
The Journal of Symbolic Logic

Volume 87, Number 4, December 2022

BOOLEAN TYPES IN DEPENDENT THEORIES

ITAY KAPLAN , ORI SEGEL , AND SAHARON SHELAH

Abstract. The notion of a complete type can be generalized in a natural manner to allow assigning a
value in an arbitrary Boolean algebra B to each formula. We show some basic results regarding the effect
of the properties of B on the behavior of such types, and show they are particularity well behaved in the
case of NIP theories. In particular, we generalize the third author’s result about counting types, as well as
the notion of a smooth type and extending a type to a smooth one. We then show that Keisler measures
are tied to certain Boolean types and show that some of the results can thus be transferred to measures—in
particular, giving an alternative proof of the fact that every measure in a dependent theory can be extended
to a smooth one. We also study the stable case. We consider this paper as an invitation for more research
into the topic of Boolean types.

§1. Introduction. A complete type over a set A in the variable x is a maximal
consistent set of formulas from Lx(A), the set of formulas in x with parameters
from A. Of course, one can think of Lx(A) as a Boolean algebra by identifying
formulas which define the same set in C (the monster model). Viewed this way, a
type can also be defined as a homomorphism of Boolean algebras from Lx (A) to
the Boolean algebra 2. The idea behind this work is to generalize this definition by
allowing an arbitrary Boolean algebraB in the range. We call these homomorphisms
B-types over A (see Definition 2.3). Without any assumptions, Boolean types may
behave very wildly, but it turns out that if the ambient theory T is dependent (NIP)
then there are some restrictions on their behavior which gives some credence to the
claim that this is the right context to study such types in full generality.

Let us consider an example. Suppose that T is the theory of the random graph
in the language {R} and that B is any Boolean algebra. Let M |= T be of size
≥ |B| and let h :M → B be a surjective map. Let p : Lx (M ) → B be the unique
homomorphism defined by mapping formulas of the form x R a to h (a) and
formulas of the form x = a to 0 (such a homomorphism exists by quantifier
elimination and [5, Proposition 5.6]). Thus for any B there is a type whose image
has size |B|.

However, when T is NIP (dependent) this fails. For example, suppose that
T = DLO (the theory of (Q, <)), and suppose that B is a Boolean algebra with
c.c.c (the countable chain condition: if 〈ai | i < ℵ1 〉 are non-zero elements then
for some i, j < ℵ1, ai ∧ aj �= 0), for example, the algebra of measurable sets up
to measure 0 in some (real) probability space. Let M be any model and let
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p : Lx (M ) → B be any B-type. Suppose that the image of p has size
(
2ℵ0
)+

. By
quantifier elimination, the image of p is the algebra generated by elements of
the form p(x < a) for a ∈M (since x = a is equivalent to ¬ (x < a ∧ a < x)).

It follows that |{p (x < a) | a ∈M }| =
(
2ℵ0
)+

, so we can find
〈
ai

∣∣∣ i < (2ℵ0
)+ 〉

such that p (x < ai) �= p (x < aj) for i �= j. By Erdős–Rado, we may assume
that 〈ai | i < �1 〉 is either increasing or decreasing. Assume the former. Then
p (x < ai) <B p (x < aj) so p (ai ≤ x) · p (x < aj) = p (ai ≤ x < aj) �= 0 for all
i < j < �1 and thus {p (ai ≤ x < ai+1) | i < �1 } is a set of size ℵ1 of nonzero
mutually disjoint elements from B, contradiction. This boundedness of the image
generalizes to any NIP theory T (see Proposition 2.12 below).

Let us consider another example. In the classical settings, any type can be realized
in an elementary extension. Once a type is realized, it has a unique extension to any
model. Boolean types that have unique extensions are called smooth. Going back to
the theory of the random graph, let us assume that B is the algebra of Borel subsets
of 2κ up to measure 0 (with the measure � being the product measure; see [2, 254J]),
and assume that |M | ≥ κ. Let h :M → κ be surjective. Let p : Lx (M ) → B be
defined by p (x R a) = Uh(a) = {� ∈ 2κ | � (h (a)) = 1} so that its measure is 1/2
(to be precise we should put the class of this set, but we will ignore this nuance
for this discussion) and p (x = a) = 0 for any a ∈M (again such a B-type exists).
Note that ifN �M and q is a B-type extending p, then q (x = a) = 0 for any a ∈ N
since otherwise it has positive measure, which leads to a contradiction (since for any
conjunctionϕ of atomic formulas or their negations over M which a realizes satisfies
� (q (ϕ)) ≥ � (q (x = a)) and the left-hand side tends to 0 as the number of distinct
conditions in ϕ grows by the choice of p). Thus by Sikorski (see Fact 2.1), we have
a lot of freedom in extending q to any N ′ � N . Hence no smooth extension of p
exists. Again, when T is NIP and the Boolean algebra is nice enough, every type has
a smooth extension (see, e.g., Corollary 2.35 below).

1.1. Structure of the paper. In Section 2 we prove all the main results on Boolean
types. In Section 2.1 we give the basic definitions. In particular we define two kinds
of maps between Boolean types: those induced by elementary maps (like in the
classical setting) and those induced by embeddings of the Boolean algebra itself. In
Section 2.2 we then give bounds to the number of Boolean types up to conjugation
(in particular generalizing a result of the third author [10, Theorem 5.21]) or just
image conjugation. In Section 2.3 we define and discuss smooth Boolean types as
well as a stronger notion, that of a realized Boolean type. We prove that under NIP,
if the algebra is complete, smooth types exist.

In Section 3 we relate Boolean types to Keisler measures, i.e., finitely additive
measures on definable sets. In Section 3.2 we apply the results of Section 2.2 to
count Keisler measures up to conjugation (we also give a more direct proof, using
the VC-theorem). In Section 3.3 we give an alternative proof to the well-known fact
that every Keisler measure extends to a smooth one [11, Proposition 7.9], using the
results of Section 2.3.

In Section 4 we analyze the case where the theory (or just one formula) is stable,
as well as the totally transcendental case, showing that in this case Boolean types are
locally averages of types (and in the t.t. case this is true for complete types as well).
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BOOLEAN TYPES IN DEPENDENT THEORIES 1351

Throughout, let T be a complete first-order theory. Most of the time, we will
only deal with dependent T. We use standard notations, e.g., C is a monster model
for T. As usual, all sets and models are subsets or elementary substructures of C of
cardinality < |C|.

§2. Boolean types.

2.1. Basic definitions. In this subsection we define Boolean types, which are the
basic objects studied in this paper. We also define when two such types are conjugate
to each other. We finish this subsection by briefly discussing the algebraic properties
of Boolean types.

Let us start by recounting some standard notation for Boolean algebras.
Let B be a Boolean algebra, and denote by 0 and 1 the distinguished elements of

B corresponding to ⊥ and  for formulas. We denote by B+ the set of all nonzero
elements of B.

Let a, b ∈ B. We denote by – a, a + b, and a · b the complement, sum, and
product—corresponding to ¬,∨, and ∧ for formulas, respectively (for example,
– 0 = 1). We also write a – b = a · (– b). We say a, b are disjoint if a · b = 0. We also
write (– 1) · a for – a and 1 · a for a.

Every Boolean algebra has a canonical order relation: a ≤ b iff a · b = a or
equivalently a + b = b. This corresponds to → for formulas. Recall that 0 and 1
are the minimum and maximum with respect to this order.

If the supremum of a setA ⊆ B exists we denote it by
∑
A; likewise, if the infimum

exists we denote it by
∏
A. An algebra is complete if both always exist.

A (κ-)complete subalgebra of B is some subalgebra B′ ⊆ B such that if A ⊆ B′

(and |A| < κ), and if
∑
A exists in B, then

∑
A ∈ B′.

If b ∈ B+, we define the relative algebra B|b—its universe is {a ∈ B | a ≤ b}, with
+, · and 0 inherited from B, and with 1B|b = b and (– a)B|b being b – a. Note that
B|b is complete if B is.

There is a natural homomorphism �b : B → B|b given by �b (a) = a · b.
Since we will deal with homomorphisms of Boolean algebras, we will also need

the following facts (Sikorski’s extension theorem):

Fact 2.1 [5, Theorems 5.5 and 5.9]. Assume B is a complete Boolean algebra and
A is any Boolean algebra. Assume A ⊆ A a subset and f : A→ B is a function.

Then there is a homomorphism g : A → B extending f iff, for any a0, ... , an–1 ∈ A
and ε0, ... , εn–1 ∈ {±1} such that

∏
i<n

εiai = 0, we also have
∏
i<n

εif (ai) = 0.

Fact 2.2 [5, Proposition 5.8 and Theorem 5.9]. Assume B is a complete Boolean
algebra andA is any Boolean algebra. AssumeA′ ⊆ A is a subalgebra, andf : A′ → B
is a homomorphism.

Assume further that a ∈ A, b ∈ B. Then there exists a homomorphism g : A → B
extending f such that g (a) = b iff

∑
a′∈A′,a′≤a

f (a′) ≤ b ≤
∏

a′∈A′,a≤a′
f (a′).

Definition 2.3. Suppose B is a Boolean algebra and C is the monster model of
a complete theory T.
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For a set A ⊆ C, a (complete)B-type in x over A is a Boolean algebra
homomorphism from the algebra of formulas Lx (A) consisting of formulas in
x over A up to equivalence in C to B. By slight abuse of notation, we will use a
formula to refer to its equivalence class in Lx (A). The set of all complete B-types in
x over A is denoted by SxB (A). The set SnB (A) for n a natural number, or an ordinal,
will be the set of all complete B-types over A in some n fixed variables.

An elementary permutation � : A→ A is a bijective elementary map. The group
of elementary permutations � : A→ A acts on SxB (A) by (� ∗ p) (ϕ (x, a)) =
p
(
ϕ
(
x, �–1 (a)

))
. Say that p1, p2 ∈ SxB (A) are elementarily conjugates over A if

they are in the same orbit.
We say that two B-types are image conjugates if there is some partial isomorphism

of Boolean algebras 	 whose domain contains the image of p2 such that p1 = 	 ◦ p2.
Finally, we say that p1, p2 ∈ SxB (A) are conjugates over A if there is some � :

A→ A as above, and some partial Boolean isomorphism 	 as above such that
p1 = 	 ◦ (� ∗ p2).

Remark 2.4. Note that 	 ◦ (� ∗ p) = � ∗ (	 ◦ p). Thus, as image conjugation
and elementary conjugation are clearly equivalence relations, so is conjugation.

Remark 2.5. Note that when B = 2 (that is {0, 1}), a complete B-type is the
same as a complete type.

Also, the two notions of elementarily conjugation and conjugation identify in this
case.

Remark 2.6. Note thatLx (A) is isomorphic to the quotient of the Lindenbaum–
Tarski algebra LA,x (the algebra of L formulas over A in x up to logical equivalence;
see [6, Chapter 26]) by the filter F generated by all sentences ϕ that hold in C (where
parameters from A are considered to be constants).

Indeed, let f : LA,x → Lx (A) be the canonical map sending a formula to its
equivalence class in C. We want to show that f–1 () = F .

 (C) = Cx iff C � ∀x (
 (x));
and since � (∀x
 (x)) → 
 (x) , we get ∀x
 (x) ≤ 
 (x) in LA,x and thus


 (x) ∈ F .
On the other hand if
 (x) ∈ F then for some sentence ϕ such that C � ϕ we have

ϕ ≤ 
 (x) in LA,x , that is � ϕ → 
 (x), and certainly 
 (C) = Cx .
This means that for any Boolean algebra B, {f ∈ Hom (LA,x,B) | f [F ] = 1} are

canonically isomorphic toHom (Lx (A) ,B).
Thus we can define SxB (A) to be

{
p ∈ Hom (LA,x,B) | F ⊆ p–1 (1)

}
without

changing anything.
Example 2.7. One might wonder if there are any natural examples of Boolean

types.
Let 〈Bi〉i∈I be a sequence of Boolean algebras. Then the product algebra

∏
i∈I

Bi
is defined in the usual sense of products of algebraic structures—its elements are
choice functions, and operations are preformed coordinatewise.

By the universal property of product algebras (see [5, Proposition 6.3]),

Sx∏
i∈I

Bi (A) ∼=
∏
i∈I
SxBi (A) .

The correspondence is given by 〈pi〉i∈I �→
(
ϕ �→ 〈pi (ϕ)〉i∈I

)
.
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In particular, for any cardinal �, Sx
2� (A) ∼=

(
Sx2 (A)

)�
= (Sx (A))� naturally—

where the sequence 〈pi〉i<� corresponds to the Boolean type p satisfying ϕ ∈ pi ⇐⇒
p (ϕ)i = 1.

Thus we can consider a sequence of � complete types to be the same thing, for all
intents as purposes, as a B-type for B = 2�.

This case will give us an idea about the behavior of general Boolean types.

2.2. Counting Boolean types. The main result of this section is Corollary 2.17
(generalizing a result by the third author [10, Theorem 5.21]), which says that when
T is NIP, the number of Boolean types over a saturated model up to conjugation
has a bound dependent not on |B| but on the chain condition satisfied by B. The
strategy will be to encode Boolean types up to conjugacy as complete types in a long
variable tuple.

Throughout this subsection, A is a subset of C.

2.2.1. Counting Boolean types up to conjugation. We first concern ourselves with
the question of the number of Boolean types up to conjugation.

Lemma 2.8. There exists an injection f : Sx
2� (A) → S |x|·� (A) such that if f (p1)

and f (p2) are conjugates then p1 and p2 are elementary conjugates.

Proof. Note first that (Sx (A))� can be embedded in S |x|·� (A)—choose for

each p ∈ Sx (A) some bp ∈ C realizing it; and send each 〈pi〉i<� to tp
(〈
bpi
〉
i<�
/A
)

.

Obviously, this is injective.
For p ∈ Sx

2� (A), let p ∈ (Sx (A))� be the corresponding sequence (as in Example
2.7) and take its image q ∈ S |x|·� (A) under this embedding. Then we define
f (p) = q.

Assume p1, p2 ∈ Sx
2� (A) and let q1 = f (p1) , q2 = f (p2). If q1, q2 are elementary

conjugates as witnessed by �, so are p1, p2 (in each coordinate) and thus also p1, p2.
Indeed for any ϕ (x, a) and i < �,

p1
(
ϕ
(
x, �–1 (a)

))
i

= 1 ⇐⇒ C � ϕ
(
b(p1)i

, �–1 (a)
)
⇐⇒

C � ϕ
(
b(p2)i

, a
)
⇐⇒ (p2 (ϕ (x, a)))i = 1,

where for any formula ϕ, p (ϕ) ∈ 2�, so p (ϕ) is a function from � to 2 and p (ϕ)i
is the image of i.

Thus p1
(
ϕ
(
x, �–1 (a)

))
= p2 (ϕ (x, a)) ⇒ p2 = � ∗ p1. �

As an immediate corollary we have the following:

Corollary 2.9. The number of types in Sx
2� (A) up to elementary conjugation is at

most the number of types in S�|x| (A) up to conjugation.

Definition 2.10. Fix some complete Boolean algebra B and regular cardinal κ.
B is κ-c.c if there is no antichain (a set of pairwise disjoint elements from B+) in B
of size κ.
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Definition 2.11. Supposep ∈ SxB (A), andϕ (x, y) is some formula. Thenp � ϕ,
or p|ϕ , is the restriction of p to the definable sets of the form ϕ (x, a) for a some
tuple (in the length of y) from A.

Proposition 2.12. Assumeϕ (x, y) isNIP andB isκ-c.c. Then for anyp ∈ SxB (A),
the image of p|ϕ has cardinality ≤ 2<κ.

In particular if T is NIP this holds for every ϕ.

Proof. Recall that a subset X ofB is independent if every nontrivial finite product
from it is non-empty: for every a1, ... , an and b1, ... , bm in X such that ai �= bj for all
i, j, the product a1 · ... · an· – b1 · ... · – bm is not 0. By [5, Theorem 10.1], [9], if � is
a cardinal such that � is regular and �<κ < � for all � < �, then every subset X ⊆ B
of cardinality � has an independent subset Y ⊆ X of cardinality �.

Let � = (2<κ)+. It is easy to see that for all � < �, �<κ < �—since κ is regular,
for every � < κ every function from |� | to sup

{
2|i|
}
i<κ

= 2<κ is contained in some
2|α| for α < κ.

Thus

(2<κ)
|�| ≤

∑
α<κ

∣∣∣∣(2|α|)|�|∣∣∣∣ =
∑
α<κ

2|α||�| ≤ κ · sup
{

2|α||�| | α < κ
}

= κ · sup
{

2|α| | α < κ
}

= 2<κ,

so

�<κ = sup
{
�|�|
}
�<κ

≤ sup
{

(2<κ)
|�|
}
�<κ

≤ 2<κ < �.

Since T is NIP, ϕ (x, y) has dual VC-dimension n < �: for any 〈ai〉i<n+1 ∈ A|y|,
{ϕ (b, y)}b∈C|x| does not shatter 〈ai〉i<n+1.

Thus for any such sequence 〈ai〉i<n+1 exists I ⊆ n + 1 such that∧
i∈I
ϕ (x, ai)∧

∧
i∈(n+1)\I

¬ϕ (x, ai)

is inconsistent.
We get ∏

i∈I
p (ϕ (x, ai)) ·

∏
i∈(n+1)\I

– p (ϕ (x, ai))

= p

⎛⎝∧
i∈I
ϕ (x, ai)∧

∧
i∈(n+1)\I

¬ϕ (x, ai)

⎞⎠ = 0,

so Im
(
p|ϕ) has no independent set of size n + 1, let alone �—thus

∣∣Im (p|ϕ)
∣∣ <

�⇒
∣∣Im (p|ϕ)

∣∣ ≤ 2<κ. �

Remark 2.13. If ϕ has IP and B is complete, then there is a B-type p such that
Im
(
p|ϕ) = B. Indeed by compactness there is a sequence of parameters 〈ba | a ∈ B〉

such that 〈ϕ (x, ba) | a ∈ B〉 is independent as a subset of Lx
(
{ba}a∈B

)
, and f :

{ϕ (x, ba)}a∈B → B defined as f (ϕ (x, ba)) = a can be extended to a B-type by
Fact 2.1, since there are no (non-trivial) Boolean relations on the domain.
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Now assume NIP and that B has κ-c.c. Let A be the set of subalgebras B of
B of size at most � = 2<κ + |x| + |T |. Proposition 2.12 says that for p ∈ SxB (A),
the algebra Bp, which is the image of p, is in A. For each B ∈ A, choose some
enumeration 〈aB,i | i < � 〉 (maybe with repetitions) of B+. Let us say that B1 is
conjugate to B2 if there is a (unique) isomorphism 	 : B1 → B2 taking aB1,i to aB2,i .

Given B ∈ A, for each i < �, choose an ultrafilter DB,i (of B) which contains
aB,i (equivalently a homomorphism from B to 2 such that DB,i (aB,i) = 1; see
[5, Proposition 2.15]). We ask that if B1 and B2 are conjugates, say via 	, then
	
(
DB1,i

)
= DB2,i—or in the language of homomorphisms, DB1,i = DB2,i ◦ 	. To

achieve this we choose representatives for the conjugacy classes and a sequence
of ultrafilters for each representative and construct the others from it. Note that
if B1 is the chosen representative, and 	1 : B3 → B2 and 	2 : B2 → B1 witness the
conjugacy then 	2 ◦ 	1 : B3 → B1 witnesses that B1 and B3 are conjugates. Thus
DB3,i = DB1,i ◦ (	2 ◦ 	1) =

(
DB1,i ◦ 	2

)
◦ 	1 = DB2,i ◦ 	1.

Let DB = 〈DB,i〉i<� : B → 2�, the product homomorphism.
For i < � and p ∈ SxB (A), let q̃p ∈ Sx2� (A) be the 2�-type DBp ◦ p. Finally, let

qp = f (q̃p) in S〈xi | i<� 〉 (A) where f : Sx2� (A) → S〈xi | i<� 〉 (A) is as in Lemma 2.8.

Proposition 2.14 (Assuming B has κ-c.c. and T has NIP). Suppose p1, p2 ∈
SxB (A) and B = Bp1 = Bp2 and that q̃p1 = q̃p2 . Then p1 = p2.

Proof. If not, then for some ϕ (x, a), p1 (ϕ (x, a)) �= p2 (ϕ (x, a)).
WLOG p1 (ϕ (x, a)) � p2 (ϕ (x, a)), and let b = p1 (ϕ (x, a)) – p2 (ϕ (x, a)), so

b ∈ B+. For some i < �, b = aB,i . It follows thatp1 (ϕ (x, a)) – p2 (ϕ (x, a)) ∈ DB,i ;
hence q̃p1 (ϕ (x, a))i = 1 and q̃p2 (ϕ (x, a))i = 0 that is q̃p1 �= q̃p2 . �

Corollary 2.15 (Assuming B has κ-c.c. and T has NIP). Suppose p1, p2 ∈
SxB (A) and B = Bp1 = Bp2 . If qp1 and qp2 are conjugates over A, then p1 and p2 are
elementarily conjugates over A.

Proof. Suppose that � ∗ qp1 = qp2 for an elementary permutation � : A→ A.
Then also, by Lemma 2.8 (to be precise, by the choice of qp1 , qp2 ), � ∗ q̃p1 = q̃p2 .
Note that � ∗ q̃p1 = q̃�∗p1 .

But B�∗p1 = Bp1 (since � just permutes the domain); thus we can apply
Proposition 2.14 to � ∗ p1, p2. �

Corollary 2.16 (Assuming B has κ-c.c. and T has NIP). If p1, p2 ∈ SxB (A),
Bp1 and Bp2 are conjugates, and qp1 and qp2 are conjugates over A, then p1 and p2 are
conjugates over A.

Proof. Suppose 	 : Bp1 → Bp2 takes aBp1 ,i
to aBp2 ,i

. Then 	 ◦ p1 and p2 satisfy
the condition of Corollary 2.15: note that B	◦p1 = Im (	 ◦ p1) = 	 (Im (p1)) =
	
(
Bp1

)
= Bp2 .

Further, by the way we chose the DB ’s, DBp1
= DBp2

◦ 	; thus

q̃p1 = DBp1
◦ p1 = DBp2

◦ 	 ◦ p1 = DB	◦p1
◦ 	 ◦ p1 = q̃	◦p1 ,

and thus q	◦p1 = qp1 and qp2 are conjugates.
So for some elementary permutation � : A→ A, � ∗ (	 ◦ p1) = p2. �
Corollary 2.17. AssumeB hasκ-c.c. and T hasNIP, and let� = 2<κ + |T | + |x|.
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The number of types in SxB (A) up to conjugation is bounded by the number of types
in S |x|·� (A) (equivalently S� (A)) up to conjugation + 2�. Hence, if �, κ are cardinals
and α and ordinal such that � = �<� = ℵα = κ + α ≥ κ ≥ �� + �+, and ifA =M is
a saturated model of size �, this number is bounded by 2<κ + |α| � + 2� = 2<κ + |α| �.

Proof. Given p, map it to the pair consisting of the conjugacy class of qp and the
quantifier-free type of the algebra Bp, enumerated by

〈
aBp,i | i < �

〉
(whose number

is bounded by 2�, since the language of Boolean algebras is finite). By Corollary
2.16, the preimage of an element under this map is contained in a single conjugacy
class. The second part of the statement follows immediately from Theorem 5.21 in
[10], since � ≥ |T |. �

2.2.2. Counting types up to image conjugation. One may wonder whether we can
get a meaningful bound for

∣∣SxB (A)
∣∣ (without taking elementary conjugation into

consideration). For example, the universal property of the product gives us a simple
equation:

∣∣Sx2� (A)
∣∣ = |Sx (A)| �.

Note that if 	 : B ∼−→ B ′ is an isomorphism between two different subalgebras of
B and p ∈ SxB (A) is such that Im (p) = B , then 	 ◦ p ∈ SxB (A) is different from p.
This means that if B has many copies of small subalgebras then we necessarily have
at least as many B types. Thus if we want to give a bound that is independent of
the size of B, we must restrict ourselves to counting up to image conjugation. Note
that 2 has only a single subalgebra (itself) and a single partial isomorphism (the
identity), so for 2-types (i.e., classical types) counting types up to image conjugation
is the same as just counting types.

Corollary 2.18. Assume B has κ-c.c and T has NIP, and assume |A| ≥ ℵ0. We
have the following bounds on �, the number of types in SxB (A) up to image conjugation,
where � = 2<κ + |T | + |x|.

If T is stable, � ≤ |A| �.
If T is NIP, � ≤ (ded |A|)�, where ded � is the supremum on the number of cuts on

a linearly ordered set of cardinality ≤ �.
If T has IP and x is finite then � could be maximal, i.e., sup

{∣∣SxB (A)
∣∣ | |A| ≤ κ } =

|B| κ for all κ ≥ |B| + |T |.

Proof. The proof of Corollary 2.16 shows also that if p1, p2 ∈ SxB (A), Bp1 and
Bp2 are conjugates, and qp1 = qp2 , then p1 and p2 are image conjugates.

We conclude that the number of B types over A up to image conjugation is at
most |S� (A)|.

Let φ (x, y) be some partitioned formula, and denote by Sφ (A) the set of φ-types,
that is, a maximal consistent set of formulas of the form φ (x, b) or ¬φ (x, b) where
b is a y-tuple in A.

For � = sup {|Sφ (A)| | φ (x, y)}, |S� (A)| ≤ ��, since the number of formulas in
� variables is at most �+ |T | = �, and the map p �→ 〈p|φ〉φ is injective.

According to [11, Proposition 2.69], if T has NIP then � ≤ ded |A|.
Further, by the preceding remarks there, if T is stable then � ≤ |A| and thus

� ≤ |A| � for stable T.
Assume that T has IP. Note that 2κ ≤ |B | κ ≤ κκ = 2κ. If φ (x, y) has IP then

there is some model M |= T of size κ such that |Sφ (M )| = 2|M |. Note that the
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algebra 2 is embedded in B so Sx2 (M ) embeds into SxB (M ). Finally any two of these
types are not image conjugates since there is only one embedding of 2 to B. �

2.3. Smooth Boolean types. In this section we define the notion of a smooth
Boolean type analogously to a smooth Keisler measure: these are Boolean types
which have a unique extension to every larger parameter set. The main result of this
section is that every Boolean type in an NIP theory can be extended to a smooth
one (see Corollary 2.35). This mirrors a similar result for Keisler measures (see [11,
Proposition 7.9]), which we recover later in Section 3.3. We also discuss the stronger
notion of a realized Boolean type.

Definition 2.19. Let A ⊆ B , p ∈ SxB (A), and q ∈ SxB (B); then q extends p if
it extends it as a function, that is for any formula ϕ (x, a) over A, p (ϕ (x, a)) =
q (ϕ (x, a)) (technically, the images of the equivalence classes are the same).

We say that p is smooth if for every such B there exists a unique B-type q over B
extending p.

Remark 2.20. If B = 2 and A =M is a model, a type is smooth iff it is realized,
that is equal to tp (a/M ), for some tuple a in M.

Remark 2.21. As we remarked in Example 2.7, p ∈ Sx2κ (A) is essentially
equivalent to a sequence 〈pi〉i<κ of complete types via p (ϕ)i = 1 ⇐⇒ ϕ ∈ pi ; it
is obvious that q extends p iff qi extends pi for all i; and thus p is smooth iff pi is
smooth for each i.

Assume |x| < � (i.e., x is a finite tuple). Then this case gives rise naturally to the
following definition:

Definition 2.22. A B-type p ∈ SxB (M ) over a model M is called realized if∑
a∈M

p (x = a) exists and equals 1. (Here and later, when we write a ∈M in the

sum, we mean a ∈Mx .)

Remark 2.23. If B = 2, then
∑
a∈M

p (x = a) = 1 iff there exists a ∈M such that

p (x = a) = 1. Therefore this definition agrees with the classical one for complete
types.

If B = 2κ, again by Example 2.7, p ∈ SxB (M ) corresponds to a sequence of
complete types and∑

a∈M
p (x = a) = 1 ⇐⇒ ∀i < κ

(∑
a∈M

p (x = a)

)
i

= 1 ⇐⇒

∀i < κ∃a ∈M (x = a) ∈ pi .

That is p is realized iff every pi is realized (in M).
Therefore, by Remark 2.21, in this case p is smooth iff every pi is smooth iff every

pi is realized iff p is realized.

One direction of the last remark works in general:

Claim 2.24. Assume p ∈ SxB (M ) is realized. Then p is smooth.
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Proof. Let ba = p (x = a) ∈ B for each x-tuple a in M. Assume q ∈ SxB (N )
extends p. Let ϕ (x, c) ∈ Lx (N ) be some formula.

Then by [5, Lemma 1.33b], since
∑
a∈M

ba exists and equals 1 by assumption,

q (ϕ (x, c)) = q (ϕ (x, c)) ·
∑
a∈M

ba =
∑
a∈M

q (ϕ (x, c)) · ba

=
∑
a∈M

q (ϕ (x, c)) · q (x = a) =
∑
a∈M

q (x = a ∧ ϕ (x, c)) .

And in particular the RHS exists.
But for any a ∈M , ifC � ϕ (a, c) then (x = a ∧ ϕ (x, c)) = (x = a) (as definable

sets) and thus q (x = a ∧ ϕ (x, c)) = q (x = a) = ba , while if C � ¬ϕ (a, c) then
(x = a ∧ ϕ (x, c)) = ⊥ and thus q (x = a ∧ ϕ (x, c)) = 0.

Thus we get necessarily (since the supremum never changes when adding or
removing 0’s)

q (ϕ (x, c)) =
∑

a∈ϕ(M,c)

ba.

That is, we get q is uniquely determined. �
One may naturally ask if every smooth type is realized. We start with the following

result:

Claim 2.25. Assume p ∈ SxB (M ) is smooth for B a complete Boolean algebra.
Then

∑
a∈M

p (x = a) is maximal: for any extension q ∈ SxB (N ) of p,

∑
a∈N
q (x = a) =

∑
a∈M

p (x = a) .

Proof. Assume otherwise. Since for any a ∈M , q (x = a) = p (x = a), we have
in particular some a ∈ N \M be such that q (x = a) > 0.

However, there is always a type q′ ∈ SxB (N ) extending p such that q′ (x = a) = 0.
Indeed, for any consistent ϕ (x, b) ∈ Lx (M ) it cannot be ϕ (x, b) → x = a, as that
would imply that a is definable over M; but M ≺ N thus its definable closure is
itself.

Thus by Fact 2.2, there exists q′ as required.
This means that if q (x = a) > 0, q and q′ are distinct extensions of p; thus p is

not smooth. �
The property in Claim 2.25 has an alternative formulation which is somewhat

easier to reason about:

Claim 2.26. Assume B is complete. A type p ∈ SxB (M ) has the property that
∑
a∈M

p (x = a) is not maximal iff there exists a subalgebra B ′ of B such that Im (p) ⊆ B ′

and an atom a ∈ B ′ such that a ≤–
∑
a∈M

p (x = a).

Proof. Assume q extends p and
∑
a∈N
q (x = a) >

∑
a∈M

p (x = a) and let

c ∈ N \M such that q (x = c) > 0. Let B ′ = Im (q) and a = q (x = c).
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Then a must be an atom in B ′, since if b ≤ a and b ∈ B ′, let ϕ (x, b) such
that q (ϕ (x, b)) = b. If C � ϕ (c, b) then ϕ (x, b) ∧ x = c is the same as x = c and
thus b = b · a = q (ϕ (x, b) ∧ x = c) = q (x = c) = a; similarly if C � ϕ (c, b) then
ϕ (x, b) ∧ x = c is ⊥ and thus we likewise get b = 0. Finally since a is disjoint from
p (x = a) for any a ∈M , a ≤–

∑
a∈M

p (x = a).

On the other hand, let B ′ and a ∈ B ′ be an atom as in the claim. LetDa : B ′ → 2
be the principal ultrafilter generated by a represented as a homomorphism (i.e.,
Da (b) = 1 ⇐⇒ a ≤ b) and letp′ = Da ◦ pwhich is a complete type over M.p′ is not

realized in M: as a ≤–
∑
a∈M

p (x = a), Da

( ∑
a∈M

p (x = a)

)
= 0; thus p′ (x = a) =

Da (p (x = a)) ≤ Da

( ∑
a∈M

p (x = a)

)
= 0 for any a in M.

Let c realizep′ outside of M, and let N containing c and M. Then for anyϕ (x, b) ∈
Lx (M ), if ϕ (x, b) → x = c then ϕ (x, b) = ⊥ (since c cannot be definable over M)
and thus

p (ϕ (x, b)) = 0 ≤ a;

and if x = c → ϕ (x, b) then C � ϕ (c, b) and thus

Da (p (ϕ (x, b))) = p′ (ϕ (x, b)) = 1 ⇒ a ≤ p (ϕ (x, b)) .

Thus by Fact 2.2, p can be extended to a type q over N which satisfies q (x = c) = a

and thus ∑
a∈N
q (x = a) >

∑
a∈M

p (x = a) ,

as required. �

As a corollary of Claim 2.26 we get:

Remark 2.27. If p ∈ SxB (M ) is onto and B atomless and complete, then
∑
a∈M

p (x = a) is maximal and in fact p (x = a) = 0 for all a.
On the other hand if B is atomic (that is there is an atom under every positive

element) then
∑
a∈M

p (x = a) is maximal iff
∑
a∈M

p (x = a) = 1 (that is iff p is

realized).

Example 2.28. Let L = {EB}B∈B(R) (one unary predicate EB for every Borel
set in R), T = ThL (R) (with the obvious interpretations), and B be the algebra
B (R) /I where I = {B ∈ B (R) | � (B) = 0} where � is the Lebesgue measure; B is
a 	-complete and c.c.c.—thus complete—as well as atomless.

Then T proves that every Boolean combination of the unary predicates is
equivalent to single unary predicate, and by a standard argument eliminates
quantifiers. Thus for anyM ⊆ R, Lx (M ) is isomorphic to B (R) with EB (x) �→ B
(x = a is equivalent to E{a} (x)). Let p : Lx (M ) → B be the projection.

We get that for any q : Lx (N ) → B extending p, q is a surjection to an atomless
Boolean algebra; therefore it sends atoms to 0, that is q (x = a) = 0 for all a ∈ N .
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Thus since x = y is the only atomic formula involving both x and a parameter, and
since T eliminates quantifiers, q is uniquely determined.

Thus p is smooth, but not realized by Remark 2.27.

Definition 2.29. Letp ∈ SxB (M ) be a Boolean type and letϕ (x, y) be a formula.
We say that the image of p with respect to ϕ is maximal, or that Im

(
p|ϕ(x,y)

)
is maximal, if for any N ⊇M and for any q ∈ SxB (N ) extending p we have
{q (x, b) | b ∈ N} = {p (x, a) | a ∈M}.

If the image of p is maximal with respect to every ϕ we say that the image of p is
maximal.

The following proposition gives us a way to extend types in a way that maximizes
their images, in the following precise sense:

Proposition 2.30. Assume B is a Boolean algebra. Let p ∈ SxB (M ) be a B-type
over M. Then there existsN ⊇M and a type q over N extending p such that the image
of q is maximal.

Proof. Let 〈ϕi (x, y) | i < |T |〉 be an enumeration of all partitioned formulas
(recall that we are assuming that x is a finite tuple) and let 〈bα | α < |B|〉 be an
enumeration of the elements of B.

We construct recursively two increasing sequences with respect to the lexico-
graphic order on (|T | + 1) × (|B| + 1):

1. An increasing sequence of models 〈Mi,α | α ≤ |B| , i ≤ |T |〉.
2. An increasing (with respect to extension) sequence of B-types 〈pi,α | α ≤ |B|,

i ≤ |T |〉 such that pi,α ∈ SxB (Mi,α).

The construction is as follows:
For (0, 0),M0,0 =M,p0,0 = p.
Fix i and assume we haveMi,α, pi,α for α < |B|; if there existM ′ and p′ overM ′

such thatMi,α ⊆M ′,p′ extends p and bα ∈ Im
(
p′|ϕi

)
, letMi,α+1 =M ′,pi,α+1 = p′;

otherwise letMi,α+1 =Mi,α ,pi,α+1 = pi,α . Assume we haveMi,α ,pi,α for allα < � ≤
|B| a limit ordinal; then define Mi,� =

⋃
α<�

Mi,α and pi,� =
⋃
α<�

pi,α . Note that since

(pi,α)α<� is a chain of homomorphism this is a well-defined homomorphism.
Assume we have Mi,|B|, pi,|B| for i < |T | and let Mi+1,0, pi+1,0 =Mi,|B|, pi,|B|.

Finally assume we haveMi,|B|, pi,|B| for all i < j ≤ |T | a limit ordinal. Then define
Mj,0 =

⋃
i<j

Mi,|B| and pj,0 =
⋃
i<j

pi,|B|.

Now let N =M|T |,|B|, q = p|T |,|B|. Then if for any bα and ϕi we have that bα ∈
Im
(
q′|ϕi

)
for some extension q′ of q then the same holds for q: any extension of q

is also an extension of pi,α and thus by construction we have bα ∈ Im
(
pi,α+1|ϕi

)
⊆

Im
(
q|ϕi
)
. �

Remark 2.31. If B has κ-c.c. and T is dependent, then by Propositions 2.12 and
2.30 we can take N to be of cardinality ≤ |M | + 2<κ + |T |, by choosing a preimage
ϕ (x, b) for every element in Im (q) and restricting q to a structure containing M
and each of the b’s (which, from Löwenheim–Skolem, we can take to be no larger
than |M | + 2<κ + |T |).

https://doi.org/10.1017/jsl.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.7


BOOLEAN TYPES IN DEPENDENT THEORIES 1361

Corollary 2.32. Suppose B is complete. Then every B-type p ∈ SxB (M ) can be
extended to a B-type q ∈ SxB (N ) such that

∑
a∈N
q (x = a) is maximal.

Proof. If the image of p with respect to x = y is maximal then
∑
a∈M

p (x = a) is

maximal: indeed, assume q over N extends p. Then
∑
a∈M

p (x = a) <
∑
a∈N
q (x = a)

implies in particular that Im (p|x=y) �= Im (q|x=y).
We conclude from Proposition 2.30 that every B-type p over M has an extension

q over N such that
∑
a∈N
q (x = a) is maximal. �

Corollary 2.32 essentially reproves the fact that if B = 2� then every type can
be extended to a smooth type—since in this case by Remark 2.27,

∑
a
q (x = a) is

maximal iff q is realized and by Remark 2.23 this happens iff q is smooth.
A similar approach can still be useful for any algebra. In the following discussion

we no longer need the notion of realized Boolean types, and thus no longer assume
that x is a finite tuple. We start with a useful claim:

Claim 2.33. Assume A,B are Boolean algebras where B is complete, A′ ⊆ A a
subalgebra, and p : A′ → B and p1, p2 : A → B homomorphisms such that p ⊆ p1, p2

and p1 �= p2. Then there exist distinct extensions q1, q2 : A → B of p and a ∈ A such
that q1 (a) < q2 (a) and 	 ◦ q1 �= q2 for any automorphism 	 of B.

Proof. Let a ∈ A \ A′ be such that p1 (a) �= p2 (a).
Let b1 =

∑
a′≤a,a′∈A′

p (a′) and b2 =
∏

a′≥a,a′∈A′
p (a′). Then b1 ≤ p1 (a) �= p2 (a) ≤

b2 and thus b1 < b2.
By Fact 2.2 there are extensions qi of p such that qi (a) = bi for 0 ≤ i < 2. Assume

there is a homomorphism 	 : B → B such that 	 ◦ q1 = q2.
Then for any b ∈ Im (p), take a′ ∈ A′ such that p (a′) = b. Then 	 (b) =

	 (p (a′)) = 	 (q1 (a′)) = q2 (a′) = p (a′) = b; thus 	|Im(p) = idIm(p).
Further 	 (b1) = 	 (q1 (a)) = q2 (a) = b2. We conclude that b2 = 	 (b1) ≤ 	 (b2).

On the other hand, for any a′ ∈ A′ such that a′ ≥ a, since by assumption b2 ≤ p (a′)
we get 	 (b2) ≤ 	 (p (a′)) = p (a′); thus 	 (b2) ≤

∏
a′≥a,a′∈A′

p (a′) = b2.

We get 	 (b2) = b2 = 	 (b1), and thus 	 is not injective and in particular, not an
automorphism. �

Proposition 2.34. Assume that B is complete, and assume that N is a model of T
and q is a B-type over N that has the property in the conclusion of Proposition 2.30:
it has maximal image with respect to every formula. Then for any formula ϕ (x, y), if
there exist N ′ ⊇ N and extensions q1, q2 ∈ SxB (N ′) of q such that q1|ϕ �= q2|ϕ , then
ϕ is independent.

In particular, if T has NIP, such a q is smooth.

Proof. Assume otherwise, and let n be such that n is greater than the dual VC-
dimension of ϕ (x, y) (see, e.g., [11, Lemma 6.3]).

Let N ′ be an elementary extension of N, qi ∈ SxB (N ′) extending q, and a ∈ N ′

such that qi (ϕ (x, a)) = ai . By the previous claim we may assume a1 < a2 and let
b = a2 – a1 > 0. Note that by Fact 2.2, for any b′ ≤ b there exists some q′ ∈ SxB (N ′)
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extending q such that q′ (ϕ (x, a)) = a1 + b′; thus by assumption (on q) there exists
a′ ∈ N such that q (ϕ (x, a′)) = a1 + b′.

Assume first b∗ ≤ b ≤ a2, – a1 for some atom b∗ of B. Let x′ ⊆ x be a finite
tuple containing all variables from x appearing in ϕ (x, y). Since Im (q|x′=z) is
maximal, we get by Claim 2.26 and the proof of Corollary 2.32 that b∗ �–

∑
c∈N |x′|

q (x′ = c); but if b∗ � q (x′ = c) for all c ∈ N |x′| then since b∗ is an atom we get

b∗ ≤– q (x′ = c) for all c ∈ N |x′| that is

b∗ ≤
∏

c∈N |x′|
– q (x′ = c) = –

∑
c∈N |x′|

q (x′ = c) .

Let then c ∈ N |x′| be such that q (x′ = c) ≥ b∗. Let Db∗ be the ultrafilter
corresponding to b∗ represented as a homomorphism to 2. ThenDb∗ ◦ q|x′ ∈ S (A)
is realized in N (since Db∗ (q (x′ = c)) = 1). But Db∗ ◦ qi |x′ are extensions of
Db∗ ◦ q|x′ and we haveDb∗ (q1 (ϕ (x, a))) = Db∗ (a1) = 0 andDb∗ (q2 (ϕ (x, a))) =
Db∗ (a2) = 1 so Db∗ ◦ q is not smooth—contradiction.

Thus there is no atom of B under b; therefore by trivial induction there exist
disjoint b� > 0 for � ∈ {±1}n such that

∑
�∈{±1}n

b� = b. Let bi =
∑

�∈{±1}n,�(i)=1

b� ≤ b. Then b – bi =
∑

�∈{±1}n,�(i)=–1
b�; thus for any such �, b

∏
i<n

� (i) bi =

b� > 0.
By assumption on q, for any i there exists ai ∈ N |y| such that q (ϕ (x, ai)) =

a1 + bi .
Let ϕ� (x, y0, ... , yn–1) =

∧
i<n

ϕ (x, yi)
�(i). Then

q (ϕ� (x, a0, ... , an–1)) =
∏
i<n

� (i) (a1 + bi)

≥ b
∏
i<n

� (i) (a1 + bi) .

Since for every i < n, b · (– bi) = b – bi ≤ b ≤– a1, we have b· – (a1 + bi) =
(– a1) · b · (– bi) = b – bi ; therefore b · � (i) (a1 + bi) ≥ b · � (i) bi .

Thus

q (ϕ� (x, a0, ... , an–1)) ≥ b
∏
i<n

� (i) (a1 + bi)

≥ b
∏
i<n

� (i) bi = b� > 0;

thus ϕ� (x, a0, ... , an–1) �= ⊥ and thus N � ∃xϕ� (x, a0, ... , an–1) contradicting our
choice of n. �

By Proposition 2.30 and remark 2.31 we get:

Corollary 2.35. If B is a complete Boolean algebra, every B-type in an NIP
theory can be extended to a smooth B-type. In fact, if B is κ-c.c., then given a B-
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type p ∈ SxB (M ) we can find some N �M and smooth q ∈ SxB (N ) where |N | ≤
|M | + |x| + 2<κ + |T |.

§3. Relation to Keisler measures.

3.1. Connecting Keisler measures and Boolean types. In this subsection we recall
the notion of a Keisler measure, and attach to a Keisler measure a Boolean type in
a canonical probability algebra in a way that preserves the measure. This preserves
many of the measure’s properties and will be used later to transfer results from
Boolean types to Keisler measures.

Definition 3.1. A Keisler measure in x over a set A is a finitely additive probability
measure on Lx (A).

Two Keisler measures �, �′ in x over A are conjugates if there exists an elementary
map � : A→ A such that �

(
ϕ
(
x, �–1 (a)

))
= �′ (ϕ (x, a)) for any formula ϕ (x, a).

Definition 3.2. A measure algebra is a 	-complete Boolean algebra B (not
necessarily an algebra of sets) equipped with a 	-additive measure that is positive
on every element other than 0B.

A probability algebrais a measure algebra that assigns measure 1 to 1B.

Example 3.3. For every probability space, the algebra of measurable subsets up
to measure 0 is a probability algebra.

Definition 3.4. Let κ be an infinite cardinal. Then (Uκ, �κ) is the probability
algebra of Borel subsets of 2κ up to measure 0, with �κ the usual product measure
(see [2, 254J]).

Remark 3.5. Since every probability algebra has c.c.c., every supremum or
infimum is effectively countable. Thus in particular the 	-complete subalgebra
generated by some subset is the same as the complete subalgebra generated by
the same set.

We will show that we can attach to a Keisler measure a B-type for a measure
algebra B.

Remark 3.6. Given a Keisler measure � over A, we can consider it as a measure
on clopen sets of Sx (A) and then extend it uniquely to a regular 	-additive measure
on the Borel sets of Sx (A) (see [4, 416Qa]).

Let (B, �) be the probability algebra of Borel subsets of Sx (A) up to � measure
0 and let 
 be the projection from the algebra of Borel subsets onto B. Since the
clopen sets are a basis for the topology, the complete subalgebra of B generated by
the clopen sets is B itself. Note that there are at most |T | + |A| + |x| clopen sets.

Fact 3.7. Let κ be an infinite cardinal. If B is a probability algebra, and there is
B ⊆ B such that |B | ≤ κ and the smallest (	-) complete subalgebra of B containing B
is B itself then there is a measure preserving homomorphism f from B to (Uκ, �κ) (see
[3, Lemma 332N ], and see also Propositions 331G and 331F there).

Further, every measure algebra homomorphism is an embedding.

Proposition 3.8. Assume A ⊆ Uκ is a complete subalgebra that can be completely
generated by a set S such that |S| < κ. Assume further that f : A → Uκ is measure
preserving (thus an embedding).

https://doi.org/10.1017/jsl.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.7


1364 ITAY KAPLAN, ORI SEGEL, AND SAHARON SHELAH

Then exists a measure preserving automorphism 	 of Uκ extending f.

Proof. By following the proof of [3, Theorem 331I] (Uκ satisfies the requirements
for the theorem by [3, Theorem 331K]), we find that a recursive construction of an
automorphism can start from any partial isomorphism, as long as the domain of
said partial isomorphism is a complete subalgebra (in Fremlin’s terminology, closed
subalgebra) that can be completely generated by less than κ elements. �

Remark 3.9. When considering Boolean types to a measure algebra (B, �),
we will adapt the definitions of conjugate types (Definition 2.3) and conjugate
subalgebras to this context, which means that partial isomorphisms are now required
to keep the extra structure (that is, to preserve the measure).

Proposition 3.10. Let κ ≥ |A| + |T | + |x| be some cardinal. There is an injection
from the set of Keisler measures over a set A to the set of (Uκ, �κ)-types over A.
Further, this injection respects conjugation; that is, if the images of �, �′ are conjugate
with � : A→ A, then so are �, �′.

Proof. Let f and 
 be as in Fact 3.7, using Remark 3.6.
Let p� : Lx (A) → Uκ be f ◦ 
|Lx (A) (where Lx (A) is thought of as the algebra

of clopen subsets of Sx (A)). Then, � �→ p� would be our injection.
By choice of f, � (ϕ) = �κ (p� (ϕ)), which means that this map is indeed injective.

It follows that if p�1 and p�2 are conjugate (as in Remark 3.9, i.e., as (Uκ, �κ)-types)
then �1 and �2 are conjugate:

Suppose that � : A→ A is an elementary map and that 	 : Bp�1 → Bp�2 is a

measure preserving isomorphism such that 	 ◦
(
� ∗ p�1

)
= p�2 . Then

� ∗ �1 (ϕ (x, a)) = �1
(
ϕ
(
x, �–1 (a)

))
= �κ

(
p�1
(
ϕ
(
x, �–1 (a)

)))
= �κ

(
	
(
p�1
(
ϕ
(
x, �–1 (a)

))))
= �κ

(
p�2 (ϕ (x, a))

)
= �2 (ϕ (x, a)) . �

3.2. Counting Keisler measures. In this subsection we count the number of Keisler
measures up to elementary conjugation similarly to Section 2.2.

Remark 3.11. Corollary 2.16 and all proofs leading to it still work when we
add structure to the algebra, but now we have to take into account the number of
isomorphism types of the new structure, i.e., the measure. Recall that in Section 2.2
we defined � = 2<κ + |T | + |x| (for Bκ-c.c.), the maximal cardinality of the image
of any single B-type when T is NIP. In the case of a measure algebra, the number of
possible isomorphism types is thus ≤ 2� +

(
2ℵ0
)�

= 2� (the isomorphism type of an
measure algebra B consists of the quantifier-free type of B as in the proof of Corollary
2.17 and the list of values {� (a)}a∈B). Finally, note that every probability algebra is
c.c.c (i.e., �1-c.c.), so in this case we can take κ = �1 and then � = 2ℵ0 + |T | + |x|.

By applying Proposition 3.10, Remark 3.11, and Corollary 2.17 we get that:

Corollary 3.12. Assume T has NIP. The number of Keisler measures in x up
to conjugation over a set A is bounded by the number of types in S |x|·� (A) up to
conjugation + 2� where � = 2ℵ0 + |T | + |x|.
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Hence, if again �, κ are cardinals and α an ordinal such that � = �<� = ℵα =
κ + α ≥ κ ≥ �� + �+, and A =M is a saturated model of size �, this number is
bounded by 2<κ + |α| �.

However, Keisler measures have been studied extensively in the context of NIP
(see for example [11, Chapter 7]), and there are results which give a better bound.
Indeed:

Proposition 3.13. Assume T has NIP. Then there is an injection from the set of
Keisler measures in x over a set A to the set of 2�-types over A where � = |T | + |x|.

Further, if the images of �, �′ are elementarily conjugates, then � and �′ are
conjugates.

Proof. Recall that given complete types p0, ... , pn–1, and a formula φ (x, b),
Av (p0, .., pn–1;φ (x, b)) is |{i<n|ϕ(x,b)∈pi}|

n .
Fix a Keisler measure�over A. By [11, Proposition 7.11], (forX1 = ) for anym <

� and partitioned formula φ (x, y) there exist nm,φ < � and types
〈
pm,φi (x)

〉
i<nm,φ

∈

Sx (A) such that for any y-tuple b,∣∣∣� (φ (x; b)) – Av
(
pm,φ0 , ... , p

m,φ
nm,φ–1;φ (x, b)

)∣∣∣ < 1
m
.

Note that by [11, Exercise 7.12], nm,φ can be chosen independently of �.
Let I = {m,φ, i | m < �,φ ∈ Lx (∅) , i < nφ,m} (note that |S| = �). Choose p� ∈

Sx
2I (A) such that p� (φ (x, b))m,φ,i = 1 iff φ (x, b) ∈ pm,φi .
Then

lim
m→∞

Av
(

(p�)m,φ,0 , ... , (p�)m,φ,nm,φ–1 ;φ (x, b)
)

= � (φ (x, b)) .

And if � ∗ p�1 = p�2 we find that for any φ (x, y) and b,

� ∗ �1 (φ (x, b)) = �1
(
φ
(
x, �–1 (b)

))
= lim
m→∞

Av
((
p�1
)
m,φ,0 , ... ,

(
p�1
)
m,φ,nm,φ–1 ;φ

(
x, �–1 (b)

))
,

lim
m→∞

Av
((
p�2
)
m,φ,0 , ... ,

(
p�2
)
m,φ,nm,φ–1 ;φ

(
x, �–1 (b)

))
= �2 (φ (x, b)) . �

Thus with Corollary 2.9 we get

Corollary 3.14. Assume T has NIP. The number of Keisler measures up to
conjugation over a set A is bounded by the number of types in S |x|·� (A) up to
conjugation where � = |T | + |x| (with the same explicit bound as in Corollary 3.12,
but replacing � = 2ℵ0 + |T | + |x| with � = |T | + |x|).

Remark 3.15. This bound improves upon the one in Corollary 3.12, since � is
now potentially smaller (for small |T | and |x|).
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3.3. Smooth Keisler measures. Recall that a Keisler measure � is smooth if it has
a unique extension to any set containing its domain. In this subsection we show that
Proposition 3.10 preserves smoothness, that is the Boolean type is smooth iff the
measure is. We use this to recover the fact that in an NIP theory measures can be
extended to smooth ones.

Lemma 3.16. Assume �i is a Keisler measure over Ai for i ∈ {1, 2} such that
A1 ⊆ A2 and �2 extends �1; let κi = |Ai | + |T | + |x| and let fi : Bi → Uκ+

i
be an

embedding of measure algebras, where Bi is the algebra of Borel subsets of Sx (Ai) up
to �i -measure 0(see Remark 3.6).

Fix an embedding � of Uκ+
1

in Uκ+
2

(one exists by Fact 3.7).
Then B1 embeds canonically into B2 and there is a measure algebra homomorphism

g : B2 → Uκ+
2

that extends � ◦ f1 and such that �κ+
2
◦ f2 = �κ+

2
◦ g.

Proof. Note first that since �2 extends �1, B1 can be embedded into B2 naturally
with the preimage of the projection map from Sx (A2) to Sx (A1).

Note that (� ◦ f1) (B1) is generated as a (	-)complete algebra by κ1 elements
(as the image of such an algebra) and that it is the complete subalgebra of Uκ+

2
,

generated as a complete subalgebra by the images of the clopen sets over A1 (see [3,
Proposition 324L]).

By Proposition 3.8 and as �2 extends �1, there is an automorphism 	 of
(
Uκ+

2
, �κ+

2

)
extending f2 ◦ (� ◦ f1)–1.

But now we get 	–1 ◦ f2|B1 = � ◦ f1|B1 ; thus g = 	–1 ◦ f2 is as required. �

Corollary 3.17. If p ∈ SxUκ+
(M ) is smooth, then so is �κ+ ◦ p for κ ≥ |M | +

|T | + |x|.

Proof. Assume � = �κ+ ◦ p is not smooth. So there isN ⊇M and distinct �1, �2

over N extending �, and hence there is one of cardinality at most |M | by Löwenheim–
Skolem (restrict �1, �2 to a smaller model containing M and some b, for which there
exists ϕ (x, b) such that �1 (ϕ (x, b)) �= �2 (ϕ (x, b))).

Let B0 be the measure algebra of Borel sets in Sx (M ) up to �-measure 0 and
I the ideal of sets of �-measure 0 in the algebra of Borel subsets of Sx (M )
(see Remark 3.6). Then since �κ+ (a) = 0 ⇐⇒ a = 0, I ∩ Lx (M ) = ker (p); thus
Lx (M ) / ker (p) is naturally embedded in B0.

Write p = p̃ ◦ � for � : Lx (M ) → Lx (M ) / ker (p) the projection.
Then p̃ : Lx (M ) / ker (p) → Uκ+ is a measure preserving function from a

subalgebra of B0, and the complete (in Fremlin’s terminology, order-closed)
subalgebra of B0 generated by Lx (M ) / ker (p) is B0 itself. Thus by [3, Propositions
324O and 323J] p̃ has a unique extension to a measure preserving p : B0 → Uκ+,
that is � = �κ+ ◦ p (here we treat � as a measure on Sx (M )).

For each i ∈ {1, 2}, we do the following. Let Bi be the measure algebra of Borel
subsets of Sx (N ) up to �i -measure 0, which naturally embeds B0 as a subalgebra
via the preimage map of the projections Sx (N ) → Sx (M ) (this uses the fact that �i
extends �0). Take an embedding fi : Bi → Uκ+ for �i guaranteed by Fact 3.7, and
using Lemma 3.16 we can find a measure preserving gi : Bi → Uκ+ extending p such
that �i = �κ+ ◦ gi .
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Let �i : Lx (N ) → Bi be the projection, note that it extends �. Then for pi =
gi ◦ �i ∈ SxUκ+

(N ) we find �i = �κ+ ◦ pi (when we consider �i as Keisler measures),

and since �i extends � and gi extend p (thus p̃) we find p1, p2 extend p, but they are
distinct since �1 and �2 are distinct.

We conclude that p is not smooth. �
On the other hand:
Proposition 3.18. Assume � is a smooth Keisler measure in x over M. Let p ∈

SxUκ+
(M ) such that � = �κ+ ◦ p for κ ≥ |M | + |T | + |x|. Then p is smooth.

Proof. Let p1, p2 ∈ SxUκ+
(N ) be distinct types extending p (forN ⊇M ). Again,

without loss of generality |N | ≤ κ. By Claim 2.33 we can choose p1 and p2 such
that for no automorphism 	 of Uκ+, 	 ◦ p1 = p2.

Let �′ be the unique extension of � to N; in particular �′ = �κ+ ◦ pi for i = 1, 2.
Since ker (pi) = {ϕ (x, b) | �′ (ϕ (x, b)) = 0}, B = Lx (M ) / ker (pi) is independent
of i. Let B′ be the probability algebra of Borel sets in Sx (M ) up to measure 0.

We conclude that both pi ’s can be written as fi ◦ � where � is the projection from
Lx (N ) to the algebra B, and fi : B → Im (fi) are measure preserving embeddings
(note Im (fi) is a complete subalgebra; see [3, Proposition 324L]), and we can
extend them uniquely to B′ by [3, Propositions 324O and 323J], like in the proof of
Corollary 3.17.

We get f2 ◦ f–1
1 is a partial measure preserving isomorphism from Im (f1) into

Uκ+ (which can, by Proposition 3.8, be extended to an automorphism) and f2 ◦
f–1

1 ◦ p1 = f2 ◦ � = p2, contradiction. �
By [3, Theorem 322Ca–c], every probability algebra is complete as a Boolean

algebra (Dedekind complete, in his terminology).
Thus by choosing a sufficiently large κ (at least

(
2ℵ0
)+

) in Proposition 3.10 and
using Corollary 2.35 we get, recovering [11, Proposition 7.9]:

Corollary 3.19. Every Keisler measure over an NIP theory can be extended to a
smooth measure.

Proof. Take a Keisler measure � over a model M in x. Let κ =(
2ℵ0 + |T | + |x| + |M |

)+
. Then by Proposition 3.10 there exists a type p ∈ SxUκ (M )

such that � = �κ ◦ p.
By Corollary 2.35 there exists a modelN ⊇M of cardinality at most 2ℵ0 + |T | +

|x| + |M | and a smooth extension q ∈ SxUκ (N ) of p.
Thus letting �′ = �κ ◦ q, we find �′ extends �; thus by Corollary 3.17 we are

done. �
Remark 3.20. By [11, Lemma 7.8] and the remark following it, if N ⊇M is

an extension and � over N is a smooth extension of � over M, then there is some
M ⊆ N ′ ⊆ N such that �|N ′ is still smooth and |N ′| ≤ |M | + |T |.

Indeed the lemma and the remark state that � is smooth iff for every ε > 0 and
φ (x, y) exist 
i (y) , �1

i (x) , �2
i (x) (i = 1, ... , n) over N such that:

1.
(
n∨
i=1

i (y)

)
=  .

2. If b is a y-tuple in C and 
i (b) holds then �1
i (x) → φ (x, b) → �2

i (x).
3. �

(
�2
i (x)

)
– �
(
�1
i (x)

)
< ε.
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Thus we can take an elementary substructure N ′ of N containing M and all
parameters in the formulas �ji , 
i mentioned in the lemma for each ε = 1

n and
φ (x; y); then all the formulas are over N ′ and retain the required properties,
ensuring that �|N ′ is still smooth.

The proof of [11, Lemma 7.8] relies on the following fact:

Fact 3.21 [11, Lemma 7.4]. Let φ (x, b) be a formula (b ∈ C), and let � be a
Keisler measure in x over M. Let:

r1 = sup {� (ϕ (x, a)) | ϕ (x, a) ∈ Lx (M ) ,C � ϕ (x, a) → φ (x, b)} and

r2 = inf {� (ϕ (x, a)) | ϕ (x, a) ∈ Lx (M ) ,C � φ (x, b) → ϕ (x, a)} .

Then there exists an extension �′ of � to C such that � (φ (x, b)) = r iff r1 ≤ r ≤ r2.

Remark 3.22. For any measure algebra B and F ⊆ B there exists a countable
A ⊆ F such that A and F have the same set of lower bounds; hence

∏
F and∏

A exist and are equal (since B has c.c.c. and is complete; see for example [3,
Proposition 316E]); and if F is closed under finite products we can choose A to be
a chain. Thus we conclude �κ (

∏
F ) = inf {�κ (a)}a∈F . A similar argument shows

�κ (
∑
F ) = sup {�κ (a)}a∈F if F is closed under finite sums.

Let p ∈ SxUκ (M ), φ (x, y) be a partitioned formula and b ∈ C a y-tuple. Then

{p (ϕ (x, a)) | ϕ (x, a) ∈ Lx (M ) , φ (x, b) → ϕ (x, a)}

and

{p (ϕ2 (x, a2)) – p (ϕ1 (x, a1)) | ϕi (x, ai) ∈ Lx (M ) ,

ϕ1 (x, a1) → φ (x, b) → ϕ2 (x, a2)}

are closed under finite products, while

{p (ϕ (x, a)) | ϕ (x, a) ∈ Lx (M ) , ϕ (x, a) → φ (x, b)}

is closed under finite sums.

Remark 3.23. We can also get [11, Lemma 7.4] by combining Proposition 3.10,
Remark 3.22, and Fact 2.2.

Indeed we need to only find for any r1 ≤ r ≤ r2 some

b ≤

⎛⎝ ∏

(x,b):ϕ(x,a)→
(x,b)

p (
 (x, b))

⎞⎠ –

⎛⎝ ∑

(x,b):
(x,b)→ϕ(x,a)

p (
 (x, b))

⎞⎠
(for p some type corresponding to �) such that �κ (b) = r – r1; and it is easy to see
that when κ ≥ ℵ0, for every a ∈ U+

κ and every 0 ≤ s ≤ �κ (a) there exists b ≤ a such
that �κ (b) = s (indeed the same holds for any non-atomic measure algebra, but here
we can see it directly).

§4. Analysis of the stable case. In this section, we analyze the stable and totally
transcendental (t.t.) cases. We show that in the stable case, local Boolean types are
essentially averages of classical ϕ-types, and that in the t.t. case the same is true for
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complete Boolean types. We start with the t.t. case, since the general stable case is
similar (and easier, since local ranks are bounded by �).

4.1. The t.t. case.

Definition 4.1. For q ∈ SxB (A), let supp(q) = {p(x) ∈ Sx(A)|p � � ⇒
q(�) > 0}.

Note that when q ∈ SxB (A), supp (q) is a closed subset of Sx (A). Also note
that if Γ is a collection of formulas, closed under finite conjunctions, such that
q (�) > 0 for all � ∈ Γ then there is a type p ∈ supp (q) such that p � Γ (because
Γ ∪ {¬
 | q (
) = 0} is consistent).

We will use some basic facts from stability theory, namely:

Fact 4.2 [7, Section 3]. For a topological space X, let X ′ = X\{x ∈ X |x is
isolated}. Assume that T is t.t. and let X = Sx (A) for some A ⊆M |= T . For
α ∈ ord, let X (α) be the Cantor–Bendixon analysis of X (X (α+1) =

(
X (α)

)′
and

X (α) =
⋂
�<α X

(�) when α is a limit ordinal ). Then for some (successor)α < |T | +,
X (α) = ∅. (Note that this definition is a bit different than the one in [7, Section 3],
where one considers global types.)

Remark 4.3. Note that for any topological space X, if Y ⊆ X then Y ′ ⊆ X ′.

Lemma 4.4. Suppose that T is t.t. Suppose that B is any complete Boolean algebra.
LetA ⊆M |= T and let q ∈ SxB (A). LetX = supp (q). Let U be the set of all isolated
types r ∈ X . For each r ∈ U , let �r (x) be an isolating formula for r. Then:

(1) {q (�r) | r ∈ U } is an antichain.
(2) For any 
 (x) ∈ Lx (A), q (
) ≥

∑
r∈U q (�r) · r (
) (where we treat r as a

2-type).

Proof. (1) Note that 0 < q (�r) for all r ∈ U since r ∈ supp (q). Suppose that
r1 �= r2 ∈ U and 0 < b ≤ q

(
�r1
)
, q
(
�r2
)
. Hence 0 < b ≤ q

(
�r1 ∧ �r2

)
and thus for

some r ∈ supp (q), r � �r1 ∧ �r2 ; hence r1 = r = r2 by assumption.
(2) It is enough to show that if 
 (x) ∈ r for some r ∈ U then q (
) ≥ q (�r). If


 (x) ∈ r, it follows that q (�r ∧ ¬
) = 0 so q (�r) = q (
 ∧ �r) ≤ q (
). �

Theorem 4.5. Suppose that T is totally transcendental, A is some set, B is a
complete Boolean algebra, and that q ∈ SxB (A) is a B-type. Then there is a maximal
antichain 〈br | r ∈ U 〉 where U ⊆ supp (q) such that for all 
 (x) ∈ Lx (A), q (
) =∑
r∈U br · r (
).

Proof. For any 0 < b ∈ B, let B|b be the relative algebra. Letting X = Sx (A),
we try to construct a sequence 〈bα, qα,Uα, c̄α |α < α∗ 〉 for some α∗ ≤ |T | + such
that:

• 0 < bα ≤ b� for � < α; b0 = 1 and more generally bα =–
∑
�<α,r∈U� c�,r ;

qα ∈ SxBα (A) where Bα = B|bα ; qα (
) = q (
) · bα for any 
 ∈ Lx (A);

Uα ⊆ supp (qα) ⊆ X (α); c̄α = 〈cα,r | r ∈ Uα 〉 is an antichain contained in Bα ;
qα (
) ≥

∑
r∈Uα cα,r · r (
) for any 
 ∈ Lx (A).
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Given
〈
b� , q� , U� , c̄� | � < α

〉
, if

∑
�<α,r∈U� c�,r = 1 we stop and let α∗ = α.

Otherwise, let bα , qα as above and let Uα ⊆ supp (qα) be the set of isolated types
in supp (qα) (so for α = 0, q0 = q and b0 = 1). For r ∈ Uα , let cα,r = qα (�r)
where �r isolates r. By Lemma 4.4(1), {cα,r | r ∈ Uα } is an antichain in Bα .
Note that qα (
) ≥

∑
r∈Uα cα,r · r (
) by Lemma 4.4(2). Now prove by induction

on α that supp (qα) ⊆ X (α) (this follows from Remark 4.3 and the fact that
supp (qα+1) ⊆ supp (qα)′) and that

{
c�,r
∣∣ r ∈ U�, � < α } is an antichain in B.

Finally, since for some � < |T | +, X (�) = ∅, it follows that α∗ ≤ � (other-
wise, supp

(
q�
)

= ∅ and so b� = q� (x = x) = 0, contradiction). Hence for all

 ∈ Lx (A), q (
) ≥

∑
α<α∗ qα (
) ≥

∑
r∈Uα,α<α∗ cα,r · r (
) and {cα,r |α < α∗, r ∈

Uα} is a maximal antichain in B. Since this is also true for ¬
, we have equality and
we are done. �

4.2. The stable case. Fix a partitioned formula ϕ (x, y) in some theory T, and
let A ⊆ C. As in [7, Section 2], by a ϕ-formula over A, we will mean a formula

 (x) ∈ Lx (A) which is equivalent to a Boolean combination of instances of ϕ
over A (over a model M, a ϕ-formula is just a Boolean combination of instances
of ϕ over M). Let Lϕ,x (A) be the Boolean algebra of ϕ-formulas over A up to
equivalence in C. Let Sxϕ (A) be the set of all complete ϕ-types over A in x, i.e.,
maximal consistent sets of ϕ-formulas over A.

Definition 4.6 (Local Boolean type). Suppose that B is a Boolean algebra and
ϕ (x, y) is a partitioned formula. A B, ϕ-type over a set A is a homomorphism
from Lϕ,x (A) to B. Denote the set of B, ϕ-types by SxB,ϕ (A). For q ∈ SxB,ϕ let
suppϕ (q) =

{
p (x) ∈ Sxϕ (A) |p � � ⇒ q (�) > 0

}
.

Similarly to the previous section, we have:

Fact 4.7 [7, Section 3]. Assume that ϕ (x, y) is stable in some complete theory T,
A ⊆M |= T and let X = Sxϕ (A). Then for some n < �, X (n+1) = ∅.

Theorem 4.8. Suppose that ϕ (x, y) is stable, A is some set, B is a complete
Boolean algebra, and that q ∈ SxB,ϕ (A) is a B, ϕ-type. Then there is a maximal
antichain 〈br | r ∈ U 〉 where U ⊆ suppϕ (q) such that for all 
 (x) ∈ Lϕ,x (A),
q (
) =

∑
r∈U br · r (
).

Proof. The proof is exactly as the proof of Theorem 4.5, working with X =
Sxϕ (A) and with local Boolean types, replacing Fact 4.2 with Fact 4.7. We leave the
details to the reader. �

Remark 4.9. When T is stable and q ∈ SxB (A), this essentially means that q|ϕ
factors through 2|U | ↪→

∏
r∈U

B|br ∼= B (see [5, Proposition 6.4]). In particular we get

again, more directly, that for B which is κ-c.c.,
∣∣Im (q|ϕ)

∣∣ ≤ 2<κ (see Proposition
2.12). When T is t.t., we get similarly that |Im (q)| ≤ 2<κ.

4.3. Non-forking. Using (the proof of) Theorem 4.8, one can recover the theory
of forking in stable theories.

Definition 4.10. Let B be any Boolean algebra and let T be any theory. Let
A ⊆ B be any sets. Say that a B-type or a B, ϕ-type q forks over A if for some
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formula � (x) over B which forks over A, q (�) > 0. (For the definition of forking,
see, e.g., [12, Definition 7.1.7].)

Fact 4.11 (E.g., [7, Section 2]). If M ≺ N , ϕ (x, y) is stable, then any ϕ-type
p ∈ Sxϕ (M ) has a unique non-forking extension p|N to Sϕ (N ). The same is true
assuming elimination of imaginaries when M is replaced by an algebraically closed
set A.

Remark 4.12. Suppose that p ∈ SxB (B) does not fork over A ⊆ B . Then there is
a global non-forking (over A) extension q ∈ SxB (C) (and the same is true for local
Boolean types). This follows from the fact that the set of forking formulas over A
forms an ideal, and Fact 2.1. When B is a model M then p does not fork over M
and if T is stable (or even simple) then this is true in general.

Suppose thatϕ (x, y) is stable andp ∈ SB,ϕ (M ) for some modelM |= T . Then we
can find an explicit extension: by Theorem 4.8, we can write p as the sum

∑
r∈U br · r

for some maximal antichainU ⊆ suppϕ (p) and we let q =
∑
r∈U br · r|C (where r|C

is the unique global non-forking extension of r). A similar statement holds in the
t.t. case.

Next we would like to prove that there is a unique non-forking extension.

Lemma 4.13. Suppose that ϕ (x, y) is stable and B is any complete Boolean
algebra. Let M ≺ N |= T and let q ∈ SB,ϕ (N ) be non-forking over M. Let X =
suppϕ (q|M ) (q|M is the restriction of q to Lϕ,x (M )). Let U be the set of all isolated
ϕ-types r ∈ X . For each r ∈ U , let �r (x) be an isolating formula for r(so it is a
ϕ-formula). Then

• For any 
 (x) ∈ Lϕ,x (N ), q (
) ≥
∑
r∈U q (�r) · r|N (
) (where r|N is the

unique non-forking extension of r to N ).

Proof. It is enough to show that q (
) ≥ q (�r) when 
 ∈ r|N . Suppose that

 (x) ∈ r|N but q (�r ∧ ¬
) > 0. Then there is some r′ ∈ suppϕ (q) such that r′

contains �r ∧ ¬
. But then r′ does not fork over M (because q does not fork
over M) and r′|M contains �r and is in X and thus r′|M = r|M and by Fact 4.11,
r′ = r. �

Theorem 4.14. Suppose thatϕ (x, y) is stable. Suppose thatn < �. Then, whenever
B is a complete Boolean algebra, M ≺ N , and q ∈ SB,ϕ (N ) does not fork over M,
there is a maximal antichain 〈br | r ∈ U 〉 whereU ⊆ suppϕ (q|M ) which depends only
on q|M such that for all 
 (x) ∈ Lϕ,x (N ), q (
) =

∑
r∈U br · r|N (
). In particular,

q is the unique non-forking extension of q|M .

Proof. The proof follows the same lines as in the proof of Theorem 4.8 (and
Theorem 4.5), using Lemma 4.13 instead of Lemma 4.4. �

Remark 4.15. As in the classical case, we can extend these results (existence and
uniqueness of non-forking extensions) for an arbitrary algebraically closed set A,
assuming elimination of imaginaries.

4.4. Connection to Keisler measures. Using the general results on Boolean types
we can recover and prove some results on Keisler measures. The following result
appeared in [1, Fact 2.2], [8, Fact 1.1] for models.
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Corollary 4.16. Suppose that ϕ (x, y) is stable and that � is a Keisler measure
on Lϕ,x (A) for some set A. Then there is a countable family 〈pi | i < � 〉 of complete
ϕ-types over A and positive real numbers 〈αi | i < � 〉 such that

∑
i<� αi = 1 and for

any 
 (x) ∈ Lϕ,x (A), � (
) =
∑
αipi (
).

Similarly, if T is t.t. and � is a Keisler measure on Lx (A) then there is a countable
family 〈pi | i < � 〉 of complete types over A and positive real numbers 〈αi | i < � 〉
such that

∑
i<� αi = 1 and for any 
 (x) ∈ Lx (A), � (
) =

∑
αipi (
).

Proof. Given �, let B be the Boolean algebra of Borel subsets of Sxϕ (A) up to
�-measure 0 (recall Remark 3.6) and let q ∈ SxB,ϕ (A) be the natural homomorphism
from ϕ-formulas over A (up to equivalence over C) to B. Now apply Theorem 4.8 to
q and B to obtain a maximal antichain {br | r ∈ U } whereU ⊆ suppϕ (q) such that
for all 
 (x) ∈ Lx (A), q (
) =

∑
r∈U br · r (
). Note that U must be countable as

B is c.c.c. Letting αr = � (br) we are done. The second statement follows similarly
from Theorem 4.5. �

Definition 4.17. A Keisler measure � on Lx (N ) does not fork overM ≺ N if
whenever � (�) > 0, � does not for over M.

Corollary 4.18. Suppose that ϕ (x, y) is stable and that � is a Keisler measure
on Lϕ (M ) for some model M. Then � has a unique global non-forking extension
to C. More generally, this holds when replacing M by any algebraically closed set A,
assuming elimination of imaginaries.

Proof. We use a local version of Proposition 3.10: given �, we can find p ∈
Sxϕ,Uκ (M ) such that � = �κ ◦ p for κ = |T | + |M |. By Remark 4.12 there is a non-
forking extension q ∈ Sxϕ,Uκ (N ) and then we can define �′ = � ◦ q. For uniqueness,
suppose that �1, �2 are two non-forking measures overN �M extending �. We may
assume |N | = |M | and let κ be as above. Let q1, q2 ∈ Sxϕ,Uκ+

(N ) be corresponding
ϕ,Uκ+-types. By a local version of Lemma 3.16 we may assume that both q1, q2

extend p. Thus we are done by Theorem 4.14. The more general statement follows
similarly by Remark 4.15. �

Remark 4.19. Note that in the context of the first part of Corollary 4.16 where A
is a model and N ⊇ A, the unique non-forking extension of � to N is the weighted
sum

∑
αipi |N where pi |N is the unique non-forking extension of pi to N. This

follows immediate from the fact that the sum does not fork. The analogous result
holds in the t.t. case.
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