well suited to studying cuts, and has a natural
interpretation in terms of the matching. In this algorithm, an “alpha” male prevents
less attractive males from finding partners until he himself finds one (at which point
another male takes over as the alpha male). A similar algorithm is implicit in the proof
of [14, Proposition 8.1]. To prove Proposition 3.3, we use a variation on this algorithm
in which the two matchings σ and σ ′ are computed simultaneously.
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Remark 1.6 Throughout the paper, we will use [a, b] to denote both continuous
intervals {x ∈ R ∶ a ≤ x ≤ b} and discrete intervals {a, a + 1, . . . , b}. Whether [a, b]
denotes a discrete or continuous interval will always be clear from context.

2 Intervals with Maximally Attractive Individuals

We now prove Proposition 1.1. As noted in the introduction, we will also obtain a
new proof that the weak limit used to define the Mallows permutation of the infinite
interval (−∞, 0] exists.

Proof of Theorem 1.1 Let I be an interval that is bounded from above. We can
assume without loss of generality that max I = 0. Fix a subgraph G of KI ,I . In any stable
matching of G, the most attractive male must be matched to the most attractive female
that is compatible with him. Inductively, the i-th most attractive male must be matched
to the most attractive female he is compatible with among those who are not matched
to a more attractive male. This shows that the stable matching is unique, and gives
an algorithm to compute it. Formally, we set max ∅ = −∞ and define σ ∶ I → I ∪ {−∞}
recursively by setting

σ(0) =max{k ∈ I∶ (k, ♀) is compatible with (0, ♂)}
and, for all 1 ≤ i < ∣I∣,

σ(−i) =max{k ∈ I∶ (k, ♀) is compatible with (−i , ♂)}/σ([1 − i , 0])},(2.1)

where we use the notation σ(A) = {σ(a)∶ a ∈ A}. It follows by induction on i that σ is
the unique stable matching of G.

Now suppose that G = KI ,I(p). Then the probability that σ(−i) /= −∞ given
σ(0), . . . , σ(−i + 1) is equal to the probability that (−i , ♂) is compatible with (k, ♀)
for some k in the set

A i = I/σ([1 − i , 0]).
If I is infinite, then A i is infinite for every i, and we deduce that σ(−i) ≠ −∞ for every
i ≥ 0 almost surely. Otherwise, ∣I∣ = n for some n ≥ 0. In this case, on the event that
σ(− j) /= −∞ for all 0 ≤ j < i, the set A i has cardinality n − i. It follows that

P(σ(−i) /= −∞ ∣ σ(0) /= −∞, . . . , σ(−i + 1) /= −∞) = 1 − qn−i .

Thus, the probability that the unique stable matching is perfect is given by

P(σ(0) /= −∞, . . . , σ(−n + 1) /= −∞) =
n−1
∏
i=0
(1 − qn−i) =

n
∏
i=1
(1 − q i).

We next show that if I is finite, then the conditional distribution of the unique stable
matching σ of KI ,I(p) given that it is perfect is equal to MalI

q . Fix a permutation τ of
I. We wish to show that the probability that σ = τ is proportional to qinv(τ). By the
recursive formula for σ given above, we have that for all 1 ≤ i ≤ n,

P(σ(−i) = τ(−i) ∣ σ(0) = τ(0), . . . , σ(−i + 1) = τ(−i + 1))

= (1 − q)q#{ j<−τ(−i)∶−τ−1(− j)>i} .
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Taking the product of these conditional probabilities and observing that
n
∑
i=1

#{ j < −τ(−i)∶ −τ−1(− j) > i} = inv(τ)

yields that P(σ = τ) = qinv(τ)(1 − q)n , as required. Note that this yields a proof of the
well-known formula

∑
τ∈Sn

qinv(τ) = ∏
n
i=1(1 − q i)
(1 − q)n .

Now suppose that I = (−∞, 0], and let σ be the unique stable matching of KI ,I(p),
which is almost surely perfect. It remains to prove that σ is the Mallows permutation
of I as defined by Gnedin and Olshanki [10, 11] . That is, we must prove that the law of
σ is equal to the weak limit of the Mallows measures on permutations of In = [−n, 0]
as n →∞, i.e., that

P(σ(i) = x i ∀ 1 ≤ i ≤ k) = lim
n→∞

MalIn
q (σ(i) = x i ∀ 1 ≤ i ≤ k)(2.2)

for every k ≥ 1 and x1 , . . . , xk ∈ I. In fact, we will obtain as a corollary a new proof that
this weak limit exists, recovering the result of [10]. For each n ≥ 0, let KIn ,In(p) be the
subgraph of KI ,I(p) induced by In × {♂, ♀}, let σn be the unique stable matching of
KIn ,In(p), and observe that, by the above algorithm,

σn(−i) =
⎧⎪⎪⎨⎪⎪⎩

σ(−i) if σ(−i) ≥ −n,
−∞ if σ(−i) < −n.

Observe that for every n ≥ 1, every 0 ≤ k ≤ n and every x0 , . . . , xk ∈ I, we have that, by
a similar analysis to above,

P(σn perfect ∣ σ(−i) = x i ∀0 ≤ i ≤ k)
= P(σn(− j) ≠ −∞ ∀0 ≤ j ≤ n ∣ σ(−i) = x i ∀0 ≤ i ≤ k)

= 1[x i ∈ [−n, 0] ∀0 ≤ i ≤ k]
n−k
∏
i=1
(1 − q i).

Thus, we have that

MalIn
q (σ(−i) = x i ∀0 ≤ i ≤ k)
= P(σ(−i) = x i ∀0 ≤ i ≤ k ∣ σn perfect)

= 1[x i ∈ [−n, 0] ∀0 ≤ i ≤ k]P(σ(−i) = x i ∀0 ≤ i ≤ k)∏
n−k
i=1 (1 − q i)
∏n+1

i=1 (1 − q i)
.

The ratio of products at the end of the right-hand side tends to one as n →∞ when k
is fixed, and so we obtain that (2.2) holds, as desired. ∎
Remark 2.1 The proof of convergence shows that the restriction of σn to [−k, 0] is
close to the infinite Mallows permutation not just for fixed k as needed, but even if
k, n →∞ jointly, as long as n − k →∞.
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3 Cuts, Coupling, and the Existence of the Tame Stable Matchings

In this section, we prove Proposition 3.3, which generalizes (1.1) from the introduction.
We then use this proposition to prove the existential claims from Theorem 1.3. We
begin by proving a special case of Proposition 1.5, applying to intervals that are
bounded from above. Proposition 1.5 will later follow by an easy limiting argument.
Besides being of independent interest, the proof of Proposition 3.1 will serve as a
warm-up to the proof of Proposition 3.3. We will then apply Proposition 3.3 to
prove Corollaries 3.5 and 3.6, which establish the existential claims of Theorem 1.3.
Proposition 3.3 will also be used in the following section to prove Theorem 1.2 and
complete the proof of Theorem 1.3.

Proposition 3.1 Let q ∈ [0, 1), let I be an infinite interval that is bounded from above,
and let σ be a random permutation of I drawn from the Mallows distribution with
parameter q. Then the process

(1[i + 1
2 is a cut for σ])

i∈I

stochastically dominates an i.i.d. Bernoulli process with parameter (1 − q)(q)∞.

From now on, we will always consider all the subgraphs KI ,I(p) for different
choices of interval I to be coupled on the same probability space so that KI ,I(p) is equal
to the subgraph of KZ,Z(p) induced by I × {♂, ♀}. More generally, for any two non-
empty subsets A and B of Z, we define KA,B(p) to be the subgraph of KZ,Z induced
by (A× {♂}) ∪ (B × {♀}).

Before beginning the proof of Proposition 3.1, we note that, by re-indexing, Propo-
sition 1.1 also implies that for every p ∈ (0, 1] and every two non-empty sets A, B ⊆ Z
with ∣A∣ = ∣B∣, both of which are bounded above, there is a unique stable matching
of KA,B(p), which we denote by σA,B . Moreover, again by re-indexing and applying
Proposition 1.1, the stable matching σA,B is perfect almost surely if A is infinite, and
with probability∏∣A∣i=1(1 − q i) if A is finite.

Proof We assume without loss of generality that I = (−∞,−1]. We define a sequence
of partial matchings σn ∶ (−∞,−1] → [−n,−1] ∪ {−∞}, n ≥ 1, by letting

σn(−i) =
⎧⎪⎪⎨⎪⎪⎩

σ(−i) if i ≤ n and − σ(− j) ≤ n for all 1 ≤ j ≤ i ,
−∞ otherwise.

We also define σ0 to be the constant function sending every element of (−∞,−1] to
−∞. It suffices to prove that

P( − n − 3
2 is a cut for σ ∣ σn) ≥ (1 − q)(q)∞

for every n ≥ 0. In fact, we will prove the equality

P( − n − 3
2 is a cut for σ ∣ σn) = (1 − q)

Un

∏
k=1
(1 − qk),(3.1)
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where Un is the number of males who are among the n most attractive (i.e., are in
[−n,−1] × {♂}) and are unmatched in the partial matching σn . Note that −n − 3

2 is a
cut for σ if and only if Un+1 = 0.

First, the most attractive male queries his compatibility with each of the n most
attractive females, i.e., each female in [−n,−1] × {♀}. If he finds he is not compatible
with any of them, then we stop the procedure and do not match anyone. Otherwise,
he is matched to the most attractive of these females with whom he is compatible. In
this case, the second most attractive male queries his compatibility with each of the n
most attractive females. If he is not compatible with any of these females other than
the one that is already matched, we stop the procedure and do not match any males
other than the most attractive one. Otherwise, we match the second most attractive
male to the most attractive of these females with whom he is compatible and who is
not already matched. We continue this procedure recursively, finding matches for the
males in order of attractiveness until we reach a male who cannot be matched, at which
point we stop. Let Fn be the σ-algebra generated by all the information concerning
compatibility that is revealed when computing σn via this procedure.

Now suppose that we wish to compute σn+1, given σn and the σ-algebra Fn . We
know that the most attractive male who is unmatched in σn is not compatible with
any of the females in [−n,−1] × {♀} who are unmatched in σn . Other than this, the
only information we have about compatibility concerns pairs of males and females at
least one of whom is already matched in σn , and this information is no longer relevant
for computing σn+1.

Thus, to compute σn+1, we use the following procedure, illustrated in Figure 6.
First, the most attractive male who is unmatched in σn queries his compatibility
with (−n − 1, ♀), who is always unmatched in σn . If he finds he is not compatible
with her, we set σn+1 = σn and stop. Otherwise, he finds he is compatible with her.
This occurs with probability p = 1 − q independently of everything that has happened
previously. If this is the case, we then try to match the remaining Un unmatched
males with the remaining Un unmatched females. Since no information concerning
compatibility between any of these individuals has been revealed, we can re-index
and apply Proposition 1.1 to deduce that the conditional probability that the stable
matching between them is perfect is equal to∏∣Un ∣

k=1 (1 − qk). It follows that

P( − n − 3
2 is a cut for σ ∣ σn , Fn) = (1 − q)

Un

∏
k=1
(1 − qk),(3.2)

and equality (3.1) follows by taking the conditional expectation over Fn given σn . ∎
Remark 3.2 In the sampling algorithm used above, the information concerning
compatibilities that is revealed when computing σn+1 given σn and Fn is precisely
Fn+1. In fact, (Un)n≥0 is a Markov chain with the filtration Fn , and (3.1) gives the
probability of jumping to 0. The associated Markov chain is positive recurrent by
the above proposition, and a stationary Z-indexed Markov process with the same
transition rule can be used to sample the Mallows permutation of Z.

We now come to the main technical result of this section. We say that a set A ⊆ Z
is low if it is bounded from above and its complement Z/A is bounded from below
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Figure 6: Constructing the matching σn+1 from σn . (i) 4 males and 4 females are unmatched
(orange dots). It is known that the most attractive unmatched “alpha” male is incompatible
(shown as thin black lines) with all unmatched females. (ii) A new male and female are revealed.
(iii) The alpha male is found to be compatible with the new female, so they are matched and
removed from consideration. (iv) The next most attractive unmatched male is found to be
incompatible with the first and second most attractive females but compatible with the third,
so they are matched and removed from consideration. (v) The next most attractive unmatched
male is found to be incompatible with all unmatched females. He becomes the new alpha male,
and the step ends. Regardless of the initial state, the probability that the step ends with all the
individuals matched is at least (1 − q)(q)∞. Colour will be shown in the online version of this
paper.

(equivalently, if the symmetric difference of A with (−∞, 0] is finite). For each low set
A, we define r(A) to be the largest integer such that (−∞, r] ⊆ A. In particular, if σ
is a locally finite matching, then the set σ((−∞, n]) = {σ(i) ∶ i ≤ n} is low for each
n ∈ Z, with

r({σ(i) ∶ i ≤ n}) =min
i>n

σ(i) − 1.

As discussed above, it follows from Proposition 1.1 that for any two low sets A, B ⊆ Z,
there is almost surely a unique stable matching of KA,B(p), which we denote σA,B ,
and which is perfect almost surely. Since there are only countably many low sets, this
holds for all low sets simultaneously almost surely. We say that a pair of low sets A and
B is balanced if ∣A/B∣ = ∣B/A∣. Note that this condition is equivalent to ∣A∩ [−n,∞)∣ =
∣B ∩ [−n,∞)∣ for all sufficiently large n, or indeed for all n ≥ −r(A) ∧ r(B).
Proposition 3.3 Let p = 1 − q ∈ (0, 1] and consider KZ,Z(p). For � ∈ {1, 2} let (A� , B�)
be a pair of balanced low subsets of Z, set r� = r(A�) ∧ r(B�), and set σ� = σA� ,B�

, the
unique stable matching of KA� ,B�

(p). Then

P(σ1(−i) = σ2(−i) ∀i ≥max(n − r1 , n − r2)) ≥ 1 − [1 − (1 − q)(q)∞2]n

for every n ≥ 0. In particular, σ1(−i) = σ2(−i) for all sufficiently large i almost surely.

We remark that one can deduce a similar result (with a worse constant) from
Proposition 1.5 via a finite-energy argument.

Our proof of Proposition 3.3 will use the following simple correlation inequality.
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Lemma 3.4 Let p = 1 − q ∈ (0, 1]. If A, B, A′ , B′ ⊆ Z are finite and non-empty with
∣A∣ = ∣B∣ and ∣A′∣ = ∣B′∣, then

P(σA,B and σA′ ,B′ are both perfect) ≥
∣A∣

∏
k=1
(1 − qk)

∣A′∣

∏
k=1
(1 − qk).

In other words, the perfection of the stable matching of different pairs of sets are
positively correlated events. Note that these events are not increasing with respect to
the compatibility graph (as consideration of simple examples will show), so that the
claimed positive correlation does not follow from the FKG inequality.

Proof To avoid trivialities, we extend the claim to the case that A or A′ is empty by
declaring the empty matching σ∅,∅ to always be perfect. With this extension in place,
we prove the claim by induction on ∣A∣ + ∣A′∣. The base case ∣A∣ + ∣A′∣ = 0 is trivial.
Thus, suppose that ∣A∣ + ∣A′∣ ≥ 1, and that the claim has been proved for all pairs of pairs
of finite non-empty sets Ã, B̃, Ã′ , B̃′ ⊆ Z with ∣Ã∣ = ∣B̃∣, and ∣Ã′∣ = ∣B̃′∣, and ∣Ã∣ + ∣Ã′∣ <
∣A∣ + ∣A′∣. Let i =max A∪ A′, so that (i , ♂) is the most attractive male in (A∪ A′) ×
{♂}.

First, suppose that i is in exactly one of A or A′; without loss of generality, we
can assume that i ∈ A/A′. As in the proof of Proposition 1.1, the male (i , ♂) must be
matched in σA,B to the most attractive female he is compatible with in B × {♀}, and the
probability that there is at least one such compatible female is 1 − q∣A∣. Note that on the
event that (i , ♂) is matched to ( j, ♀) in σA,B , we have that σA,B(k) = σA/{i},B/{ j}(k)
for every k ∈ A/{i}. Note also that the only information required to compute σA,B(i)
concerns compatibility information between (i , ♂) and Z × {♀}, and that, given
σA,B(i) = j, this information is no longer relevant for computing either σA/{i},B/{ j}
or σA′ ,B′ . Thus, it follows by the induction hypothesis that for every j ∈ B,

P(σA,B and σA′ ,B′ are both perfect ∣ σA,B(i) = j)
= P(σA/{ j},B/{i} and σA′ ,B′ are both perfect)

≥
∣A∣−1

∏
k=1
(1 − qk)

∣A′∣

∏
k=1
(1 − qk).

The result now follows, since P(σA,B(i) = j for some j ∈ B) = 1 − q∣A∣.
Now suppose that i ∈ A∩ A′. In order for σA,B and σA′ ,B′ both to be perfect, (i , ♂)

must be compatible with both a female from B × {♀} and a female from B′ × {♀}, with
these two females possibly being the same. The probability of the required females
existing is

1 − q∣B∣ − q∣B
′∣ + q∣B∪B′∣ ≥ (1 − q∣B∣)(1 − q∣B

′∣).(3.3)

Arguing similarly to the previous case, we have that

P(σA,B and σA′ ,B′ are both perfect ∣ σA,B(i) = j, σA′ ,B′(i) = j′)
= P(σA/{ j},B/{i} and σA′/{i},B′/{ j′} are both perfect)
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for every j ∈ B and j′ ∈ B′ such that the event being conditioned on has pos-
itive probability, and the claim follows from the induction hypothesis together
with (3.3). ∎

We remark that the same argument also yields analogous inequalities for more than
two pairs.

Proof of Theorem 3.3 We can assume without loss of generality that r1 ∧ r2 = 0. The
proof is an elaboration of the proof of Proposition 3.1, and we omit some minor details.
First, observe that if i ≥ 0 and −i + 1

2 is a cut for both σ1 and σ2, then the restrictions of
σ1 and σ2 to (−∞,−i] both define stable matchings of K(−∞,−i],(−∞,−i](p), and hence
are equal by Proposition 1.1. Thus, it suffices to prove that

P(∃i ∈ [1, n] such that − i + 1
2 is a cut for both σ1 and σ2) ≥ 1 − [1 − (1 − q)(q)∞2]n

for all n ≥ 0.
We perform a similar sampling procedure to that used in the proof of Proposition

1.5. For both � ∈ {1, 2}, we define a sequence of partial matchings σ�,n ∶ A� → B� ∩
[−n,∞) ∪ {−∞} for n ≥ −1 by setting σ�,n(i) = σ�(i) if the following three conditions
hold for i ∈ A�, and otherwise σ�,n(i) = −∞:
• i ≥ −n,
• σ�( j) ≥ −n for all j ∈ A� ∩ [i ,∞),
• σ3−�( j) ≥ −n for all j ∈ A3−� ∩ (i ,∞).
It suffices to prove that

P( − n − 3
2 is a cut for both σ1 and σ2 ∣ σ1,n , σ2,n) ≥ (1 − q)(q)2∞

for every n ≥ −1. We will prove the stronger bound

P( − n − 3
2 is a cut for both σ1 and σ2 ∣ σ1,n , σ2,n) ≥

(1 − q)
U1,n+1

∏
k=1
(1 − qk)

U2,n+1

∏
k=1
(1 − qk),(3.4)

where U�,n is the number of males in ([−n,∞) ∩ A1) × {♂} that are unmatched in
σ�,n . (Unlike in the proof of Proposition 1.5, this is not an equality in general.)

Similarly to the proof of Proposition 1.5, we try to match the males in (A1 ∪ A2) ×
{♂} in order of attractiveness. At each step, we may need to find them a match in
either σ1,n , σ2,n , or both, according to whether they are in A1 × {♂}, A2 × {♂}, or
both. If we reach a male for whom we cannot find both the required matches, we stop.
If that male can be matched in one of σ1,n , σ2,n but not the other, we make the single
match, and stop. During this procedure, the information revealed can be described as
follows:
• Consider the most attractive male in (A1 ∪ A2) × {♂} that is unmatched either in

σ1,n , in σ2,n , or in both. For � = 1 or 2, if this male is unmatched in σ�,n , then we
know that he is not compatible with any female in ([−n,∞) ∩ B�) × {♀} who is
unmatched in σ�,n .

• Other than this, the only information we have about compatibility concerns pairs of
males and females such that for each � = 1, 2, at least one of the pair is either already
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matched in σ�,n or is not in the set (A� × {♂}) ∪ (B� × {♀}). The status of these
edges is no longer relevant for computing σ1,n+1 and σ2,n+1.
Thus, to compute σ1,n+1 and σ2,n+1 given σ1,n and σ2,n , we can do the following.

First, the most attractive male who is unmatched in either σ1,n or σ2,n queries his
compatibility with (−n − 1, ♀). If he finds he is not compatible with her, we set
σ1,n+1 = σ1,n and σ2,n+1 = σ2,n and stop. Otherwise, he finds he is compatible with her.
This occurs with probability p = 1 − q independently of everything that has happened
previously. If this is the case, we match him to her in whichever of the matchings σ1,n
and/or σ2,n that he was previously unmatched in. Call these updated matchings σ ′1,n
and σ ′2,n .

At this point, the number of remaining unmatched males (and females) in σ ′�,n
is either U�,n or U�,n + 1, and no information about their compatibility has been
revealed so far. Thus, by Lemma 3.4, the conditional probability that all the unmatched
individuals in σ ′1,n and in σ ′2,n both support a perfect stable matching is at least

U1,n+1

∏
k=1
(1 − qk)

U2,n+1

∏
k=1
(1 − qk) ≥ (q)∞2 .

Thus, the conditional probability that −n − 3
2 is a cut for both σ1 , σ2 is at least (1 −

q)(q)∞2, and the claim follows.
The final part of the proposition follows by continuity of measure. ∎

Corollary 3.5 (Existence of limit matchings) Let p ∈ (0, 1]. Let n ∈ Z, and for each
m ≥ 0, let σn ,m be the unique stable matching of K(−∞,m+n],(−∞,m](p). Then σm ,n
converges almost surely as m →∞ to a permutation σn of Z, and the limit is distributed
as the composition of the Mallows permutation of Z with the shift θn ∶ i ↦ i + n.

Proof It suffices to consider the case n = 0, as the others then follow by re-indexing.
We write σm = σ0,m . For each k ∈ Z, it follows from Proposition 3.3 that

∑
m>k

P(σm(k) ≠ σm+1(k)) < ∞.

It follows by Borel–Cantelli that σm almost surely converges pointwise to a func-
tion σ ∶ Z→ Z. By symmetry, the inverse functions σ−1

m also almost surely converge
pointwise to a function σ−1 ∶ Z→ Z. Since σ−1

m ○ σm(i) = σm ○ σ−1
m (i) = i for every

i ∈ (−∞, m], it follows that σ−1(σ(i)) = σ(σ−1(i)) = i for every i ∈ Z, so that σ is
a permutation almost surely. The fact that σ is Mallows-distributed with parameter
q, and in particular, that the limit defining this permutation exists, follows from the
corresponding statement for σm , proved in Proposition 1.1. ∎
Proof of Proposition 1.5 This follows from Proposition 3.1 and Corollary 3.5, by
taking the result through to the limit. ∎

We call the matching σn from Corollary 3.5 the Mallows matching of KZ,Z(p) with
flow n.

Corollary 3.6 (Mallows matchings are tame) Let q ∈ [0, 1), and let σ be a random
permutation of Z drawn from the Mallows distribution with parameter q. Then almost
surely the composition of σ with the shift θn ∶ i ↦ i + n is tame for all n.
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Proof Tameness is clearly invariant to composition with a shift, so it suffices to
consider the case n = 0. Observe that if (Ti + 1

2 )i∈Z are the sequence of cuts of σ in
order, then for every i ∈ Z,

max{M(σ , j + 1
2) ∶ Ti ≤ j ≤ Ti+1} ≤ ∣Ti+1 − Ti ∣.

Thus, if σ is the Mallows permutation of Z, then it follows from Proposition 1.5 that

P(M(σ , i + 1
2) ≥ 2m) ≤ c1(q)m

for some c1(q) < 1. It follows by Borel–Cantelli that M(σ , i + 1
2 ) = O(log ∣i∣) almost

surely, so that σ is tame, as claimed. ∎
We also have the following straightforward corollaries of Proposition 3.3, showing

that every perfect locally finite matching is “tame towards −∞”. (Recall that we say
that a matching of KZ,Z is balanced if it is perfect, locally finite, and has flow zero.)

Corollary 3.7 Let p ∈ (0, 1] and consider KZ,Z(p). Almost surely, every balanced stable
matching σ of KZ,Z(p) has a cut.

Corollary 3.8 Let p ∈ (0, 1] and consider KZ,Z(p). Then the following holds almost
surely. For every perfect, locally finite stable matching σ of KZ,Z(p) with flow n, there
exists Nσ such that σ(−i) = σn(−i) for every i ≥ Nσ , where σn is the Mallows matching
of KZ,Z(p) with flow n.

Proof of Theorems 3.7 and 3.8 Let Ω1 be the event that KA,B(p) has a unique stable
matching σA,B for every two low sets A and B, let Ω2 ⊆ Ω1 be the event that σA,B
has infinitely many cuts for every two balanced low sets A and B, and let Ω3 ⊆ Ω1
be the event that the balanced Mallows matching σ0 = limm→∞ σ(−∞,m],(−∞,m] is well
defined and that for every pair A1 , B1 of balanced low sets, there exists k such that
σA1 ,B1(−i) = σ0(−i) for every i ≥ k. Since there are countably many low sets, it follows
from Propositions 1.1, 3.3, and 3.5 that Ω = Ω2 ∩Ω3 has probability 1. Suppose that
the event Ω holds and that σ is a balanced stable matching of KZ,Z(p). Since σ is
locally finite, A = σ((−∞, 0]) is a low set, and the restriction of σ to (−∞, 0]must be
equal to σ(−∞,0],A, since it is a stable matching of K(−∞,0],A(p). It follows from the
definition of Ω that σ has a cut and that σ(−i) = σ0(−i) for all i sufficiently large. This
immediately implies Corollary 3.7 and the n = 0 case of Corollary 3.8, and the general
case of Corollary 3.8 follows by re-indexing. ∎

Finally, let us note that Theorem 1.2 is sharp in the sense that, disregarding
constants, the definition of tameness cannot be strengthened.

Proposition 3.9 Let p = 1 − q ∈ (0, 1] and let σ be the balanced Mallows matching of
KZ,Z(p). Then

lim sup
i→∞

M(σ , i + 1
2)

log ∣i∣ ≥ 1
2 log q−1

almost surely.
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Proof For each i ∈ Z, let X i =min{∣i − j∣ ∶ ( j, ♀) is compatible with (i , ♂)}. Then
the random variables X i are i.i.d. with P(X i ≥ n) = q2n−1 for all n ≥ 1. Thus, for all
a > 0 and for all i ≥ e1/a , we have that

P(X i ≥ a log i) = q2⌊a log i⌋−1 .

When a−1 = 2 log q−1, the latter expression has infinite sum (over i ≥ e1/a), and thus
by the Borel–Cantelli Lemma X i ≥ a log ∣i∣ infinitely often, almost surely. The claim
follows, since M(σ , i + 1

2 ) ∧M(σ , i − 1
2 ) ≥ X i . ∎

4 The Dichotomy Between Tame and Wild

In this section, we complete the proof of Theorems 1.2 and 1.3. The central additional
ingredients required are the following two lemmas concerned with perfect, locally
finite stable matchings.

Lemma 4.1 Let p ∈ (0, 1], let q = 1 − p, and consider the random bipartite graph
KZ,Z(p). There exists a positive constant c2(q) such that the following holds almost
surely: Every perfect, locally finite stable matching σ of KZ,Z(p) satisfying

lim inf
i→+∞

1
i

M(σ , i + 1
2) ≤ c2(q)(4.1)

is equal to the Mallows stable matching of KZ,Z(p)with the same flow as σ. In particular,
σ is tame if and only if (4.1) holds.

Lemma 4.2 Let p ∈ (0, 1], let q = 1 − p, and consider the random bipartite graph
KZ,Z(p). Almost surely, every perfect, locally finite stable matching σ of KZ,Z(p)
satisfying

lim inf
i→+∞

1
i

M(σ , i + 1
2 ) > 0(4.2)

is wild. In particular, σ is wild if and only if (4.2) holds.

Before proving these lemmas, let us use them to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2 Let Ω be the almost sure event that for every i ∈ Z, the sets
{ j ∶ ( j, ♀) compatible with (i , ♂)} and { j ∶ ( j, ♂) compatible with (i , ♀)} are both
unbounded below. We claim that every locally finite stable matching of KZ,Z(p) is
perfect on the event Ω. Indeed, suppose without loss of generality that (i , ♂) is
unmatched in some stable matching σ of KZ,Z(p). Then each element of the set
{ j ∶ ( j, ♀) compatible with (i , ♂)} must be matched to a male more attractive than
(i , ♂), and thus, σ is not locally finite. The remaining claims of the theorem follow
from Lemmas 4.1 and 4.2, since at least one of (4.1) or (4.2) must hold for every σ . ∎
Proof of Theorem 1.3 The fact that a tame stable matching of flow n exists almost
surely for each n follows from Corollaries 3.5 and 3.6, while the fact that the matching
is unique and can be described as the limit of the unique stable matchings σn ,m
of K(−∞,m],(−∞,m+n](p) as m →∞ follows from Lemma 4.1. Given this limiting
construction, Theorem 1.3(iii) follows from Proposition 1.1. For Theorem 1.3(iv), fix
m ≥ 0 and n ∈ Z. Let (ik)k≥0 and ( jk)k≥1 be decreasing sequences defined recursively
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by i0 = m + n + 1, jk = σ−1
m ,n+1(ik−1) for every k ≥ 0 and ik = σm ,n( jk) for every k ≥ 1.

Considering the gender-reversal of the recursive procedure for computing σm ,n and
σm ,n+1 as in the proof of Proposition 1.1, beginning by assigning matches to the most
attractive females in (−∞, m + n] and (−∞, m + n + 1], respectively, it follows by a
straightforward induction argument that

σ−1
m ,n+1(i) =

⎧⎪⎪⎨⎪⎪⎩

jk+1 if i = ik for some k ≥ 0,
σ−1

m ,n(i) otherwise,

and similarly that

σm ,n( j) =
⎧⎪⎪⎨⎪⎪⎩

ik if j = jk for some k ≥ 1,
σm ,n+1(i) otherwise.

The second part of Theorem 1.3(iv) follows by taking the limit as m →∞. The first part
follows from the second, since if males do no worse in σn+1 than in σn for each n, then
the same comparison holds for any σn , σn′ with n ≤ n′ by induction on n′ − n. ∎
Proof of Theorem 4.1 By re-indexing, it suffices to consider the balanced case of
flow 0. Let 0 < a < 1, and let Ai ,a be the set of low subsets A of Z such that the pair of
low sets ((−∞, i], A) is balanced, and the symmetric difference of A with (−∞, i] is
contained in [(1 − a)i , (1 + a)i]. Clearly, ∣Ai ,a ∣ ≤ 22ai+1. Let k ≥ 0. By Proposition 3.3,
for every A ∈ Ai ,a , we have that

P(σ(−∞, i],A( j) = σ(−∞, i],(−∞, i]( j) for every j ≤ k) ≥ 1 − c1(q)(1−a)i−k ,

where c1(q) = 1 − (1 − q)(q)2∞. Thus, it follows by the union bound that

P(σ(−∞, i],A( j) = σ(−∞, i],(−∞, i]( j) for every j ≤ k and A ∈ Ai ,a)
≥ 1 − 22ai+1c1(q)(1−a)i−k .

Fix a > 0 such that 22a c1(q)(1−a) < 1 (such an a exists since c1(q) < 1). By the Borel–
Cantelli lemma and the previous lower bound, the event

Ωa ∶= ⋂
k≥0
⋃
�≥0
⋂
i≥�
{σ(−∞, i],A( j) = σ(−∞, i],(−∞, i]( j) for every j ≤ k and A ∈ Ai ,a}

occurs almost surely. Consider the set of balanced, perfect, locally finite stable match-
ings σ of KZ,Z(p) that satisfy

lim inf
i→+∞

M(σ , i + 1
2)

i
< a.

For any such matching, σ((−∞, i]) belongs to Ai ,a for infinitely many i. However,
on the event Ωa , the balanced Mallows stable matching of KZ,Z(p) is the only stable
matching of KZ,Z(p) with this property, and so σ must be equal to this matching. ∎
Proof of Theorem 4.2 By re-indexing, it suffices to consider balanced stable match-
ings. Moreover, since by Corollary 3.7 there is a probability one event on which every
perfect, locally finite, balanced stable matching of KZ,Z(p) has a cut, it suffices by re-
indexing to consider matchings that have a cut at 1

2 . That is, it suffices to prove that
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there is a probability one event on which every perfect, locally finite, balanced stable
matching σ of KZ,Z(p) that has a cut at 1/2 and satisfies

lim inf
i→+∞

1
i

M(σ , i + 1
2 ) > 0(4.3)

is wild.
For ε, δ > 0, define Ωε ,δ to be the event on which there exists N < ∞ such that the

following conditions hold for all i ≥ N .
(i) The inequalities

#{i ≤ j ≤ i + εi ∶ ( j, ♂) is compatible with (i + k, ♀)} ≥ 1−q
2 εi

and

#{i ≤ j ≤ i + εi ∶ ( j, ♀) is compatible with (i + k, ♂)} ≥ 1−q
2 εi

both hold for every 1 ≤ k ≤ eδ i .
(ii) There do not exist sets A, B ⊆ [0, eδ i] with ∣A∣, ∣B∣ ≥ 1−q

2 εi such that no male in
A× {♂} is compatible with any female in B × {♀}.

We claim that for each ε > 0, there exists δ(ε, q) > 0 such that Ωε ,δ occurs almost
surely. Indeed, for condition (i), the Chernoff bound implies that there exists a
constant c3(ε, q) < 1 such that for each i , k ≥ 0, the probability that either of the sets
in question is smaller than (1 − q)εi/2 is at most c3(ε, q)i . Thus, summing over the
possible choices of k and i and applying Borel–Cantelli shows that if δ is sufficiently
small, then the required inequalities hold for all i sufficiently large almost surely.

For condition (ii), it suffices to consider A, B of the minimal possible size s = 1−q
2 εi.

Counting the choices of A and B and using the union bound gives the following upper
bound on the probability that there exist sets A, B violating (ii):

P(there exist such A, B ⊆ [0, eδ i]) ≤ (eδ i

s
)

2

qs2
≤ e2δ is−s2 ∣ log q∣ = eC(ε ,δ)i2

,

where we have used the elementary inequality (m
n) ≤ mn . If δ is sufficiently small, then

C(ε, δ) < 0, and the result follows by Borel–Cantelli. This completes the proof of the
claim.

Now suppose that the almost sure event Ω = ⋂n≥1 Ω1/n ,δ(1/n) occurs. Let σ be a
stable perfect matching of KZ,Z(p) that is balanced and has a cut at 1

2 , let n ≥ 2 be
such that ε = 1/n < 1

2 lim inf M(σ , i + 1/2)/i, and let δ = δ(ε, q). For each a, b ≥ 0, we
define the indicator functions

F(a, b) = 1(∃i ≤ a such that σ(i) > b or σ−1(i) > b).

We claim that if i ≥ N and F(i , i + εi) = 1, then we must have that F(i + εi , eδ i) = 1
also. Given this, it is easily seen that σ is wild. Indeed, our choice of ε guarantees
that for every sufficiently large i there is an edge of length at least 2εi spanning i, so
that at least one of F(i , i + εi) or F(i − εi , i) is equal to 1 for every sufficiently large
i. In the first case, we have that F(i + εi , eδ i) = 1, and in the second, we have that
F(i , eδ(i−εi)) = 1. In either case, we deduce that M(σ , 2i + 1/2) ≥ eδ i/2, concluding
the proof.
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Figure 7: Exponential blow-up in wild matchings. Edges whose length is linear in their height
necessitate edges whose length is exponential in their height (with high probability as the height
goes to infinity).

To prove the claim above, let k = ⌈εi⌉, and suppose that F(i , i + k) = 1. By symme-
try between males and females, let us suppose without loss of generality that some
j ≤ i has σ( j) > i + k. If σ( j) > eδ i , we are done. Otherwise, let V be the set of males
in (i , i + k] × {♂} that are compatible with σ( j). By (i), we have that ∣V ∣ ≥ 1−q

2 k.
Note that each male (a, ♂) ∈ V must have σ(a) > σ( j), since otherwise σ would be
unstable. Moreover, if any a ∈ V has σ(a) > eδ i , we are done, so we can suppose not.

Since σ is balanced and has a cut at 1/2, there is a set W ⊆ [1, i + k] of size at least k
such that σ−1(w) > i for every w ∈W . If any w ∈W has σ−1(w) > eδ i , we are done, so
suppose not. Since each female in W × {♀} is less attractive than σ( j) and is matched
to a male more attractive than ( j, ♂), stability implies that they cannot be matched to
any male in V × {♂}. It follows that there is a set W ′ ⊂W of females of size at least
∣V ∣ that are matched to males in (i + k, eδ i] × {♂}.

Let B = σ(V) and A = σ−1(W ′). Summarizing our conclusions, V , W ′ are sets of
size at least 1−q

2 k in [0, i + k], and A, B are sets of size at least 1−q
2 k in (i + k, eδ i].

Stability implies that no male in A× {♂} is compatible with any female in B × {♀},
which contradicts (ii). ∎
Remark 4.3 It is possible to show using the above proof that for every p = 1 − q ∈
(0, 1), there exists a positive constant c3(q) such that

lim inf
i→+∞

log M(σ , i + 1
2)

i
≥ c3(q)
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for every wild stable matching of KZ,Z(p) almost surely.

5 Existence of Wild Stable Matchings

Proof of Theorem 1.4 For a finite set A ⊂ Z and for an integer i ∈ Z/A, let ΩA, i be
the event that both of the sets

{ j ∈ Z∶ ( j, ♀) is compatible with (i , ♂) but not (k, ♂) for any k ∈ A},
{ j ∈ Z∶ ( j, ♂) is compatible with (i , ♀) but not (k, ♀)for any k ∈ A}

are unbounded from above. Clearly, P(ΩA, i) = 1 for all A and i. Since there are only a
countable number of finite subsets of Z, the event

Ω = ⋂
A⊆Z

finite

⋂
i∈Z/A

ΩA, i

also has probability 1.
We will show that the conclusions of the theorem hold on Ω. All three claims will

follow from variants of the same construction. Let (xn)n≥0 be an enumeration of a
subset of Z × {♂, ♀} (representing individuals to be matched in a given order), and
let (a j) j≥1 be a sequence of positive integers (which will encode uncountably many
options). We take the enumerated subset to be one of the following:
(1) (Z × {♂}) ∪ ([0,∞) × {♀});
(2) Z × {♂, ♀};
(3) [0,∞) × {♂, ♀}.

These three choices are used to construct matchings that are, respectively, not
perfect; perfect but not locally finite; and perfect, locally finite, and wild. For each fixed
sequence (xn)n≥0, every choice of the sequence (a j) j≥1 will yield a different stable
matching with this desired properties.

At each step of the construction, we choose the next individual in the sequence,
and if they are not already matched, we find a compatible partner for them who
is incompatible with everyone previously matched. At the end of step n ≥ 0 of the
construction, we have a partial matching σn with the property that the vertices
x1 , . . . , xn are all matched, and that σn is a stable perfect matching of the subgraph
induced by the set of all matched vertices.

Initially, we take σ0 to be the empty matching. Given σn for some n ≥ 0, we define
σn+1 as follows.
• If xn+1 is already matched in σn , then we set σn+1 = σn . (That is, we do nothing.)
• If xn+1 is not matched in σn , then we choose a partner for it as follows. Suppose xn+1

is a female (the case of a male xn+1 is similar). We will match (xn+1 , ♀) to a male in
the set S × {♂}, where

S = {k ≥ 0∶
(k, ♂) is more attractive than any male that has already been
matched, is compatible with xn+1 , and is not compatible with any
female that is matched in σn

}.
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(We take k ≥ 0 so that S is bounded from below.) On Ω, the set S is unbounded from
above. If σn has j edges, we match (xn+1 , ♀) to the a j+1-th least attractive male in
S × {♂}.

Let σ = lim σn . As a result, the following hold.
• If (x i)i≥0 is an enumeration of A = (Z × {♂}) ∪ ([0,∞) × {♀}), then σ is a perfect

matching of A, with (−∞,−1] × {♀} left unmatched. Such a matching must also be
a stable matching of KZ,Z(p), since every male in the matching prefers their partner
to every female in (−∞,−1].

• If (x i)i≥0 is an enumeration of Z × {♂, ♀}, taking the limit as n →∞, we obtain a
perfect stable matching of KZ,Z(p). The construction ensures that for every k > 0,
the partner of (−k, ♀) belongs to [0,∞) × {♂}, so that σ is not locally finite.

• If (x i)i≥0 is an enumeration of [0,∞) × {♂, ♀}, then σ is a stable perfect
matching of K[0,∞),[0,∞)(p). Combining this with the unique stable matching of
K(−∞,−1],(−∞,−1](p), we obtain a stable perfect matching of KZ,Z(p) with a cut at
− 1

2 , which must be balanced.
It is clear that, in each case, different sequences (an) yield different matchings σ .

Indeed, at the first place two sequences differ, the edge added to the matchings will
also differ. In the last case (locally finite matchings), we have not ruled out that σ is the
unique balanced, tame stable matching. However, excluding this matching still leaves
uncountably many locally finite, balanced, wild stable matchings. Similar statements
for other values of the flow follow by re-indexing.

Finally, note that in the third case, the restrictions to K[0,∞),[0,∞)(p) of the
matchings that we obtain are stable and perfect, and by re-indexing, we obtain that
KI ,I(p) has uncountably many wild stable matchings almost surely for every infinite
interval I that is bounded from below. ∎

Finally, we show that Theorem 1.2 is sharp in the sense that, disregarding constants,
the definition of wildness cannot be strengthened.

Proposition 5.1 Let p = 1 − q ∈ (0, 1) and consider the random bipartite graph
KZ,Z(p). Then there almost surely exists a perfect, locally finite, wild stable matching
of KZ,Z(p) such that

lim sup
i→+∞

log M(σ , i + 1
2)

i
≤ 2 log q−1 .(5.1)

Proof Let (x i)i≥1 be the enumeration of [1,∞) × {♂, ♀} given by x2i−1 = (i , ♂) and
x2i = (i , ♀) for every i ≥ 1. As in the proof of Theorem 1.4, we define a sequence of
partial matchings (σn)n≥0 as follows. Let σ0 be the unique stable perfect matching
of K(−∞,0],(−∞,0]. Having defined σn , if xn+1 is matched in σn , then σn+1 = σn . If
xn+1 is not matched in σn , let σn+1 be obtained from σn by matching xn to the least
attractive member of the opposite gender that is compatible with xn+1, is strictly more
attractive than every individual (of either gender) that is already matched in σn , and
is incompatible with every individual of the same gender as xn+1 that has positive
index and is already matched in σn . As before, we obtain a locally finite stable perfect
matching σ of KZ,Z(p) by taking the limit as n →∞.
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We wish to verify that this matching σ satisfies (5.1). For each n ≥ 0, let Hn be the
index of the most attractive individual (of either gender) that is already matched in
σn . For each n ≥ 1, let Nn be the number of individuals of positive index that are
of the same gender as xn and already matched in σn−1, and note that ⌊(n − 1)/2⌋ ≤
Nn ≤ n − 1. Then, conditional on σn , we either have that xn+1 is already matched in
σn in which case Hn+1 −Hn = 0, or else Hn+1 −Hn − 1 is conditionally distributed
as a geometric random variable with success probability pqn ≤ pqNn+1 ≤ pq⌊n/2⌋. In
particular, it follows that Hn+1 −Hn ≥ p−1q−⌊n/2⌋ for infinitely many n almost surely,
which clearly implies that σ is not tame and is therefore wild almost surely by Theorem
1.2. On the other hand, it also follows that

E[Hn] ≤
n−1
∑
i=0
(1 + 1

pq i ) = q−n+o(n),

and it follows by an easy application of Markov’s inequality and Borel–Cantelli that

lim sup
n→∞

1
n

log Hn ≤ log q−1

almost surely. This immediately implies the claim. ∎
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