Canad. Math. Bull. Vol. 17 (2), 1974.

BOUNDEDNESS OF MULTIPLICATIVE LINEAR FUNCTIONALS

BY T. HUSAIN⁽¹⁾ AND S. B. NG⁽²⁾

Let A be a complex sequentially complete commutative locally *m*-convex topological algebra which is symmetric with continuous involution. The purpose of this note is to prove that every multiplicative linear functional on A is bounded (Theorem 3). In fact, we prove a more general result for operators on real algebras (Theorem 1) from which we derive the above result.

Let A denote a real sequentially complete commutative locally *m*-convex topological algebra with the family of seminorms $\{\| \cdots \|_{\alpha}, \alpha \in D\}$ [1]. Let E be a real commutative Banach algebra with the norm $\| \cdots \|$ such that for any sequence $\{x_n\}$ in E, $\|x_n\| \ge 1$, there exists $\varepsilon > 0$ and a sequence of real-valued multiplicative linear functionals $f_n(n \ge 1)$ on E satisfying $\inf_n |f_n(x_n)| \ge \varepsilon$. It is not difficult to see (Thanks to referee) that such an algebra with identity can be regarded as a subalgebra of $C_R(M)$, the algebra of continuous real functions on a compact Hausdorff space M with sup norm topology.

First we prove the following main result:

THEOREM 1. Let A and E be as mentioned above. If T is a linear operator which maps A into E such that $T(x^2)=T(x)^2$, then T is bounded (i.e. takes bounded sets into bounded sets).

Proof. Suppose that T is not bounded. Then there is a bounded sequence $\{x_n\}$ in A such that $||Tx_n|| \ge n$ for all $n \ge 1$. Since $||Tx_n/n|| \ge 1$, there exists $\varepsilon > 0$ and a sequence of real-valued multiplicative linear functionals f_n on E such that $\inf_n |f_n(y_n)| \ge \varepsilon$, where $y_n = Tx_n/n = T(x_n/n)$.

Let $z_n = (\gamma y_n/\varepsilon)^2$, where $\gamma > 1$ is fixed, then $f_n(z_n) \ge \gamma^2 > 1$, and $f_m(z_n) = f_m(\gamma y_n/\varepsilon)^2 \ge 0$ for all $m, n \ge 1$. Put $a_n = (\gamma x_n/\varepsilon)^2$, clearly $\{a_n\}$ is a bounded sequence in A, and $z_n = T(a_n/n^2)$. Therefore for each $\alpha \in D$, there is a constant C_{α} such that $||a_n||_{\alpha} < C_{\alpha}$ for all n.

Define $D_k = \{\alpha \in D : ||a_n||_{\alpha} < k \text{ for all } n\}$, then $D_1 \subseteq D_2 \subseteq \cdots$ and $D = \bigcup_{k \ge 1} D_k$. We now employ a technique in [2], and define recursively a subsequence $\{b_k\}$ of $\{a_n/n^2\}$ as follows: Let $b_1 = a_1$; if b_1, \ldots, b_{k-1} are defined, then one can choose $b_k = a_{n_k}/n_k^2$ for sufficiently large k such that

(*)
$$||B_k^{(j)} - B_{k-1}^{(j)}||_{\alpha} \le 2^{-k}$$
 for all $\alpha \in D_k$ and $1 \le j \le k-1$,

⁽¹⁾ This work was supported by an N.R.C. grant.

⁽²⁾ This work was done under an NRC Postdoctoral Fellowship.

where

$$B_k^{(j)} = b_j + (B_{j+1} + (\cdots + (b_{k-1} + b_k^2)^2 \cdots)^2)^2.$$

We see that $B_k^{(j)} - B_{k-1}^{(j)}$ is a multinomial with positive integral coefficients, because $B_{k-1}^{(j)}$ is a part of $B_k^{(j)}$ in the expansion. Since the seminorms are submultiplicative, we have

$$\begin{split} \|B_{k}^{(j)} - B_{k-1}^{(j)}\|_{\alpha} &\leq \{\|b_{j}\|_{\alpha} + (\|b_{j+1}\|_{\alpha} + (\cdots + (\|b_{k-1}\|_{\alpha} + \|b_{k}\|_{\alpha}^{2})^{2} \cdots)^{2})^{2}\} \\ &- \{\|b_{j}\|_{\alpha} + (\|b_{j+1}\|_{\alpha} + (\cdots + (\|b_{k-2}\|_{\alpha} + \|b_{k-1}\|_{\alpha}^{2})^{2} \cdots)^{2})^{2}\} \end{split}$$

and since $||a_i||_{\alpha} \leq k$ for all $\alpha \in D_k$, and for sufficiently large m, $||b_m||_{\alpha} = ||^a n_m / n_m^2 ||_{\alpha} \leq k/n_m^2$ for all $\alpha \in D_k$, $m=j, \ldots$, i.e. $||b_k||_{\alpha}$ is sufficiently small, we can ensure that the inequality (*) holds.

Furthermore, for any $\alpha \in D$, $\alpha \in D_k$ for some k, and if $p > q \ge k$, $\alpha \in D_{k+1}, \ldots, D_p$. By (*) we obtain, $||B_p^{(j)} - B_q^{(j)}||_{\alpha} = ||\sum_{k=q+1}^p (B_k^{(j)} - B_{k-1}^{(j)})||_{\alpha} \le \sum_{k=q+1}^p ||B_k^{(j)} - B_{k-1}^{(j)}||_{\alpha} \le \sum_{k=q+1}^p 2^{-k}$ for all j, $1 \le j \le q-1$. Hence for each $j \ge 1$, $\{B_k^{(j)}\}_{k>j}$ is a Cauchy sequence in A.

Let $c_j = \lim_{k \to \infty} B_k^{(j)}$. By construction, $c_1 = b_1 + c_2^2, \ldots, c_j = b_j + c_+^2$. Since $b_j = a_{n_j}/n_j^2$, we have $f_{n_j}(Tb_j) = f_{n_j}(T(a_{n_j}/n_j^2)) = f_{n_j}(z_{n_j}) \ge \gamma^2$, $f_{n_j}(Tc_{j+1}^2) = f_{n_j}(Tc_{j+1})^2 \ge 0$, and $f_{n_j}(Tb_j) = f_{n_j}(z_{n_j}) \ge 0$, $i = 1, \ldots, j-1$. Whence by induction,

$$\begin{aligned} f_{n_j}(Tc_1) &= f_{n_j}(T(b_1 + (b_2 + (\cdots + (b_j + c_{j+1}^2)^2)))) \\ &= f_{n_j}(Tb_1) + (f_{n_j}(Tb_2) + (\cdots + (f_{n_j}(Tb_j) + f_{n_j}(Tc_{j+1}^2))^2) \geq \gamma^{2j}, \end{aligned}$$

for all $j \ge 1$. This is impossible, since $|f_{n_i}(Tc_1)| \le ||Tc_1|| < \infty$ for all j.

Replacing E in Theorem 1 by the algebra of real numbers R, we obtain:

THEOREM 2. If A is a real sequentially complete commutative locally m-convex topological algebra, then every real-valued multiplicative linear functional on A is bounded.

Now let A be a sequentially complete commutative locally *m*-convex topological algebra over the complex field. An *involution* on A is, a function $x \rightarrow x^*$ from A into A that is conjugate linear and satisfies $(xy)^* = y^*x^*$, $x^{**} = x$ for all x, $y \in A$. The set H of all hermitian elements (those elements x satisfying $x^* = x$) is a real subalgebra of A. Consider A as a real vector space, then it is the direct sum of subspaces H and *iH* (i.e. A = H + iH). Moreover, if A has a continuous involution, then H is sequentially complete, and any bounded set B in A is contained in $B_H + iB'_H$ (i.e. for all $x \in B$, there exists $y \in B_H$ and $z \in B'_H$ such that x = y + iz), where B_H and B'_H are bounded sets in H. We say that A is symmetric if $-x^*x$ is advertible (i.e. invertible for the composition \circ defined by $x \circ y = x + y - xy$) for all $x \in A$. A familiar argument [1, Lemma 6.4] shows that if A is symmetric, then every multiplicative linear functional on A is real-valued on H. The following theorem generalizes [1, Th. 12.6].

[June

1974] BOUNDEDNESS OF FUNCTIONALS

THEOREM 3. If A is a commutative sequentially complete locally m-convex topological algebra over the complex field that is symmetric with a continuous involution, then every multiplicative linear functional on A is bounded.

Proof. Let f be a multiplicative linear functional on A. A is the direct sum of real subspaces H and *iH*, where H is the set of all hermitian elements in A. Moreover, H is a real subalgebra of A. For any bounded set B in $A, B \subseteq B_H + iB'_H$ where B_H and B'_H are bounded sets in H. As the restriction f_H of f to H is real-valued, $f_H(B_H)$ and $f_H(B'_H)$ are bounded by Theorem 2, and hence f(B) is bounded.

REFERENCES

1. E. A. Michael: Locally multiplicatively-convex topological algebras, Amer. Math. Soc. Memoirs No. 11, 1952.

2. Do-Sin Sya: On semi-normed rings with involutions, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 509-528.

MCMASTER UNIVERSITY AND UNIVERSITY OF BRITISH COLUMBIA