BOUNDEDNESS OF MULTIPLICATIVE LINEAR FUNCTIONALS

BY
T. HUSAIN ${ }^{(1)}$ AND S. B. $\mathrm{NG}^{(2)}$

Let A be a complex sequentially complete commutative locally m-convex topological algebra which is symmetric with continuous involution. The purpose of this note is to prove that every multiplicative linear functional on A is bounded (Theorem 3). In fact, we prove a more general result for operators on real algebras (Theorem 1) from which we derive the above result.
Let A denote a real sequentially complete commutative locally m-convex topological algebra with the family of seminorms $\left\{\|\cdots\|_{\alpha}, \alpha \in D\right\}[1]$. Let E be a real commutative Banach algebra with the norm $\|\cdots\|$ such that for any sequence $\left\{x_{n}\right\}$ in $E,\left\|x_{n}\right\| \geq 1$, there exists $\varepsilon>0$ and a sequence of real-valued multiplicative linear functionals $f_{n}(n \geq 1)$ on E satisfying $\inf _{n}\left|f_{n}\left(x_{n}\right)\right| \geq \varepsilon$. It is not difficult to see (Thanks to referee) that such an algebra with identity can be regarded as a subalgebra of $C_{R}(M)$, the algebra of continuous real functions on a compact Hausdorff space M with sup norm topology.

First we prove the following main result:
Theorem 1. Let A and E be as mentioned above. If T is a linear operator which maps A into E such that $T\left(x^{2}\right)=T(x)^{2}$, then T is bounded (i.e. takes bounded sets into bounded sets).

Proof. Suppose that T is not bounded. Then there is a bounded sequence $\left\{x_{n}\right\}$ in A such that $\left\|T x_{n}\right\| \geq n$ for all $n \geq 1$. Since $\left\|T x_{n} / n\right\| \geq 1$, there exists $\varepsilon>0$ and a sequence of real-valued multiplicative linear functionals f_{n} on E such that $\inf _{n}\left|f_{n}\left(y_{n}\right)\right| \geq \varepsilon$, where $y_{n}=T x_{n} / n=T\left(x_{n} / n\right)$.

Let $z_{n}=\left(\gamma y_{n} / \varepsilon\right)^{2}$, where $\gamma>1$ is fixed, then $f_{n}\left(z_{n}\right) \geq \gamma^{2}>1$, and $f_{m}\left(z_{n}\right)=$ $f_{m}\left(\gamma y_{n} / \varepsilon\right)^{2} \geq 0$ for all $m, n \geq 1$. Put $a_{n}=\left(\gamma x_{n} / \varepsilon\right)^{2}$, clearly $\left\{a_{n}\right\}$ is a bounded sequence in A, and $z_{n}=T\left(a_{n} / n^{2}\right)$. Therefore for each $\alpha \in D$, there is a constant C_{α} such that $\left\|a_{n}\right\|_{\alpha}<C_{\alpha}$ for all n.

Define $D_{k}=\left\{\alpha \in D:\left\|a_{n}\right\|_{\alpha}<k\right.$ for all $\left.n\right\}$, then $D_{1} \subseteq D_{2} \subseteq \cdots$ and $D=\bigcup_{k \geq 1} D_{k}$. We now employ a technique in [2], and define recursively a subsequence $\left\{b_{k}\right\}$ of $\left\{a_{n} / n^{2}\right\}$ as follows: Let $b_{1}=a_{1}$; if b_{1}, \ldots, b_{k-1} are defined, then one can choose $b_{k}=a_{n_{k}} / n_{k}^{2}$ for sufficiently large k such that

$$
\begin{equation*}
\left\|B_{k}^{(j)}-B_{k-1}^{(j)}\right\|_{\alpha} \leq 2^{-k} \text { for all } \alpha \in D_{k} \text { and } 1 \leq j \leq k-1 \tag{}
\end{equation*}
$$

[^0]where
$$
B_{k}^{(j)}=b_{j}+\left(B_{j+1}+\left(\cdots+\left(b_{k-1}+b_{k}^{2}\right)^{2} \cdots\right)^{2}\right)^{2}
$$

We see that $B_{k}^{(j)}-B_{k-1}^{(j)}$ is a multinomial with positive integral coefficients, because $B_{k-1}^{(j)}$ is a part of $B_{k}^{(j)}$ in the expansion. Since the seminorms are submultiplicative, we have

$$
\begin{aligned}
&\left\|B_{k}^{(j)}-B_{k-1}^{(j)}\right\|_{\alpha} \leq\left\{\left\|b_{j}\right\|_{\alpha}+\left(\left\|b_{j+1}\right\|_{\alpha}+\left(\cdots+\left(\left\|b_{k-1}\right\|_{\alpha}+\left\|b_{k}\right\|_{\alpha}^{2}\right)^{2} \cdots\right)^{2}\right)^{2}\right\} \\
& \quad-\left\{\left\|b_{j}\right\|_{\alpha}+\left(\left\|b_{j+1}\right\|_{\alpha}+\left(\cdots+\left(\left\|b_{k-2}\right\|_{\alpha}+\left\|b_{k-1}\right\|_{\alpha}^{2}\right)^{2} \cdots\right)^{2}\right)^{2}\right\}
\end{aligned}
$$

and since $\left\|a_{i}\right\|_{\alpha} \leq k$ for all $\alpha \in D_{k}$, and for sufficiently large $m,\left\|b_{m}\right\|_{\alpha}=\left\|{ }^{a} n_{m} / n_{m}^{2}\right\|_{\alpha} \leq$ k / n_{m}^{2} for all $\alpha \in D_{k}, m=j, \ldots$, i.e. $\left\|b_{k}\right\|_{\alpha}$ is sufficiently small, we can ensure that the inequality $\left({ }^{*}\right)$ holds.

Furthermore, for any $\alpha \in D, \alpha \in D_{k}$ for some k, and if $p>q \geq k, \alpha \in D_{k+1}, \ldots$, D_{p}. By $\left(^{*}\right)$ we obtain, $\left\|B_{p}^{(j)}-B_{\alpha}^{(j)}\right\|_{\alpha}=\left\|\sum_{k=q+1}^{p}\left(B_{k}^{(j)}-B_{k-1}^{(j)}\right)\right\|_{\alpha} \leq \sum_{k=q+1}^{p}\left\|B_{k}^{(j)}-B_{k-1}^{(j)}\right\|_{\alpha} \leq$ $\sum_{k=q+1}^{p} 2^{-k}$ for all $j, 1 \leq j \leq q-1$. Hence for each $j \geq 1,\left\{B_{k}^{(j)}\right\}_{k>j}$ is a Cauchy sequence in A.

Let $c_{j}=\lim _{k \rightarrow \infty} B_{k}^{(j)}$. By construction, $c_{1}=b_{1}+c_{2}^{2}, \ldots, c_{j}=b_{j}+c_{+}^{2}$. Since $b_{j}={ }^{a} n_{j} / n_{j}^{2}$, we have $f_{n_{j}}\left(T b_{j}\right)=f_{n_{j}}\left(T\left({ }^{a} n_{j} / n_{j}^{2}\right)\right)=f_{n_{j}}\left(z_{n_{j}}\right) \geq \gamma^{2}, f_{n_{j}}\left(T c_{j+1}^{2}\right)=f_{n_{j}}\left(T c_{j+1}\right)^{2} \geq 0$, and $f_{n_{j}}\left(T b_{i}\right)=f_{n_{j}}\left(z_{n_{i}}\right) \geq 0, i=1, \ldots, j-1$. Whence by induction,

$$
\begin{aligned}
f_{n_{j}}\left(T c_{1}\right) & =f_{n_{j}}\left(T\left(b_{1}+\left(b_{2}+\left(\cdots+\left(b_{j}+c_{j+1}^{2}\right)^{2}\right)^{2}\right)\right)\right) \\
& =f_{n_{j}}\left(T b_{1}\right)+\left(f_{n_{j}}\left(T b_{2}\right)+\left(\cdots+\left(f_{n_{j}}\left(T b_{j}\right)+f_{n_{j}}\left(T c_{j+1}^{2}\right)\right)^{2}\right)^{2}\right) \geq \gamma^{2 j}
\end{aligned}
$$

for all $j \geq 1$. This is impossible, since $\left|f_{n_{j}}\left(T c_{1}\right)\right| \leq\left\|T c_{1}\right\|<\infty$ for all j.
Replacing E in Theorem 1 by the algebra of real numbers R, we obtain:
Theorem 2. If A is a real sequentially complete commutative locally m-convex topological algebra, then every real-valued multiplicative linear functional on A is bounded.

Now let A be a sequentially complete commutative locally m-convex topological algebra over the complex field. An involution on A is, a function $x \rightarrow x^{*}$ from A into A that is conjugate linear and satisfies $(x y)^{*}=y^{*} x^{*}, x^{* *}=x$ for all x, $y \in A$. The set H of all hermitian elements (those elements x satisfying $x^{*}=x$) is a real subalgebra of A. Consider A as a real vector space, then it is the direct sum of subspaces H and $i H$ (i.e. $A=H+i H$). Moreover, if A has a continuous involution, then H is sequentially complete, and any bounded set B in A is contained in $B_{H}+i B_{H}^{\prime}$ (i.e. for all $x \in B$, there exists $y \in B_{H}$ and $z \in B_{H}^{\prime}$ such that $x=y+i z$), where B_{H} and B_{H}^{\prime} are bounded sets in H. We say that A is symmetric if $-x^{*} x$ is advertible (i.e. invertible for the composition \circ defined by $x \circ y=x+y-x y$) for all $x \in A$. A familiar argument [1, Lemma 6.4] shows that if A is symmetric, then every multiplicative linear functional on A is real-valued on H. The following theorem generalizes [1, Th. 12.6].

Theorem 3. If A is a commutative sequentially complete locally m-convex topological algebra over the complex field that is symmetric with a continuous involution, then every multiplicative linear functional on A is bounded.

Proof. Let f be a multiplicative linear functional on $A . A$ is the direct sum of real subspaces H and $i H$, where H is the set of all hermitian elements in A. Moreover, H is a real subalgebra of A. For any bounded set B in $A, B \subseteq B_{H}+i B_{H}^{\prime}$ where B_{H} and B_{H}^{\prime} are bounded sets in H. As the restriction f_{H} of f to H is real-valued, $f_{H}\left(B_{H}\right)$ and $f_{H}\left(B_{H}^{\prime}\right)$ are bounded by Theorem 2, and hence $f(B)$ is bounded.

References

1. E. A. Michael: Locally multiplicatively-convex topological algebras, Amer. Math. Soc. Memoirs No. 11, 1952.
2. Do-Sin Sya: On semi-normed rings with involutions, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 509-528.

McMaster University and
University of British Columbia

[^0]: ${ }^{(1)}$ This work was supported by an N.R.C. grant.
 ${ }^{(2)}$ This work was done under an NRC Postdoctoral Fellowship.

