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Abstract

TinkerType is a pragmatic framework for compact and modular description of formal systems

(type systems, operational semantics, logics, etc.). A family of related systems is broken down

into a set of clauses – individual inference rules – and a set of features controlling the inclusion

of clauses in particular systems. Simple static checks are used to help maintain consistency

of the generated systems. We present TinkerType and its implementation and describe

its application to two substantial repositories of typed lambda-calculi. The first repository

covers a broad range of typing features, including subtyping, polymorphism, type operators

and kinding, computational effects, and dependent types. It describes both declarative and

algorithmic aspects of the systems, and can be used with our tool, the TinkerType Assembler, to

generate calculi either in the form of typeset collections of inference rules or as executable ML

typecheckers. The second repository addresses a smaller collection of systems, and provides

modularized proofs of basic safety properties.

1 Introduction

The quest for modular presentations of families of programming language features

has a long history in the programming language community. Language designers

since Landin (1965; 1966) have understood how to view a multitude of high-level

constructs through the unifying lens of the lambda-calculus. Further work has

led to more structured approaches such as categorical semantics (Gunter, 1992;

Mitchell, 1996; Jacobs, 1999), action semantics (Mosses, 1992), and monadic frame-

works (Moggi, 1989). Using these tools, it is now possible to synthesize a variety of

interpreters (Steele, 1994; Liang et al., 1995; Espinosa, 1995) and compilers (Liang &

Hudak, 1996; Harrison & Kamin, 1998) from common blueprints or interchangeable

building blocks.

For the type systems that accompany these languages, progress on unifying

formalisms has been slower, though there have been some significant achievements

in restricted domains, including Pure Type Systems (Berardi, 1988; Terlouw, 1989;

Barendregt, 1992) and Sulzmann, Odersky and Wehr’s generic treatment of type

inference for systems of constrained types (1999); a related result outside the domain

of programming languages is Basin, Matthews, and Viganò’s modular presentation

of modal logics in Isabelle (1995). In these proposals, the idea is to define a single
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“parameterized” system from which many particular systems can be obtained by

instantiation. This method supports once-and-for-all proofs of properties like subject

reduction and decidability that apply automatically to all instances. However, to

give a single, parametric description of a collection of formal systems, we must first

understand all the possible interactions among their features. If – as is common

with type systems – some combinations of features are not well understood, then a

less structured, more flexible approach is required.

The goal of the TinkerType project has been to develop a framework that

facilitates compact and modular description of very diverse collections of formal

systems, taking typed lambda-calculi as our driving example. We adopt a feature-

based approach, breaking down a family of formal systems into a set of clauses

annotated with a set of features chosen by the user to reflect the structure of the

domain. In the domain of typed lambda-calculi, the clauses are individual inference

rules, and features correspond to the presence of particular type constructors or

structures such as subtyping or kinding in a given calculus. A clause may have

multiple variants, each annotated with a set of relevant features (drawn from some

set of atomic feature names) that control its inclusion in particular systems. A

complete system is specified by a set of features.

Several things can go wrong in the process of maintaining a repository of features

and clauses and extracting systems from it. A change in a clause may introduce

inconsistencies with other variants of the same clause; a set of features identifying

an extracted system may be nonsensical; the clauses of a system may turn out to

be incompatible with each other. In our open-ended setting (the clauses themselves

are uninterpreted strings as far as TinkerType is concerned), ensuring the “reason-

ableness” of generated systems is difficult in general. We have, however, identified

several common sources of error in practice and introduced static consistency checks

to help prevent them.

The contributions described in this paper are twofold. First, we present the

TinkerType framework and describe its implementation. Secondly, we use it to

classify a number of familiar typed lambda-calculi, including systems with subtyping,

polymorphism, type operators and kinding, computational effects, and dependent

types. Our first repository of typed lambda-calculi can be used to extract both

inference-rule presentations of systems (as latex documents) and ML sources that

can be compiled to produce running typecheckers and interpreters. Our second

repository can be used to generate proofs of basic metatheoretic properties. (Strictly

speaking, what we generate are proof scripts, whose correctness must be externally

verified. This point is discussed in section 6.) These experiments represent substantial

experience with using the TinkerType framework in practice.

The remainder of the paper proceeds as follows. In sections 2 and 3, we give precise

definitions of the fundamental concepts underlying TinkerType: clauses, features

and the process of composing systems and checking their consistency. Section 4

describes our implementation. Sections 5 and 6 present our two repositories for

typed lambda-calculi. Sections 7 and 8 describe related work and discuss TinkerType

in a broader context. In this paper, we mostly concentrate on applications of

TinkerType to lambda-calculi and type systems, but its core mechanisms are actually
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quite general. In section 8, we speculate on some potential applications in other

domains.

The TinkerType implementation, user manual, and examples are available from

http://www.cis.upenn.edu/~milevin/tinkertype.

2 Assembling systems from features and clauses

A formal system can be described as a set of judgements, each consisting of a set

of clauses. The simply typed lambda-calculus (λ→), for example, is a formal system

with two judgements: typing and evaluation. The typing judgement contains clauses

like

Γ � t1 : T2→T1 Γ � t2 : T2

Γ � t1 t2 : T1

T-App

while the evaluation relation has clauses like the beta-reduction rule.1

This is obviously a rather syntactic view of formal systems. More abstractly, we

might say that the simply typed lambda-calculus is a pair of sets of derivation

trees: one set of trees with conclusions like Γ � t : T and one with conclusions

like t →β t′. More abstractly yet, we might view λ→ as a pair of relations obtained

from these sets of trees. Or again, λ→ can be represented by a pair of functions in,

say, ML. Since we are interested in all of these views, we avoid committing to a

particular one by taking clauses as primary and dealing with them as uninterpreted

atoms in our formalism.

A given clause may appear in many different systems. For example, both pure

λ→ and λ→ with booleans contain the application rule shown above. On the other

hand, in other systems, the same clause may take different forms. In (an algorithmic

presentation of) λ→ with subtyping, the application rule refines the rule above by

adding an extra subtyping premise:

Γ � t1 : T2→T1 Γ � t2 : U U <: T2

Γ � t1 t2 : T1

T-App

Another specialization of the rule is necessary for systems with assignment and

store. The typing judgement of such systems involves an assignment of types to store

locations Σ.

Γ ; Σ � t1 : T2→T1 Γ ; Σ � t2 : T2

Γ ; Σ � t1 t2 : T1

T-App

We formalize the relation between different versions of inference rules and prop-

erties of the system by annotating each rule with a set of features:

1 Strictly speaking, there are also “judgements” defining the syntax of types, terms, and contexts. For
example, the term syntax judgement contains clauses like “if T1 and T2 are types, then so is T1→T2.”
Our discussion elides these syntactic judgements, for brevity.
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Γ � t1 : T2→T1 Γ � t2 : T2

Γ � t1 t2 : T1

T-App [arrow]

Γ � t1 : T2→T1 Γ � t2 : U U <: T2

Γ � t1 t2 : T1

T-App [arrow , sub]

Γ; Σ � t1 : T2→T1 Γ; Σ � t2 : T2

Γ; Σ � t1 t2 : T1

T-App [arrow , store]

The choice of features is determined by the set of systems we intend to describe.

The arrow feature is present in any system with function types; sub characterizes

systems with subtyping, and store indicates systems with locations and side effects.

Often features are related to one another. A system with higher order functions,

for instance, necessarily has term variables because of lambda abstraction. Similarly,

the Top type and its associated inference rules are only sensible in systems with

subtyping. To account for facts like this, it is convenient to introduce the notion of

dependencies between features. The arrow feature depends upon tmvar (written as

a propositional formula arrow ⇒ tmvar); top depends on sub (written top ⇒ sub).

Both of these dependencies are of the form one feature implies another. Sometimes,

it is useful for a combination of multiple features to trigger a dependency. Consider,

for example, a typing rule for conditional expressions (present in systems identified

by the feature bool):

Γ � t1 : Bool Γ � t2 : T Γ � t3 : T

Γ � if t1 then t2 else t3 : T
T-If [bool]

In the presense of subtyping, a more flexible typing rule is possible. Instead of

requiring the types of both conditional branches to be equal, it is safe to allow them

to be different and assign their least common supertype, or join, to the type of the

whole if expression:

Γ � t1 : T1 T1 <: Bool Γ � t2 : T2

Γ � t3 : T3 T = T2∨T3

Γ � if t1 then t2 else t3 : T
T-If [bool , sub]

A system with this rule must provide a function for calculating joins. Let us

associate the inference rules of this function with the feature calcjoin . Then, we can

formalize our discussion by the dependency bool ∧ sub ⇒ calcjoin .

Given a repository of inference rules as above, one can specify a system by a set

of features. Consider λ→ with booleans and Top: [arrow , bool , top]. Let us deter-

mine the inference rules composing this system. The rule T-App [arrow] is relevant

since it is tagged with a feature appearing in the system specification. The rule

T-App [arrow , sub] is also relevant; even though sub does not appear in the speci-

fication directly, it is implied by top. Clearly, the system should include the more

specific latter rule. Similarly, this system should contain T-If [bool , sub] as well as

the applicable subtyping and join rules not shown here.

Attempting a similar exercise for the system [arrow , sub , store] will hit a snag
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since both T-App [arrow , sub] and T-App [arrow , store] are relevant but neither one

is more specific than the other. To resolve this conflict, we must define a refined rule

for this specific set of features:

Γ; Σ � t1 : T2→T1 Γ; Σ � t2 : U U <: T2

Γ; Σ � t1 t2 : T1

T-App [arrow , sub , store]

We can formalize the above intuitions as follows. First, fix a set Names of clause

names and a set Cnt of clause contents. (Both of these sets are uninterpreted here. In

the implementation, they are strings.) A repository is a tuple 〈Fts, Dep, Cls〉, where

Fts is a set of features,

Dep ⊆ P(Fts) × P(Fts) is a feature dependency relation, and

Cls ⊆ Names × P(Fts) × Cnt is a set of clauses.

Given a set of features F , we define closure(F) to be the least superset F ′ of

F that is closed under the dependency relation, i.e. such that if F1 ⊆ F ′ and

(F1, F2) ∈ Dep, then F2 ⊆ F ′. We say that a set of features F1 dominates another set

F2 if closure(F2) ⊆ closure(F1).

A clause cl is a triple 〈n, F, c〉, where n ∈ Names is a label identifying the clause,

F ⊆ Fts is a set of features that governs inclusion of the clause in particular systems,

and c ∈ Cnt is the actual content of the clause. We say that cl is relevant to the set

of features F . Finally, we say that a clause cl1 = 〈n1, F1, c1〉 is more specific than

cl2 = 〈n2, F2, c2〉 if n1 = n2 and F1 dominates F2. For example, T-If [bool , sub] is

more specific than T-If [bool].

Now we have the tools to specify how a system is assembled, given a set of features

F . First, we extract from the repository all the clauses whose sets of features are

dominated by F . Then we partition these clauses into sets of clauses with identical

labels. We verify that each partition has the most specific clause. We select the most

specific clause from each partition. The contents of these clauses form the system.

3 Consistency checking

The basic framework presented in the previous section is very flexible, but it needs a

little more structure before we can use it to develop large repositories. In this section,

we introduce some simple static consistency checks that help ensure both coherence

of the repository and consistency of generated systems. While these checks provide

no absolute guarantees of correctness, we have found them to be extremely useful

in practice.

To make the checks precise, we begin by adding some elements to the definitions

of the previous section. A repository is now a tuple 〈Fts, Dep, Cls, Rfn, Con, Csig〉,
where

Fts, Dep, Cls are as before,

Rfn ⊆ Cnt × Cnt is a transitive refinement relation on clause contents,

Con is a set of feature constraint formulas (propositional formulas over

Fts), and
Csig is a clause signature relation.

The new elements are discussed in the subsections that follow.
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3.1 Clause refinement

The refinement relation Rfn verifies that the dominance relation between clauses is

reflected in their contents. For example, in the previous section we saw two variants

of the application clause, T-App [arrow] and a more specific T-App [arrow , sub].

It is natural to expect that the contents of these clauses should be similar, indeed

that the contents of the latter clause should be “more specific” in the sense that it

performs the same function but takes into account the presence of subtyping. If this

were not the case, it would almost surely indicate that some confusion has happened

in the repository (an inconsistent update of a clause content, an accidental name

clash between clauses, incorrect feature dependency, mistaken feature annotation,

etc.). To prevent such inconsistencies, we demand that, whenever a clause 〈n, F1, c1〉
is more specific than a clause 〈n, F2, c2〉, we also have c1 Rfn c2.

We need to take Rfn as a part of the repository (i.e. we must assume that

it is provided externally, not calculated by the framework) because the clause

contents themselves are uninterpreted by the framework. (In our tool, the refinement

relation is generated by user annotations explicitly marking the parts of clauses that

are “new” with respect to previous versions, cf. section 4.) Forcing the user to

think explicitly about the refinement relation between different versions of a clause

introduces a useful cross-check between the activities of deriving new clauses from

simpler variants and annotating them with features. Although this check works

completely at the level of strings, it is surprisingly effective in catching “version

control” errors during maintenance of large rule repositories: if we change a variable

name, for example, in one variant of a clause but forget to change it in the other

variants, the tool complains and points us to the ones we missed.

3.2 Feature consistency

In some families of formal systems, there are combinations of features that do not

make sense. For example, it has been shown (Ghelli, 1990) that the subtype relation

of the “full” variant of System F<: is not closed under joins. Other systems, like λ→

with booleans and subtyping, rely on the existence of joins (signaled by the calcjoin

feature) to calculate minimal types. Thus, a system like [ffsub , bool], where ffsub is

the feature selecting the full variant of F<:, will be defective (in particular, the typing

algorithm will be incomplete with respect to a declarative presentation of the system).

To prevent the extraction of such systems, we include in the repository a set Con

of feature constraint formulas – propositional formulas over the set of features –

and say that a system identified by features F is consistent if closure(F) satisfies every

formula in Con. (Note, that feature dependencies are a special kind of constraints

guaranteed to be satisfied by the definition of closure.) A constraint that outlaws

the above system can be written ffsub ⇒ ¬calcjoin .

3.3 Judgement signatures

Our last form of consistency checking is more speculative (and as yet unimple-

mented). From our experience using TinkerType, we feel that something of this kind
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is needed, but we are less confident about the details of the design: it seems difficult

to strike the right balance between helping and getting in the way.

A given judgement may have different “shapes” when it appears in different

formal systems. For example, in the simply typed lambda-calculus, the subtyping

judgement is a two-place relation on types, S <: T. In F<:, it is a three-place relation

between contexts and pairs of types, Γ � S <: T. To track these variations in shape

and prevent the accidental mixing of rules of different shapes, we can introduce

a notion of judgement signatures. For example, in a type system with kinds, the

signature of the typing judgement would be:

Typing(Γ, t, T) × Kinding(Γ, T, K) → Typing(Γ, t, T)

That is, typing in this system is a three-place relation on contexts, terms, and types,

and it depends both on itself and on the kinding relation (i.e. both typing and

kinding assertions may occur as major premises of typing rules). Formally, adding

judgement signatures involves extending the definition of a repository with new sets

Syn of syntactic categories and Jdg of judgement names. A statement signature like

Typing(Γ, t, T) consists of a judgement name (Typing) and a sequence of syntactic

categories. A judgement signature has the form S1 × · · · Sn → S , where each Si and S

are statement signatures.

Judgement signatures enable a consistency check that prevents clauses intended

for different versions of a judgement from ending up in the same system. This is

accomplished by checking, when assembling a system, that all the clauses we have

selected to define a given judgement have exactly the same signature. This check

alerts the user when a clause that should have been overridden to take a new feature

into account is “improperly inherited” verbatim from a simpler system. For example,

it will prevent the inclusion of the clause

Γ, x:T2 � t1 : T1

Γ � λx:T2.t1 : T2→T1

T-Lam [arrow]

in a system with a kinding relation, because its signature is Typing(Γ, t, T) →
Typing(Γ, t, T), rather than Typing(Γ, t, T) × Kinding(Γ, T, K) → Typing(Γ, t, T). This

check should help prevent the generation of unsound or nonsensical systems – for

example, when the user forgets to override the T-Lam clause with its kind-checking

variant.

Our implementation does not support judgement signature checking yet: some

substantial design issues remain to be addressed before the idea can be tried out

in practice. In particular, since clause contents are uninterpreted (e.g. just strings),

TinkerType cannot infer judgement signatures automatically; like the refinement

relation on clauses, the relation mapping clauses to signatures must be specified by

the user as part of the repository. Accomplishing this smoothly, without imposing

an undue burden on the user, requires a mechanism for indicating judgement

signatures for large collections of rules at once. Also, a straightforward realization

of the consistency check prevents some legitimate uses of inheritance. Consider

again the two type systems with and without kinding. Even though their typing
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judgements have different signatures, the application clause T-App is identical in

both systems (unlike T-Lam). We believe that silent inheritance in cases like this

should be prohibited – the user should be forced to look at the simple clause and

verify that it will actually work unchanged in a system with kinding, but we need

to make it easy for the user to record the fact that this check has indeed been

performed. In the meantime, the implementation provides a simpler consistency

check that detects some of the same problems.

4 The TinkerType assembler

Based on the above ideas, we have designed a small language for describing repos-

itories and implemented a tool that assembles systems and checks their consis-

tency.

We use arbitrary strings for the contents of clauses. In our repositories of typed

lambda-calculi, some of these strings are bits of ML code; others are bits of TeX

source; others are bits of proofs. For example, here is the ML clause for typechecking

conditional expressions:

T-If

{#TmIf(fi,s1,s2,s3) →
if tyeqv ctx (typeof ctx s1) TyBool then

let tyS = typeof ctx s2 in

if tyeqv ctx tyS (typeof ctx s3) then tyS

else error fi "arms of conditional have different types"

else error fi "guard of conditional not a boolean"#}

T-If is the name of the clause, and the content appears between the brackets

{# and #}. This clause forms part of the definition of the typeof function in a

generated typechecker. (It can be paraphrased as follows: In the case where we are

typechecking a TmIf abstract syntax node, we first check whether the type of the

guard s1 (in the current context ctx) is equivalent to TyBool. If so, we calculate the

type of the then part s2 and call this type tyS. We calculate the type of the else

part s3 and check that it is equivalent to tyS. If it is, then tyS is the type of the

TmIf node. If either test fails, we generate an appropriate error.) Individual clauses

are not annotated with their relevant features. Instead, we introduce a coarser-

grained structuring mechanism called a component, which gives a single annotation

for several clauses relevant to the same set of features. Besides reducing clutter,

components are useful units of grouping in the repositories.

Within a component, clauses are further grouped into nested sections. At the top

level, we have one section for all the TeX rules and another for ML code. (We

could also have decided to intermix TeX and ML clauses in the same sections, so

that clauses implementing similar functionality would be adjacent in the repository

sources; the choice is purely a matter of taste.) Within the ML section, there

are subsections for abstract syntax, for lexing and parsing, for printing, and for

core typechecking functions. The latter contains subsections for individual functions

(typing, subtyping, kinding, etc.), and they, in turn, contain the actual clauses. The
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following fragment is a part of the [bool , typing] component:

core {

tyeqv {

Eqv-Bool {# ... #}

}

typeof {

T-False {# ... #}

T-True {# ... #}

T-If {# ... #}

}

}

Each section may define special clauses called header, footer, and separator.

For example, the typeof section contains the following header and separator:

header {#let rec typeof ctx t = match t with#}

separator {#| #}

(In the actual repositories, these definitions also contain information about line-

breaking and indentation.) When the tool prints a section, it outputs the header, the

section’s subitems separated by the separator, and then the footer. For example, the

generated typeof function looks like this:

let rec typeof ctx t = match t with

...

| TmIf(fi,s1,s2,s3) →
if tyeqv ctx (typeof ctx s1) TyBool then

let tyS = typeof ctx s2 in

if tyeqv ctx tyS (typeof ctx s3) then tyS

else error fi "arms of conditional have different types"

else error fi "guard of conditional not a boolean"

| ...

The ability to associate sections with headers, footers, and separators is the main

practical motivation for the section mechanism (aside from this, we could simulate

most of the uses of sections by adding auxiliary features). As the previous example

shows, it is essential for composing ML function definitions from clauses of a

pattern match. Outer sections, like the ones grouping all TeX rules and all ML code,

are introduced mostly for readablility, and their layout is up to the taste of the

component writer.

The refinement relation is generated from user annotations in clause contents. To

indicate that one version of a clause refines another, we enclose the new or changed

parts of the refined clause in [[ and ]] brackets. The assembler notes that the latter

refines the former if the unbracketed segments of the refined clause appear verbatim

in the original. For example, the variant of T-If for systems with subtyping is

annotated like this:

T-If

{#TmIf(fi,s1,s2,s3) →
if [[subtype]] ctx (typeof ctx s1) TyBool then

[[join ctx (typeof ctx s2) (typeof ctx s3)]]

else error fi "guard of conditional not a boolean"#}

https://doi.org/10.1017/S0956796802004550 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004550


304 M. Y. Levin and B. C. Pierce

To build a system, we specify a set of features plus a file or directory, called

a template, containing a skeleton for the generated system. For ML systems, the

template is a directory containing a makefile, boilerplate for lexing and parsing, a

top-level command loop, and skeleton modules (containing holes marked with the

names of sections to be inserted at each point) for the major components of the

typechecker.

The TinkerType implementation also includes fairly sophisticated facilities for

prettyprinting, controlling the ordering of clauses and sections, automatic highlight-

ing of differences between a generated system and its ancestors, macro substitution,

debugging support for generated systems, and analysis of feature conflicts and rule

inconsistencies. Details can be found in the user manual (available through http://

www.cis.upenn.edu/~milevin/tinkertype).

5 The Next 700 type systems

We have carried out two substantial experiments with using TinkerType. In the

first, the goal was to encode a very broad range of typing features, including

subtyping, polymorphism, type operators and kinding, computational effects, and

dependent types, and to develop both printable TeX presentations and executable

ML typecheckers for the systems in parallel. In the second, we addressed a smaller

collection of features, concentrating instead on modularizing the proofs of their

basic metatheory. This section describes the first experiment; the second is discussed

in section 6.

In the following subsections, we introduce several groups of related features and

show how to combine them to obtain several familiar type systems, including the

systems of Barendregt’s lambda cube and various calculi with subtyping. We con-

centrate on the algorithmic variants of the systems (i.e. the running ML systems,

rather than their more abstract presentations in TeX), since they involve a more

interesting “feature skeleton” than their declarative counterparts. Each of the fol-

lowing subsections shows one “slice” through our repository, introducing several

related features and discussing their use.

5.1 Features for variables and binders

Some of the intricacies in the repository arise from the need to deal carefully with

(term and type) variables and substitution. In particular, we would like to make each

generated system as simple as possible, avoiding generating unnecessary functionality

like type-substitution operations in systems whose types do not contain variables. We

must therefore take into account whether type and term variables are present in each

system, whether type and term variables can appear in terms and types (respectively),

and which substitution operations (terms in terms, types in terms, types in types,

etc.) are needed. (Remember that we are generating running ML typecheckers

here; the standard “We assume the usual conventions about alpha-conversion and

capture-avoiding substitution...” does not suffice! We could, of course, alternatively

adopt a “higher-order abstract syntax” treatment of binders and substitution, as in
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all

tytmsubst

tytysubst

tyvar

tyrec operator

tyabbrev

family

tmtysubst

tmtmsubst

tmvar

arrow tmrec

let

tmabbrev

some

Fig. 1. Variable and binding features.

LF (Harper et al., 1992) and some concrete compiler implementations (Pfenning &

Elliott, 1988). Our choice of an explicit treatment of names is a matter of taste, not

principle: TinkerType could be used equally well to formulate the HOAS variants

of our systems.)

Figure 1 shows the hierarchy of features related to variables and binders. The two

“trunks” in the diagram control the core functionality of variables and substitution.

We use the features tmtmsubst, tmtysubst, tytmsubst, and tytysubst to control the

generation of functions for substitution of terms inside terms, terms inside types,

types inside terms, and types inside types respectively. The “leaves” in the hierarchies

represent specific binding operators whose definitions make use of various kinds of

substitution. The features arrow and family in the term-variable hierarchy (on the

left) stand for abstraction of terms over terms (ordinary lambda-abstraction) and

types over terms (families of types indexed by terms). They correspond to the operator

and all features in the type variable hierarchy, which characterize abstraction of

types over types (type operators) and terms over types (polymorphic functions), re-

spectively. The feature let stands for local definitions, some for existential types, tmrec

and tyrec for recursive terms and iso-recursive types, variant for variants and a case

construct, and tmabbrev and tyabbrev for top-level abbreviations of terms and types.

Note that “technical features” like tytmsubst do not need to be mentioned in user-

level descriptions of systems, since mentioning a higher-level feature like all will

cause it to be included automatically. Also, note that tytmsubst implies tytysubst,

since substituting a type into a term might involve substituting through a type

embedded in the term, and similarly for tmtysubst and tmtmsubst.

The variable related features contain the cornerstones for the systems of Baren-

dregt’s lambda cube: arrow , all , operator , and family . We will return to the cube

later on.

5.2 Simple features

Another way to classify features is based on the kinds of judgements they support.

The feature typing enables the typing judgement. A large number of systems can be

built based on this judgement. We call such systems simple, and figure 2 shows the

hierarchy of features used to build them.

The simple feature hierarchy includes almost all of the variable operation hierarchy
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all

tytmsubst

tytysubst

tyvar

tyrec

tyabbrev

tmrec

tmtmsubst

tmvar

arrow let

variant

some

typing

patternnat

tmabbrev

record

unit

bool

basety

coerce

Fig. 2. Simple features

typing

eval

eff

ref

normalize

Fig. 3. Evaluation and normalization features.

and defines several new “content” features. The feature nat represents natural

numbers and the operation of iteration on them. Because one argument of such

iterations is a higher-order function, nat implies arrow . The feature pattern combines

the capabilities of local definition (let ) and record projection (record ) to enable

pattern matching syntax for record values. The features bool and unit represent

booleans and a unit type; basety introduces atomic base types; coerce provides

explicit typecasts.

5.3 Evaluation and normalization features

Any system built from the simple features must contain either a normal-order or a

call-by-value reduction relation on terms. We prohibit inclusion of both evaluation

and reduction in the same system by introducing features normalize and eval

(shown in Figure 3) and defining a feature constraint normalize ⊕ eval (where ⊕
is exclusive or). For systems with computational effects, on the other hand, call-by-

value reduction must be selected. The feature eff controls inclusion of the necessary

infrastructure to implement effects, and ref is built on top of it to support reference

cells.
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family operator

dep

kinding

typing

Fig. 4. Kinding features.

operator family tyabbrev

tyconvert

typing

Fig. 5. Type conversion features.

5.4 Kinding features

systems with non-trivial well-formedness conditions on types (for example, systems

with type operators or dependent type families) introduce a kinding judgement. The

feature hierarchy shown in figure 4 introduces kinding as a base feature for kinding

support; dep signals mutual dependency between the typing and kinding relations

and introduces dependent functions; operator and family add type operators and

type families respectively.

5.5 Type conversion features

Syntactically distinct types must be checked for “convertibility” in systems with

either type abbreviations (tyabbrev) or beta-reduction on types (operator or family).

The feature tyconvert (shown in figure 5) signals the presence of any one of the

above three features and triggers the use of conversion testing at many points in the

typing rules instead of simple type equality.

We have now defined all the necessary features for building the systems of

Barendregt’s lambda cube:

[arrow ] λ→

[arrow , all ] System F

[arrow , family] types dependent on terms

[arrow , all , operator] System Fω

[arrow , all , operator , family] calculus of constructions

The features all , operator , and family define the three dimensions of the cube, while

arrow marks the origin point.
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kfsub ffsub

boundedtyvar

sub

anotjoin

calcjoin

top

tyvar

typing

Fig. 6. Subtyping features

5.6 Subtyping features

A difficulty in the design of algorithmic subtyping systems arises from the nonexis-

tence of joins in the full variant of System F<:. We want to employ the algorithm for

calculating joins in systems where it makes sense, but systems that are not closed

under joins must provide some other mechanism of obtaining a common supertype

(for example, they might annotate “multi-armed” expressions like if and case with

their intended result types). We introduce two mutually exclusive features, calcjoin

and anotjoin, one of which must be specified for any system that contains a multi-

armed expression. While calcjoin signals that a system contains the algorithm for

calculating joins, anotjoin represents systems where multi-armed expressions must

use annotated forms.

We also introduce a mutually exclusive pair of features kfsub and ffsub , which

characterize the “kernel” and “full” versions of F<: (Pierce, 1994). Systems including

ffsub will not be closed under joins and thus cannot take advantage of the algorithm

for calculating joins.

The above intuitions are formalized by the following feature constraints:

sub ∧ (bool ∨ variant) ⇒ calcjoin ⊕ anotjoin

¬(kfsub ∧ ffsub)

¬(ffsub ∧ calcjoin)

Figure 6 presents the subtyping hierarchy (boundedtyvar represents bounded type

variable declarations, which are required by both variants of F<:). We can build the

following familiar subtyping systems from the presented features:

[arrow , bool , calcjoin] λ→ with subtyping, booleans and calculated joins

[arrow , all , kfsub] kernel F<:

[arrow , all ,ffsub] full F<:

[arrow , all , operator , kfsub] kernel Fω
<:

[arrow , all , operator ,ffsub] full Fω
<:
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6 Modular metatheory

We now describe our second experiment with modularization of typed lambda-

calculi. Here, our focus is not on implementations, but on modularized proofs of

basic metatheoretic properties such as subject reduction and progress theorems.

In modularizing proofs, we followed exactly the same lines as the modular presen-

tations of the systems themselves. Just as systems are cut up into clauses annotated

with features, so proofs are cut up into individual cases and annotated with these

same features. Just as we assemble the various judgements of a system by collecting

the appropriate inference rules and printing them out with headers like “the typing

relation is the least relation closed under the following rules,” we likewise assemble

proofs by collecting the appropriate clauses and printing them with headers like “by

induction on typing derivations.”

Of course, just as it is possible to generate nonsensical type systems because

of errors in the repository, the “proofs” that are assembled in this way are not

guaranteed to be well formed; strictly speaking, they are proof scripts, whose validity

must be checked after the fact (we consider some alternatives to this approach in

section 8). In our present repository, proofs are presented in standard mathematical

English, and their validity must be checked by hand. Ultimately, one would like to

present them in the form of proof scripts for some automated proof checker. We see

no reason, in principle, why this would not be possible, but clearly much depends

on the proof checker involved.

One particular caveat is that there are some properties, such as inversion lemmas

(e.g. “if the statement Γ � t1 t2 : T is derivable, then, for some S, the statements

Γ � t1 : S→T and Γ � t2 : S are derivable”), whose proofs, strictly speaking, require

global reasoning. In an informal proof, this global reasoning is often camouflaged:

only the case for the type constructor in question (→ in this case) is interesting,

and the rest can be dealt with by a single offhand remark like “none of the other

inference rules could apply here, because their conclusions are inconsistent with

the shape of the term that we are considering.” As proofs become more formal,

however, it may become necessary to argue, for each of the other rules, that it

cannot occur here (i.e. to prove a statement specifically about the arrow elimination

form), we may need to perform a complete case analysis involving all the other type

constructors. How much of a problem this is in practice will doubtless depend on

the sophistication of the proof checker being used to verify the script assembled by

TinkerType: if the checker can discover some simple proofs on its own, then even

proofs of properties like inversion may appear local. (In the worst case, we may be

faced with a proliferation of n2 cases that need to be written out explicitly for proofs

of properties like inversion – n being the total number of features corresponding to

type constructors. This would certainly be annoying, but not necessarily debilitating

if the number of such global arguments is not too large.)

The repository described in this section covers a smaller collection of features than

the one described in section 5. It includes numbers, booleans, functions, subtyping,

polymorphism, and mutable references, plus one significant extension to the systems

that we have seen up to now: equi-recursive types. It can be used to generate
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proofs of subject reduction and progress theorems, plus all required lemmas, for

any sensible combination of these features. We begin by discussing systems without

recursive types, then address recursive types in section 6.3.

6.1 Judgement forms

The systems encoded in this repository may include four judgements: evaluation,

typing, subtyping and type exposure.

The evaluation judgement appears in all systems. In its simplest form it relates

terms to terms: t −→ t. In systems with effects (identified by the feature store), the

evaluation relation is defined in store-passing style and has the form: t; µ −→ t; µ.

The typing judgement is also present in every system. In its simplest form, it relates

a term to a type: t : T. In systems with term variables (feature tmvar) the typing

judgement also carries a context: Γ � t : T. Orthogonally, in systems with mutable

references (feature store), the typing relation includes a store typing: Σ � t : T. In

systems with both tmvar and store, the typing judgement has the form Γ; Σ � t : T.

The subtyping judgement appears only in systems including the feature sub. In

simple subtyping systems, the subtyping judgement relates pairs of types: T<:T. In

systems with bounded quantification (feature fsub), we must also track bounds of

type variables by extending contexts with subtyping assumptions and annotating

the subtyping relation with a context: Γ � T<:T.

Systems with bounded quantification also require a type exposure judgement,

whose goal is to reveal the least concrete supertype of a type variable: Γ � T ⇑ T.

Unlike the other judgements, this one is not mentioned in the inference rules defining

the other judgements. Rather, it is necessary for the statements of the subtyping

inversion lemmas discussed below.

6.2 Proofs

Figure 7 shows the dependencies between the two main theorems we have encoded

– type preservation and progress – and their associated lemmas. An edge from

one node (lemma) to another means that the proof of the former invokes the

statement of the latter. The lemmas fall into several groups: various forms of

substitution (SUBS1–SUBS4), covering substitution of both types and terms into

typing and subtyping judgements, permutation (PERM1–PERM4), weakening (T-

WEAK and S-WEAK), inversion properties of the typing judgement (TABS-INV

through ABS-INV) and subtyping judgement (ALL-INV through NAT-INV), and

canonical forms properties (TABS-CANON through NAT-CANON). COMM-SUBS

states a commutation property of substitutions; E-EXP is preservation of typing in

systems with references under extensions of the store.

Each node is tagged with the features characterizing the systems in which it is

relevant. For instance, the system of arithmetic expressions built from features nat

and bool needs the successor inversion lemma (SUCC-INV), and the canonical forms

lemmas for booleans and numeric values (BOOL-CANON and NAT-CANON) in

addition to the two main theorems.

https://doi.org/10.1017/S0956796802004550 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004550


TinkerType 311

PRES

SUBS1
[tmvar]

SUBS3
[tyvar]

E-EXP
[store]

SUCC-INV
[nat]

ABS-INV
[arrow]

TABS-INV
[all]

LOC-INV
[ref]

SUBS2
[tmvar,sub]

T-WEAK
[tmvar]

SUBS4
[tyvar,sub]

COMM-SUBS
[tyvar]

S-WEAK
[sub,context]

PERM1
[tmvar]

PERM3
[tyvar]

PERM4
[tyvar,sub]

PERM2
[tmvar,sub]

ARR-INV
[arrow,sub]

ALL-INV
[all,sub]

REF-INV
[ref,sub]

PROG

NAT-CANON
[nat]

BOOL-CANON
[bool]

ABS-CANON
[arrow]

TABS-CANON
[all]

REF-CANON
[ref]

NAT-INV
[nat,sub]

BOOL-INV
[bool sub]

Fig. 7. Preservation and progress theorems and their lemmas.

6.3 Recursive types

The proofs we have described can all be encoded in TinkerType quite compactly.

(Roughly, the overhead introduced by modularization is about half again as long

as an ordinary, monolithic proof for a system combining all possible features.) In

essence, this is because systems involved are fundamentally fairly similar.

The introduction of equi-recursive types, on the other hand, has more serious

consequences. First, we must confront the issue of type equivalence. Whenever in

non-recursive systems we indicated the syntactic equivalence of two types by using

the same metavariable for both of them, in systems with recursive types, we must

instead allow the two types to be syntactically distinct but equivalent “modulo
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unfolding” of recursive types. One example of a clause affected by the new notion

of equivalence is the universal type subtyping rule in system kernel F<:.

Γ, X<:T � T1<:T2

Γ � ∀X<T.T1<:∀X<T.T2

S-All [kfsub]

Γ, X<:T � T1<:T2 T ≡ T′

Γ � ∀X<T.T1<:∀X<T′.T2

S-All [kfsub , ref ]

The equivalence relation is defined coinductively as the greatest fixed point of

the equivalence rules. Similarly, we define the subtyping relation coinductively. This

allows us to inherit most of the subtyping rules from the earlier systems while

changing the interpretation of the rules from inductive to coinductive.

To encode these mechanisms, we create a number of new features. Feature rec

identifies systems with equi-recursive types. The equivalence relation, identified by

eq , is needed in the kernel F<:system to define the universal type subtyping rule.

Similarly, we need it in systems with reference cells to define the invariant subtyping

rule for type Ref T. In the full F<:system, on the other hand, the equivalence relation

is unnecessary, because it is subsumed by the subtyping relation. These relations are

encoded in the feature constraint rec ⇒ (ffsub ∧ ¬ref ) ∨ eq .

The features indsub and coindsub offer a choice between two different versions

of subtyping relations. In the presence of recursive types, we must use coinductive

subtyping – this is captured by the constraint rec ∧ sub ⇒ coindsub. Also, any

subtyping system must choose between the the inductive or coinductive view: sub ⇒
indsub∨coindsub. Finally, these two views are mutually exclusive: ¬(indsub∧coindsub).

The inclusion of recursive types results in a significant increase in the size of the

repository. First, the introduction of the equivalence judgement necessitates creation

of new equivalence rules and various new properties and their proofs. Similarly, new

properties are required for the new subtyping relation. Transitivity is one of them:

while in inductive subtyping systems, we can explicitly stipulate that subtyping is

transitive by including the S-Trans rule, we may not do so in a coinductive system.

(This rule renders a coinductively defined subtyping relation total (Gapeyev et al.,

2000).)

More severely, the new repository must maintain two parallel, but totally unrelated,

hierarchies of proof cases. Any theorem or lemma that used to be proved by

induction on subtyping derivations, must basically be re-proved from scratch in the

coinductive framework. (Fortunately, the properties of the typing relation remain

largely unchanged by the addition of recursive types.)

7 Related work

The initial inspiration for our work came from the type system fragments used by

Abadi and Cardelli in their book, A Theory of Objects (1996). There, the reposi-

tory consists of a collection of named “fragments” analogous to our components.

A system is specified by naming a collection of fragments whose contents are
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to be concatenated. This is a degenerate instance of our framework, where each

component is labeled with a single, distinct feature and where there is no depen-

dency between features, and no static consistency checks are performed. Their book

presents a substantial collection of fragments, covering (declarative formulations

of) approximately the same range of type systems as the ones described here in

section 5.

Another close relative of our work is Prehofer’s feature-oriented programming

(1997). Like our approach, it includes features and dependencies between them,

components with multiple variants, and an assembly process that combines appro-

priate variants based on a set of requested features. The main difference is the

application domain. Our approach focuses on formal systems, and the basic unit of

composition is an individual inference rule. Feature-oriented programming is used

to assemble objects; its basic unit of composition is a group of related methods.

Prehofer introduces an extension of Java with feature support and describes two

approaches for compiling it into Java.

The Hyperspace project (Ossher & Tarr, 1999; Tarr et al., 1999) proposes a general

theory of multi-dimensional separation of concerns. In this work, units are atomic

entities similar to our clauses. A unit can be related to several concerns, which

correspond to our features. Concerns are partitioned into orthogonal dimensions.

Hyperslices are composed of units and resemble our components. They can be

merged to form hypermodules that are similar to systems in our work. This approach

is somewhat more abstract than ours – for example, the algorithm for merging

hyperslices is taken as a parameter.

Earlier work in the same group promoted a technology called subject-oriented

programming (Harrison & Ossher, 1993). One of its principal goals was to allow

parallel development of classes and provide a composition mechanism to obtain a

final system. In this view, classes resemble our components, and their merging is

analogous to system assembly. No mechanism corresponding to features is provided.

Aspect-oriented programming (Kiczales et al., 1997; Kiczales, 1996) starts from

the observation that it is sometimes difficult to address certain issues in a pro-

gram without obscuring its main functionality. These issues, called aspects, “cross-

cut” the natural decomposition of the main functionality, resulting in small bits

of related code strewn across the system. To simplify designing programs with

these properties, AOP proposes using conventional component languages to imple-

ment basic functionality, and special purpose aspect languages to deal with the

cross-cutting issues. A special process called weaving merges programs written in

these languages to produce the resulting system. To some extent, we can view our

language of features, clauses, and components as a particular aspect language;

the component language is whatever language is used to express the contents of

clauses.

Another area of related work is monadic techniques for structuring interpreters

and compilers (Steele, 1994; Liang et al., 1995; Espinosa, 1995; Liang & Hudak,

1996; Harrison & Kamin, 1998). The focus here is on modular definition and

combination of different aspects of computation (state, exceptions, concurrency,

etc.). It is a highly structured approach, using the type system of the metalanguage to
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control the composition process and focusing on constraints arising from interaction

between features. It does not appear easy to extend the monadic approach to typing

features in the spirit of the present work. On the other hand, we believe that

a monadic style could be used to structure the presentation of the operational

semantics of our typed lambda-calculi.

8 Conclusions and future work

The TinkerType formalism, its implementation, and our repository of typed lambda-

calculi have evolved in parallel over many months. At present, our larger repository

contains about 14,000 lines of TinkerType sources, of which roughly 20% is TeX

sources in the bodies of clauses, 60% is ML clauses, and 20% is TinkerType

proper. From this, we routinely generate about 80 different typecheckers, totaling

over 120,000 lines of ML. Maintaining all these checkers by hand would be next to

impossible.

Our focus in this paper has been on using TinkerType to define typed lambda-

calculi. We believe that TinkerType at its present stage is most useful in this

area which includes developing and studying families of programs or mathematical

definitions that are naturally structured as collections of rules. In addition to lambda-

calculi this includes other programming calculi (e.g. Abadi and Cardelli’s Object

Calculi, process calculi, etc.), compilers, and a wide variety of logics, as well as

programs from other domains such as expert systems. TinkerType is especially

useful for systems with a large number of interacting features that are hard to

manipulate by existing logical or programming frameworks. We conjecture that

TinkerType may even be helpful in developing a single program or formal system,

rather than a family, since it encourages identifying the underlying features and

the relationships between them thus leading to a better overall understanding of

the system. More speculatively, we wonder whether ideas from TinkerType (or

indeed the system itself) could be applied in the domain of software configuration

management, for generating complex Makefiles or as a more principled alternative

to the tangles of #ifdef directives found in many C programs that are engineered

for portability.

Even when we are interested in building just a single system, rather than a whole

family of similar systems, there may be benefits to using a tool like TinkerType to

flexibly factor the system’s description according to some natural set of features.

In this respect, TinkerType can be viewed as a sort of aspect-oriented program-

ming language – or perhaps more fairly, as an aspect-oriented macro preprocessor.

However, the benefits of this ability to factor and combine code fragments must be

weighed against the overhead involved in cutting up the program into small pieces,

tagging the pieces with features, etc.

Type systems are often formalized using proof checkers based on logical frame-

works, and it is natural to wonder whether our ideas could be combined with such

systems. We can imagine a variety of ways in which this idea might be approached.

One would be to extend a proof-assistant with concepts drawn from TinkerType –

for example, we could work to enhance the assistant’s theory definition language
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with TinkerType-like feature support. Rather than viewing TinkerType and the proof

assistant as two separate stages (the latter checking what the former generates), the

two activities would be tightly integrated. Another approach would be to add to

TinkerType some of the mechanisms found in logical frameworks, such as uniform

treatment of variable binding constructs. This proposal amounts to replacing the sin-

gle type of clause contents that TinkerType currently manipulates (i.e. uninterpreted

strings) with more specialized structures that can be understood to some extent

by the tool. Recent work on a general treatments of abstract syntax and variable

binding – for example, by Fiore, Plotkin and Turi (1999) – offers an important first

step in this direction. Burstall and Goguen’s (1984) older notion of institutions may

also provide useful insight.
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