SOME GENERALIZATIONS OF BURNSIDE’S THEOREM
N. A. WIEGMANN

1. Introduction. Burnside's Theorem in the theory of group representations
states that a necessary and sufficient condition that a semigroup of matrices
of degree 7 over the complex field be irreducible is that the semigroup contain
n? linearly independent matrices. In the course of dealing with sets of matrices
with coefficients in a division ring, Brauer (1) obtained a generalization of this
theorem which concerned irreducible semigroups with elements in a division
ring. In the present work irreducible semigroups of matrices with elements
in the field of real quaternions are considered and generalizations of Burn-
side’s Theorem of a more specific nature are obtained by using certain properties
of matrices with such elements.

The following facts and terminology may be briefly noted. Let ¥ be a
semigroup (relative to multiplication) of quaternion matrices of degree n. By
the l-rank (i.e., left rank) of ¥ is meant the maximum number of left linearly
independent matrices in U; r-rank has a corresponding meaning. If every
matrix 4 of A is of either form

[Al Az]
0O A,

[Al 0]
As As

where 4, is m X m, m < n, the semigroup is said to be decomposed. If ¥ is
such that there exists a non-singular quaternion matrix P such that the set
PAP~! is decomposed, then U is said to be reducible; if not 9 is said to be
irreducible. According to a result (1, 4.4B) of Brauer’s, Schur’s Lemma holds
for semigroups of matrices with elements in a division ring: If 9 and B are
irreducible semigroups which are intertwined by a matrix P, then P is either
0 or non-singular. This result could be obtained in the real quaternion case
by paralleling Schur’s proof while using the result (3, Theorem 10) that for
every quaternion matrix P there exist unitary quaternion matrices U and V
such that UPV is a real diagonal matrix with non-negative diagonal elements.
It can also be shown that the following is true: If two semigroups U and B
of quaternion matrices are intertwined by a matrix P and if 9 is irreducible,
then either P = 0 or ¥ contains B as an irreducible component.

2. The form of a matrix commutative with an irreducible repre-
sentation.

THEOREM 1. If U is an irreducible semigroup of quaternion matrices, then any
matrix M which commutes with every element of U is of the form M = P~ (kI)P
where k is a complex number and P is a non-singular quaternion matrix.
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Let M be a quaternion matrix with the given property. It is known (3,
Theorem 1) that there exists a non-singular matrix P such that PMP~! = J
is in Jordan normal form with complex elements along the diagonal.

If M is non-derogatory (3), then each 4 in ¥ is such that PAP~! = B,
4+ By + ...+ B,, where each B, is triangular (3, pp. 195), but this contra-
dicts the assumption on oA.

If M is derogatory, J is of the form kI, where % is a complex number, or it
is not. If not, J = J; + J» + ... + J, where this form may be assumed to
be such that J; contains only and all diagonal elements \; which are charac-
teristic roots of M, where \; # \; for 7 # j and where \; = X, for ¢ # j, the
latter according to the Jordan form designated for M in (3). Now either J
has one characteristic root or it has more than one; i.e., either ¢ = 1, above,
or t > 1 in J,. These cases are now considered.

Let J=J,+Jo+...4J, t>1. Let A be any element of ¥ and let
PAP~' = X = (x;;.) It will be shown that

[ x Xz]

X= [0 X; 1

where X, has the same order as that of J;. Let j be the order of J; and let
the first block (in the direct sum which J, represents) of the form

be of order k. Then we have a series of relations of the form

(l) )\2x.<p + Xst1,p = xsp)\h >\2xj+k117 = x]'HC.le’

or

(li) )\2xs11 + x.H—I,p = xs,p—l + xsp)\ly >\2xj+k,p = xj+k.p—1 + xj+k,p)\1y

where, for a fixed p chosen from p = 1,2, ...,7, either (i) or (ii) holds (but

not both); where for p = 1, (i) holds; and where if 2 > 1, j <s <j+ &k,
and where if £ = 1, only the second relations in (i) and (ii) hold. Now one of
two cases occurs:

(a) At least one \; of M is real and there is no loss in generality in assuming
M1 is such a real root. It follows from the second relation in (i) that x,.,, = 0,
and from the first that x,; = 0 for j < s < j + k. For any other p for which
(i) holds, the same is true so that xy, = 0 for j < s < j+ k for these p.
Consider the first p for which (ii) holds; then in (ii), %s,-1 = 0 = x4 1
and so x,4;, = 0 from the second relation, and from the first Aox;14-1, + 0
= 0 + ®;45-1,M s0 that 2,441, = 0 and, in turn, x, = 0forj <s <j+ &
for this p. If the next p for which (ii) holds is treated in a similar fashion it
follows that x,, = 0 for j < s <j+ k, and 1 < p <J.
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(b) If all \; are non-real complex, it follows {rom the second relation in (i)
that x;,41 = 0 (since X2  A; and X2 5 \1) and from the first relation that
xa =0 for j <s <j+ k. For any p for which (i) is true, the same result
holds. Considering the first p for which (i) holds, it follows as in (a) that all
Xy = 0 for this p and the same range of s so that ¢y, = 0 here, also, for
i<s<j+kand | <p <j Now for any subsequent such blocks in J, or
for any such blocks in J3, . . ., J, a similar procedure applies so that x,, = 0
for 1 < p <jand for j </ < n (where X is n X n). So X has the above
form which contradicts the assumption of the theorem.

Let J = J, so that only X\, appears along the diagonal where there must
be an element 1 to the right of at least one Ay. Let J; = Jyy + Joo + . .. + J,
where each J;; is either the single element \; or a matrix with A, along the
diagonal and 1 above cach such \; after the first, and where J;, is definitely
of the latter form. l.et X ;; have the same order as J;; and let

X Xe oo Xy
/Y=

X Xz oo o X

so that, from the assumptions, X, X1, X, and X at least appear and
are not vacuous and k < n.

Now it will be shown that it follows from JX = XJ that each X; is a
triangular matrix with zeros below the main diagonal; it is to be noted here
that when some X,;, 7 # j, is not square, the latter statement will be taken
to mean that any element x;; = 0 when ¢ > j. Then it follows that J; X ;
=XJ;; (,7=1,2,...,k). When ¢ = j, since J;; is non-derogatory, X ;;
is in triangular form (i = 1,2, ..., k). When 1 # j, consider for example X,
as a typical case: J11X 12 = X12J29, and let these be of order s X s, s X ¢,
and ¢t X frespectively. Equating the elements in the first column (and dropping
the subscript on Ay):

(1) MNadxgir=xa0, 1 <71 <5, Mg =xa\;
and from the other columns there result:
(li) A.\'}j + Noiv1,j Xy 1 + .\'[j,\ , /\.ij = Xy, j—1 + ?ij>\ ’

I <I<s and 1 <j=E1,

where the following is to be noted: if X;; consists of one column, only (i)
applies, and if X, consists of only one row, the second relations only in
(1) and (ii) apply. (In the latter case X ;; is already in triangular form.) If A
is real, from the first relation in (1), x;41,0 = 0 for 1 <7 < s; from the first
relation in (ii) xp1,; = ¥, for 1 <7 < s, 1 <j < t. Together these show
Xy = 0 for i > j. If X is non-real complex, from the second relation in (i) x,,
must be complex and from the first x,; = 0 and also, in turn,

Neo11 = X901 = .00 = X = ()
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Since x,; = 0, from the second relation in (ii) x,, is complex and from the
first x5 = 0; similarly x,_12 = ... = x32 = 0. Continuing with all elements
x5, in the last row of X, it will be seen that x;; = 0 for ¢ > j.

For each 4 in 9, PAP~!' = X is of the above type, sectioned as above,
and having each X;; in triangular form as described. Form the matrices

Xll )612 N1k

Xkl XI(ZJ ka
Let X,;; have row order r;; and column order ¢,;; then the first columns of
each of the above matrices have zeros in all the same positions and have,
possibly, non-zero elements only in the 1st, the (r;; 4+ 1)st, the (r11 + 721 + 1)
st,..., the (ri1 + 7o1 4+ ... 4 ri_11 + 1)st positions. By column operations
on the right of X, the following columns of X may be interchanged:

the 2nd and the (¢;; + 1)st,
the 3rd and the (¢11 + 12 + 1)st,
the 4th and the (¢c1; + ¢12 + €13 + 1)st,

the kth and the (¢1; + ¢12 + . .. + c141 + 1)st.

(Note that ¢y > 1.) The resultant matrix is such that the first £ columns
have all-zero rows except for the 1st, the (r;; + 1)st, ..., the (r11 + 721 +
...+ 711+ 1)st. Now

Y11 = C11y Y21 = Ci12y, ¥31 = C13y . - . , Tg—1,1 = C1,x—1

so that if the same operations as above are now performed on the left on the
rows, a similarity transformation will have been applied to X with the result
that a matrix is obtained such that the first 2 columns have all-zero rows
beyond the kth row; therefore, X is similar to a matrix

[Xl Xz]
0 X3’
where X,1s B X k, kB < n.
It follows then that M = P~'(kI)P where k is complex and P is quaternion.

3. Generalizations of Burnside’s Theorem. If 9 is a semigroup con-
sisting of square matrices of degree # with quaternion elements, there may
exist a non-singular (quaternion) matrix P such that PAP~! = U; contains
only matrices with complex elements, or there may not exist such a P. An
example of the former may be obtained by forming P~'%;P where ¥, is any
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complex semigroup and P is a non-singular quaternion matrix. An example
of the latter (other than the set of all # X # quaternion matrices) is the
set, A, of all » X n unitary matrices with quaternion elements. This set is
closed under matrix multiplication. There exists no P such that PIP~! = €
is a complex set; this can be seen as follows: P cannot be complex since then
A would be complex. Also, in the notation of (3, p. 191) no P = P, + jP.,,
P, and P, complex, P, # 0, can provide this. For if so, let U be the set of all
n X n complex unitary matrices; this is a semigroup of complex matrices
which is irreducible under all complex similarity transformations. Since U
is a subset of ¥, P must be such that Pl = ¢,P where §; is composed solely
of complex matrices. From (P; 4+ jP)U = GCi(P, + jP,) it follows that
Pl = €,P, and jP,1 = j§,P, (where §, consists of the complex conjugate
of each matrix in €;). From the first relation and from results in complex
theory, either P, = 0 or @, contains 1l as an irreducible component and
since both €; and U are » X » in dimension, €, is irreducible also, relative
to the complex field. By Schur’s Lemma in complex theory either P; = 0 or
P, is non-singular. The latter must hold for if P, = 0, P, = §,P, and since
Wand G, are irreducible, either P, = 0 also (not possible) or P, is non-singular
in which case A = P-1CP = P, 1-1§jP, = Py 'GP, is complex. Therefore
P, is non-singular. From jP,ll = j§,P,, either P, = 0 (not possible) or P,
is non-singular. Then P = P, 4+ jP, where both P; and P, are non-singular.
But this is not possible because, for example, since (i7)] and 2=%(i + 7)I are
elements of ¥, they must be similar under the P-!, P transformation to
complex matrices C; and C,, respectively. From the first relation it follows that

p,Pi' = PPy,
and from this and the second, the contradictory fact that C, = 0 would result.

THEOREM 2. Let U be an irreducible semigroup of quaternion matrices. Then
M = P(kI)P~', where k is non-real complex, commutes with each element of A
if and only if P7UP = € is a complex set.

If MA = A M where A is any element of A, then
(RI)(P7'AP) = (P'AP)(kI)

and, since k is non-real complex, P7'4P is complex for any 4 in A. The
converse is immediate.

It is now desirable to separate irreducible semigroups of matrices with
quaternion elements into two classes: these which are similar to a complex
semigroup under some quaternion similarity transformation, and those which
are not similar to a complex semigroup under any such transformation. These
cases are considered in turn.

THEOREM 3. Let A be a semigroup of quaternion matrices of degree n which
s not similar to a complex set. If N is irreducible, then N has [-rank n?; and,
conversely, if every semigroup similar to N has l-rank n?, then A is irreducible.
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This will be shown in two ways; in the first use is made of a known theorem
while in the second a direct proof is given.

Let % be a given irreducible semigroup as described. Using the notation
and terminology of Brauer (1, pp. 513, 520), let €(A) denote the commuting
ring of ¥, i.e., the set of all quaternion matrices P which intertwine a set U
of square matrices with itself. This means that for each 4 of A, AP = PA. It
has been seen above that any matrix which commutes with each element of
an irreducible semigroup is of the form P~!(¢I)P. Because of the given nature
of U ¢ is real. Therefore any M = P~'(cI)P = cI is a real scalar matrix so
that here €(¥) is the set of all real scalar matrices. Theorem (9.2A) of Brauer’s
work states the following: let G be an irreducible semigroup of degree n. If G
has /-rank & and G () has r-rank », then #? < kv. In this instance the r-rank
v of €(A) is obviously 1 so that n* < k. On the other hand k# < n?, so that
k= n%

This same result can be obtained directly as in the complex case as follows.
Let A = (an) be any quaternion matrix of an irreducible semigroup A of

order 7 as given. There may exist #n* quaternion numbers ky,, A = 1,2, ..., #;
k=1, 2,... nsuch that for each 4 in A
n
Z ax)\k)\x = Oy
K, A=1

if K = (k\) and if
x(AK) = ;laxka

this can be expressed, as usual, as x(AK) = 0. If there exists more than one
such K-matrix, any right linear combination of them will also be such a
K-matrix.

LEmMMA. If A has l-rank v where A is of degree n, then the number of right
linearly independent K-matrices is n*> — r.

For if
4, = (@R), p=12,...,7
is a set of left linearly independent matrices of ¥, for a given K-matrix, then
n
2 adkby =0, p=12...,r
A k=1

This is a right system of r homogeneous linear equations in #? unknowns,
Exi. The 7 rows of the » X n? coefficient matrix are left linearly independent
and so (see 2, p. 41, for example) there exist n> — r right linearly independent
solutions.

Now if ¥ is irreducible and not similar to a complex set, it will be shown
that there can exist no system of non-zero K matrices. Let us assume the
contrary. As in the complex case the following may be noted first of all: For
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any 4 in A, AK is itself a K-matrix; if Ky, ..., K, is a (right linearly
independent) basis for all K-matrices, each 4 in A determines an m X m
matrix R = (r,,) from

mn

‘{KP=Z Kurdpv p = l,2,...,m;

o=1
the set R of all such matrices determined from a given basis is a semigroup
of degree m which is homomorphic to ; under a change of a K-basis, the
set N becomes a similar set P7'RP where P = (p;;) is a non-singular matrix
and

"

L, = Z K.pqp o= 12,...,m,
o=1

is the new K-basis; and the K-basis may be chosen so that 9 is of the form

[sm snz]
0 R4

where 9, is irreducible and of degree m; where 1 < m; < m. If a right linearly

independent set K, , ..., K, existed, then for anv 4 in ¥,
my
AK, = > Korq,, o= 12,...,m
o=1
(where only 0, is utilized). Let
K,, — (k\p))
so that
k3 o mi
> anki =2 k., =12, . omik=12 ... n;u=12 ... n
A==1 o=1
et

) . . . . .
P,=(ky)),u=12,...  ,n,i=12 ..., n;7=12,...,m,.

Then AP, = P,R for all 4 in A and all corresponding R in 9, and for
u=1,2,...,n The conditions of Schur's Lemma are met so that either a
given P, = 0 or is non-singular. If all P, = 0 foru = 1,2,..., n, then

Z"ly [{37 ce 1(1141

are all zero matrices; but this contradicts their linear independence. If not all
P, = 0, take any such non-singular P, so that 4 = P,RP,!; if the proper
change of K-basis is made, R can be taken to be the same as A. For each 4
in A, AP, = P,A and since the conditions of Theorem 1 are met, each non-
singular P, = Q,(c,[)Q,~' where ¢, is complex. From Theorem 2, since ¥
is not similar to a complex set under any quaternion similarity transforma-

tion, P, = ¢, I (u = 1,2,...,n) where ¢, is real. Then it follows that each
K, (p=1,2,...,m = n), is such that each row except the pth is zero
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and this row is of the form [cy, ¢s, . . ., ¢,] for each. For any 4 of ¥ the matrix
AK , has for its jth diagonal position the elementa;, c; (p = 1,2, ..., m; = n).
Now x(4K,) =0 (p =1,2,...,n), so that if AT denotes the transpose
of any 4 in ¥,
AT o 0

Ca 0 ,

Cp 0
and since all ¢; are real, the transpose of the above yields [c1, ¢s, ..., ¢,] . 4
=0.[c1, ¢ ...,¢,]=10,0,...,0]. Now U is irreducible so by the corollary
to Schur’s Lemma, either ” = 0 or the representation 0 contains I as an
irreducible component. Since the latter is not possible, each ¢; = 0; but this
means that each Kp = 0 which contradicts the linearly independent character

of the Kop.
The converse of the theorem follows directly.
In connection with the latter proof, it can be verified that the following

generalization is true: let O be an abstract semigroup; let Ay, As, Ay, . . . be
a finite number of irreducible semigroups of quaternion matrices of degrees
mi, Ms, My, ..., respectively, which are homomorphic to & (relative to

matrix multiplication) such that no two semigroups are similar to each other,
and such that none is similar to a semigroup of complex matrices. Then there

exists no set of non-zero matrices, K, L, 1/, ... such that x(4K) + x(BL)
+ x(CM) 4+ ... = 0 simultaneously for all sets of matrices 4, B, C,...
which correspond to the same element of O and belong to Ay, As, As, . . .,

respectively. A proof may be used which parallels that of the complex case
and depends on the direct proof of Theorem 3 above. Also, as in this case,
one can then state the following: Let I and B be irreducible semigroups of
quaternion matrices which are homomorphic to a semigroup & and are not
similar to complex semigroups; if the traces of the elements of 3 and B which
correspond to the same element of & are the same, then ¥ and B are similar.
Since x(4) — x(B) = 0 for any 4 and B of ¥ and B, respectively, which
correspond to the same element of &, the only alternative is that ¥ and B
are similar.

Consider next the case where ¥ is an irreducible semigroup of quaternion
matrices of degree n and PIP-! = & is a complex semigroup; let & denote
the set obtained from f by taking the ordinary complex conjugate of each
matrix of §. If Q is a complex matrix such that CQ = QC for each C in &,
R and R will be said to be interjoined by Q. There may exist such a Q which is
non-singular or there may not. It is convenient to consider these cases
separately. In this connection the following may be noted:
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THEOREM 4. Let A be an irreducible semigroup and let P~UAP = & be a
complex set. If ® and R are interjoined by means of a non-singular complex
matrix, then every complex semigroup similar to U has this property.

Let P~1YP = R,and Q-1AQ = RK:becomplex. Then Y = PR,P~! = QK0!
or 1P71Q = P71QR,; e, P7IQ = M = M, + jM, (where M, and M, are
complex matrices) intertwines £; and .. Since R, (M, + jMs) = (M1 + jM2) R,
1M, = M2 and .M, = M. Since K1, §s, and R, are irreducible and
all matrices involved are complex, M, and M, are either 0 or non-singular
(except that both cannot be 0) and Q = P(M; + jM,). Now assume there
exists a complex matrix .S such that SCS—! = € for each C in ®;. Then there
exists a matrix K in R such that at least one of CM; = MK and C M., = M.K
holds where M; and M, are fixed. If the former, then M, KM,~! = ¢ = SCS™!
= SM\KM;7'S™; if the latter, M.KM,' = C = S-1CS = S~ M,KM;™'S.
Since each K in , can be accounted for in this way; the desired result is
obtained.

A result of Brauer’s, of use in what follows, states the following: If & is
an irreducible semigroup of degree #, let E; denote the row (0,0,...,0,
1,0,...,0) with 7th component 1; let 2 be the largest number of indices
w1, g, . .., u, with 1 < %; < n such that conditions >_E,C, = 0, C, in €(¥),
u ranging over ui, ..., u, imply C, = 0 for all u;. Then the [-rank of ®
is equal to nh (1, pp. 531-532).

If PP = R is a complex semigroup, if ¥ is irreducible, and if M is a
matrix in C(A), then P7APP'MP = P 'MPP'YP or KN = N where
N = P 'MP = M, + jM., M, and M, complex. Then M, = MR and I
and R are interjoined by M.

(a) If no non-singular complex matrix interjoins & and &, then M, = 0
and M, is any complex scalar matrix. Therefore A7 = P(k,JJ)P~' and C(A)
consists of all matrices P(k,[)P~! where P is fixed and k; is any real or com-
plex number. Let P = P; 4+ jP, = (p,;) where P,and P,are complex matrices,
and let the rank of the n X 2xn matrix [Py, P.] be 7. Let uy, u,, . . ., u, denote
a set of natural numbers between 1 and 7 such that the correspondingly
numbered rows of [P, P,] are linearly independent. Form the expression
> EP(k,J)P~! = 0 where the summation is over the above u;, us, . . ., #, and
k, is any complex number; this is equivalent to > E,P(k,I) = 0. Since E,P
is the uth row of P, this is equivalent to the system of # linear homogeneous
equations T -« = 0 in » (complex) unknowns,

kuu kzlgv coe ey ku,v

where T is the # X 7 matrix such that the element in the 7th row and jth
column is p,;; and « is a column vector whose transpose is

[kzuv kugy L] ku,—];

let T'= T+ jT, where Ty and T, are complex. Since the a vector is to be
complex, T -« = 0 is equivalent to
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Tl]‘ _
[T2 a=0.

Since the coefficient matrix is of rank r, only the zero solution is possible,
i.e., P(k,J)P~' = 0. If any number of rows greater than 7 is taken a like set
of equations results but not all solutions are necessarily zero so that not
all P(k,I)P~! are zero. Therefore, & = r.

THEOREM 5. If U s irreducible of degree n, and if P7'UAP = R is complex
where no non-singular complex matrix interjoins § and &, then A has l-rank
rn where v is the rank of the matrix [Py, Ps] where P = Py + jP,, P, and P
complex.

(b) If P~19[P = & is interjoined with § under a non-singular complex
matrix, it is convenient to consider separately the cases in which f is real
and in which & is not real.

If & is real, then in the above M = MR and M, = M,§{ so that both
M, and M, are complex scalar matrices. In this case €(A) consists of all
matrices of the form P(k; + jl,)IP~! (where k;and [, are any complex numbers
and P is fixed), i.e., of the form P(¢q,[)P~! where ¢, is any quaternion element.
Consider the matrix PT and let 7 be its rank (i.e., the number of columns in
every maximal set of right linearly independent columns or the number of
rows in every maximal set of left linearly independent rows) ; choose a maximal
set of 7 right linearly independent columns of P and let u;, s, . . . , u, denote
the corresponding column numbers. Form the sum > E,P(qJI)P~' = 0, as
before, over this set of u; this is equivalent to >_E,P(q,[) = 0, or, as before,
to the set of equations 7. @ = 0 where T has as its columns the above men-
tioned set of 7 right linearly independent columns of PT and « is now a column
vector of r (quaternion) unknown components. Such a system has only the
zero solution; and, as before, if any set of u-indices larger in number than r
were taken, non-zero solutions could be obtained.

THEOREM 6. If A s irreducible of degree n and if P~'UP = R 1is real, then
A has l-rank rn where r is the rank of P”.

If & is not real but is interjoined with & by means of a non-zero complex
matrix, then (with reference to the paragraph above (a)) M, = kI is complex
scalar and an M, which is non-singular exists so that P~'MP = kI + jM,,
M, non-singular. Let .S be any other non-singular complex matrix interjoining
® and ®. Then C = SCS—! = M,CM,! for any C in & so that M,'SC
= CM,'S for any C in &; since R is irreducible, M,~1S = /I, I complex, so
that S = IM,. In this case G(A) consists of all matrices of the form
P(kJd + jl,M:)P~' where P and M, are fixed and k; and /; are complex
scalars. (It may be noted that M, is itself a non-zero complex scalar if and
only if & is real). Let M, = Z = (z;;) for simplicity. Let P = Py 4 jP,, as
before, and form S = [Py,P,]; if ¢ rows of S are chosen to form a matrix S, S;
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may be considered to be of the form S, = [Q,R] where Q and R are composed
of corresponding rows of P; and P., respectively. Let s be the maximum
number of rows of S which are linearly independent and form [Q,R] such that

L o

is of rank 2s. Then consider
D EP (kT 4 jL,Z)P = 0

where the summation is to be taken over the numbers of the s rows of S chosen
as above, uy, us, . . . u.. After discarding the P=! on the right and noting that
Z, ki and [; are in the complex field, it can be seen that this relationship is
equivalent to the set of 2n equations in 2s (complex) unknowns

QT —ZTRT
[ R" zZro" } ra=0

where

7
a = lkup cee ku_,v lulv cee [u,\-]'

Since the coefficient matrix is of rank 2s, only the 0 solution is possible; i.c.,
if the above relation is to hold, all the matrices from € (2() must be 0 matrices.
It is evident that s is the largest number of %, such that this is true.

THEOREM 7. If N is irreducible of degree n, if P~UP = § is non-real complex,
and if & and § are interjoined by means of a non-singular complex Z, then A
has [-rank sn where, when P = Py 4 jP., s is the maximum number of linearly
independent rows of [Py, Ps] which form [Q,R] such that

L e
-RZ 0z

is of rank 2s.
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