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Summary

Recent studies show that the PHASE algorithm is a state-of-the-art method for population-based
haplotyping from individually genotyped data. We present a modified version of PHASE for
estimating population haplotype frequencies from pooled DNA data. The algorithm is compared
with (i) a maximum likelihood estimation under the multinomial model and (ii) a deterministic
greedy algorithm, on both simulated and real data sets (HapMap data). Our results suggest that
the PHASE algorithm is a method of choice also on pooled DNA data. The main reason for
improvement over the other approaches is assumed to be the same as with individually genotyped
data: the biologically motivated model of PHASE takes into account correlated genealogical
histories of the haplotypes by modelling mutations and recombinations. The important questions of
efficiency of DNA pooling as well as influence of the pool size on the accuracy of the estimates are
also considered. Our results are in line with the earlier findings in that the pool size should be
relatively small, only 2–5 individuals in our examples, in order to provide reliable estimates of
population haplotype frequencies.

1. Introduction

In diploid species the genotype of each individual
consists of two copies of each (autosomal) chromo-
some, one inherited from each parent. The genetic
material originating from the same parental source
is called a haplotype. The haplotype information is
essential in numerous genetic studies, e.g. in linkage
analysis of pedigree data as well as in association
analysis of population-based data. Unfortunately,
haplotypes can usually be only partially observed
from the unphased genotype data, because common
laboratory techniques can identify only the two
copies of alleles at each locus, but cannot specify
which multilocus combinations of alleles reside on the
same chromosome, i.e. which alleles belong to the
same haplotype. The corresponding missing data
problem – to resolve the genotype data of each indi-
vidual into two haplotypes – is known as the haplo-
typing problem.

In the future, practical molecular technologies
providing haplotype information may be available to
a large community of researchers, but currently this
seems not yet to be the case. Experimental procedures
are often costly (Douglas et al., 2001), or may have
limitations on the number of loci and/or number of
samples that can be analysed in practice (Zhang et al.,
2006a). Deduction and inheritance rules between
subsequent generations can reduce ambiguity sub-
stantially for multiallelic (informative) markers in
pedigree-based haplotyping algorithms (see Wijsman,
1987). However, statistical estimation of haplotype
patterns from pedigree data (e.g. Sobel & Lange,
1996; Abecasis et al., 2002; Qian & Beckmann, 2002;
Fishelson et al., 2005; Albers et al., 2007) as well as
from population-based data (e.g. Clark, 1990; Long
et al., 1995; Niu et al., 2002; Stephens & Scheet, 2005;
Gasbarra & Sillanpää, 2006; Zhang et al., 2006b) is
usually required before subsequent genetic analyses
can be conducted. In some cases, however, the un-
observed haplotypes are handled as nuisance par-
ameters in the main linkage or association analysis

* Corresponding author. Tel: (358) 9-191-51419. Fax: (358) 9-191-
51400. e-mail : matti.pirinen@helsinki.fi

Genet. Res., Camb. (2008), 90, pp. 509–524. f 2009 Cambridge University Press 509
doi:10.1017/S0016672308009877 Printed in the United Kingdom

https://doi.org/10.1017/S0016672308009877 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009877


(e.g. Uimari & Sillanpää, 2001). Because of the ex-
tensive application of the haplotype information in
genetic studies, possible reductions of haplotyping
costs are of great importance. The International
HapMap Project (International HapMap Consor-
tium, 2003, 2005, 2007) aims at indexing the detailed
haplotype variation in several human populations.
One possible application of the HapMap data is
in identifying tag single nucleotide polymorphisms
(SNPs), polymorphic positions on the human genome
that carry a considerable amount of information on
their neighbouring sites. By typing only such tag
SNPs, instead of all available SNPs in the region
of interest, the number of genotypings and thus the
overall cost of association studies could be reduced.

In this article, we consider DNA pooling as a
complementary way to reduce the number of geno-
typings. The idea is to pool equal amounts of DNA
from several individuals and to analyse the allele
constitution of the whole pool in one genotyping. The
achieved quantitative information about the alleles
has been found to be quite precise (Norton et al.,
2002; Sham et al., 2002), and thus pooling techniques
can substantially reduce the cost of studies that in-
volve only single locus allele frequencies of popu-
lations. DNA pooling has been suggested as a strategy
for whole genome association studies (Sham et al.,
2002; Butcher et al., 2004; Tamiya et al., 2005; Yang
et al., 2006), genetic map construction (Gasbarra
& Sillanpää, 2006), family-based association testing
(Risch & Teng, 1998; Lee, 2005; Zou & Zhao, 2005),
estimation of linkage disequilibrium (Pfeiffer et al.,
2002; Ito et al., 2003), linkage disequilibrium map-
ping (Johnson, 2005, 2007) and quantitative trait
locus mapping based on family data (Wang et al.,
2007). The dimension of the corresponding haplo-
typing problem increases as material from several
individuals is pooled together. Unlike the thoroughly
studied haplotyping problem at the individual level
(1 individual per pool) (Niu, 2004), the corresponding
problem on larger pools has not yet been conducted
by various methods. Common to the first approaches
(Ito et al., 2003; Wang et al., 2003; Yang et al., 2003)
was that they assumed the multinomial sampling
model for the haplotypes and relied on the maximum
likelihood estimation as the method of inference.
Recently, this approach was complemented by several
algorithmic enhancements and a perfect phylogeny
model for haplotypes (Kirkpatrick et al., 2007).
The recent comparisons (Marchini et al., 2006) be-
tween several available haplotyping methods at the
individual level suggest that the PHASE algorithm
(v.2.1) (Stephens & Scheet, 2005) performs best,
in particular better than the multinomial sampling
model. This motivates us to study whether this good
performance can be transferred also to the case of
larger pools.

In this article, we present modifications for the
PHASE algorithm to make it applicable also for
pools of DNA from several individuals. Then we
compare its performance on pooled data both with
the maximum likelihood estimates under the multi-
nomial sampling model and with a deterministic
greedy algorithm. The fundamental questions studied
are how large pools can be used so that not too
much haplotype information is lost, and whether the
increase in the number of analysed haplotypes can
compensate for the reduction of haplotyping accuracy
on the pooled data. Our findings are in line with
the earlier studies (Ito et al., 2003; Yang et al.,
2003; Kirkpatrick et al., 2007) in that the pool size
should be relatively small, only 2–5 individuals, in
order to achieve reliable estimates. However, the
accuracy of the modification of PHASE seems to be
better than those of the other two tested methods in
simulated data as well as in the majority of the real
data sets that we have extracted from the HapMap
database.

2. Methods

Suppose that we are studying a population at L loci
and that we have access to samples of genetic material
from n individuals (2n haplotypes). We define O dis-
tinct pools of samples by combining the genetic
material of ni individuals into the pool i=1, …, O,
where n1+…+nO=n. As explained in the Intro-
duction section, we assume that given the pool sizes
we can find the allele frequencies for each pool and
at each locus by laboratory methods. (See the Dis-
cussion section for comments on genotyping errors.)
We will denote by H={(H(1), …, H(O)}) the set of
poolwise haplotype configurations that are consistent
with the poolwise allele frequency data. Here H(i) is a
2nirL matrix whose entry (j, l ) is the allele of hap-
lotype j of pool i at locus l. (To make the elements of
H unambiguous, assume that the alleles are labelled
with positive integers and that the rows of configur-
ation matrices H(i) are ordered in the increasing
alphabetical order, for instance.)

In order to define a probability distribution on H
conditional on the observed pooled data, we modify
the PHASE algorithm (Stephens & Scheet, 2005) by
extending the basic units within which the haplotype
configurations are considered from single individuals
(pool size 1) also to larger pools. In the spirit of the
original PHASE algorithm, the probability model on
H is defined implicitly as an empirical distribution
of a certain Markov chain. Given a current state
(H(1), …, H(O)) of the Markov chain, the next state
is reached by (i) randomly pairing 2ni haplotypes to
form ni pairs of haplotypes within each pool i and
(ii) applying the transition kernel of PHASE (R times)
to these paired haplotypes.
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Since we define the probability model implicitly as
an empirical distribution of a certain Markov chain, it
will remain an abstract concept whose relevance to
the problem may not be immediately evident. Indeed,
this implicit model can be best justified by the accu-
racy of the results it yields. As our method owes all its
biological relevance to the original PHASE algor-
ithm, we shall next briefly describe the ideas on which
PHASE is based.

(i) PHASE

The PHASE algorithm (Stephens et al., 2001;
Stephens & Donnelly, 2003; Stephens & Scheet, 2005)
is designed for estimating the haplotypes of a popu-
lation sample of diploid individuals given their
genotype data. The earlier versions of the algorithm
focused only on the mutation process, whereas
the current version (PHASE v.2.1) includes explicit
modelling of the recombination process as well.
Throughout this article, ‘PHASE’ refers to the
version 2.1 with the recombination model.

Assume that we have unordered genotype data Gj

on individuals j=1, …, J, and our goal is to estimate
the probability distribution of each pair of haplotypes
Hj conditionally on (Gj)jfJ. The idea behind PHASE
is to apply two genetically motivated conditional dis-
tributions to the computational technique known as
Markov chain Monte Carlo (MCMC). The first of
these distributions,

Pr (Hj={h, h0}jGj,Hxj, r), (1)

specifies the probability that the jth individual has
haplotypes {h, hk} given his genotype Gj, the haplo-
types of the other individuals Hxj and the recombi-
nation parameters r. The other distribution is used as
a likelihood function for the recombination par-
ameters r given the haplotypes of the sample

L(r)=Pr (Hjr): (2)

The PHASE algorithm conducts a prespecified num-
ber of iterations through the space of possible haplo-
type configurations of individuals, and possible values
of recombination parameters (recombination rates of
each marker interval), where the main steps during a
single iteration are

1. For each j in turn update Hj by sampling from
eqn (1).

2. Update r according to the Metropolis–Hastings
rule using eqn (2).

Details of the algorithm and the conditional dis-
tributions are given by Stephens & Scheet (2005) and
the references therein.

The algorithm produces a sequence of haplotype
configurations which is then treated as a sample from

the underlying probability model on haplotypes.
Thus, for example, the most probable haplotype
configuration for individual j is estimated to be the
configuration Hj that has appeared most frequently
during the iterations. Similarly, it is straightforward
to estimate the population haplotype distribution and
the uncertainty related to it by just considering the
combined haplotype configuration H on each iter-
ation as a sample from the underlying population
haplotype distribution. The motivation for these
interpretations comes from the theory of MCMC
methods (Robert & Casella, 1999), which confirms
that under certain conditions these kinds of algo-
rithms converge to the target probability distribution.
Furthermore, the theory suggests that the sequence of
visited states can be used to estimate the properties of
the underlying distribution. Strictly speaking, such
conditions have not been proved for PHASE (see the
discussion on Stephens & Scheet, 2005), but in prac-
tice the algorithm has been found to work well and in
recent extensive comparisons it has turned out to be
the most accurate computational haplotyping method
for population samples among several tested pro-
grammes (Marchini et al., 2006). We note, however,
that after the study of Marchini et al. (2006), novel
approaches for the problem have been developed, and
for example, a hierarchical Bayesian model with a
coalescent prior has been reported to yield better
accuracy than PHASE especially on data sets with
missing data (Zhang et al., 2006b).

The success of PHASE is probably due to its
realistic conditional probability distributions. The
model that PHASE implements for eqn (1) assumes
that the unobserved haplotypes Hj={h, hk} will most
likely look similar to the observed haplotypes Hxj,
and that in case they are not perfectly similar to
any haplotypes in Hxj, the differences are likely to be
such that the mutation and recombination processes
applied on haplotypes in Hxj may have produced h
and hk.

Our contribution is to extend the PHASE algor-
ithm to pooled data by introducing a novel step into
the algorithm, where the haplotypes within the pool
are shuffled randomly (every Rth iteration) to form
pairs on which the original PHASE algorithm can be
run. This step allows mixing of the basic units (geno-
types) on which PHASE conducts the haplotyping
and thus yields a possibility to explore all combi-
nations of the haplotype configurations within the
pools. More formally, we add a Gibbs’ update step to
the algorithm where the genotype configuration G(i)=
(G(i)

1 , . . . ,G
(i)
ni
) for pool i is sampled from a distribution

P(G(i)jH(i))

that corresponds to shuffling (by a uniformly dis-
tributed permutation) the rows of the haplotype
matrix H(i) and setting Gj

(i) to equal the combination
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of rows 2jx1 and 2j of the shuffled matrix. This
Gibbs’ update is carried out after every Rth iteration
of the original PHASE algorithm, where R is a fixed
parameter.

Next we describe three other methods that can be
used for haplotyping pooled marker data.

(ii) Greedy algorithm

We devised a simple deterministic greedy algorithm to
resolve the pooled data to haplotypes. A similar idea
has also been used by Kirkpatrick et al. (2007). The
algorithm proceeds by repeating the following scheme
until all alleles are assigned to haplotypes.

1. Combine allele frequencies over pools and deter-
mine the next candidate haplotype h by choosing at
each locus the (globally) most frequent allele.

2. For all pools i, pick out as many copies of h out of
pool i as possible and decrease the remaining allele
frequencies of pool i accordingly.

3. If no copies of h were found at step 2, choose the
next candidate h by choosing at each locus the
(locally) most frequent allele from the pool that
contains the largest number of unresolved haplo-
types and return to step 2.

This algorithm may produce sensible results if there is
a haplotype whose relative frequency is over 50% in
the population. Such a haplotype necessarily carries
the major allele at each locus and is thus the
first candidate identified by the greedy algorithm.
However, the probability of the existence of a single
highly frequent haplotype decreases as the number of
loci increases.

We do not suggest the use of the greedy algorithm
in the actual analyses of pooled data because of its
unrobustness, but the algorithm turned out to be
appropriate for evaluating the complexity of the data
sets that were used in our examples. Indeed, if we
found that the greedy method already yielded good
results, we added some complexity to the data sets
either by increasing the number of loci or by expand-
ing the intervals between the SNPs.

(iii) LDPooled: maximum likelihood under the
multinomial sampling model

The multinomial sampling model is the basic statisti-
cal model for frequency data and can also be applied
to the haplotyping problem. The model is defined by
relative frequency parametersH=(hk)kfK, where K is
the total number of possible haplotypes that can oc-
cur in some pool given the poolwise allele frequencies.
The multinomial model assigns a probability

P(DjH)=
YO

i=1

g
H(i)

(2ni)!

mi(1)! . . .mi(K)!
hmi(1)
1 . . . hmi(K)

K (3)

to the observed data D, where the sum is over all
consistent configurations H(i) for pool i and mi(k) is
the number of haplotype k in configuration H(i).

Several earlier works on the haplotyping problem
of pooled data have considered the multinomial
model (Ito et al., 2003; Wang et al., 2003; Yang et al.,
2003). In all these studies the inference of haplotype
frequencies is based on maximizing (numerically,
using the expectation-maximization (EM) algorithm)
the quantity (3), considered as a likelihood function
of H with fixed observed data D. In particular this
approach has been implemented in the program
LDPooled (Ito et al., 2003).

One disadvantage of the simple multinomial model
on the haplotyping problem is that it does not take
into account the similarities/dissimilarities of the
structures of different haplotypes. As the haplotypes
have evolved from common ancestors through re-
combinations and mutations, it seems more probable
that a population contains haplotypes that are similar
to each other rather than haplotypes that do not have
parts in common. This aspect is completely ignored
by the multinomial model, whereas it is at the heart of
the conditional distribution (2.1) that PHASE utilizes.

(iv) HaploPool

Recently, Kirkpatrick et al. (2007) introduced the
program HaploPool that complements the maximum-
likelihood estimation of haplotype frequencies by
several pre- and post-processing steps. First, Haplo-
Pool divides the considered region into several small
subsets of SNPs whose likely haplotypes it tries to
identify before estimating their frequencies with the
EM algorithm. For each set of SNPs the list of likely
haplotypes is formed by a perfect phylogeny model
(which assumes that the haplotypes have evolved
without recombination, and without recurrent or re-
verse mutations) augmented with a greedy algorithm.
HaploPool’s greedy algorithm is more sophisticated
than the one presented above as it, at each step, finds
the candidate haplotype that actually will reduce the
number of unresolved haplotypes most. Finally, the
information on the frequencies of partial haplotypes
is combined by using weighted least-square estimation
based on the constraints imposed by the structure
of partial haplotypes on several overlapping sets of
SNPs.

Kirkpatrick et al. (2007) reported that HaploPool
performed better than LDPooled on some data sets
from the HapMap project, and that the accuracy
of population frequency estimates can be enhanced
for a fixed number of pools (i.e. genotyping events)
by analysing two-individual pools with HaploPool
instead of analysing the same number of single-
individual pools with PHASE. HaploPool can also
handle missing data. Because of the recent publication
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of HaploPool, the comparisons between the modified
version of PHASE and HaploPool are not considered
in this article.

3. Examples

Next we study empirically the questions posed in the
Introduction section. The main emphasis is given to
the real data examples extracted from the HapMap
database. First, however, we will analyse some simu-
lated data, because only in that case do we have the
complete knowledge of the underlying true distri-
bution to which the results can be compared.

(a) Total variation distance

In order to compare two distributions by a single
numerical quantity, we use the total variation
distance D, which for the two (haplotype) distri-
butions (pk)kfK and (qk)kfK is defined as

D(p, q)=
1

2
g
K

k=1

jpkxqkj: (4)

We have used this quantity also to monitor the con-
vergence properties of the algorithms by comparing
the distance from one fixed distribution with the re-
sults of separate runs that were started from different
initial states.

(i) Simulated data

We simulated explicitly a large pedigree using the
pedigree model of Gasbarra et al. (2005) and created a
gene flow on that pedigree by sampling the outcomes
of every meiosis independently. In particular, our
simulation procedure avoids using the continuous
time coalescent theory on which PHASE is based
(Stephens & Scheet, 2005).

The simulated pedigree extended over 500 gener-
ations, contained 100 000 individuals at the youngest
generation and was embedded in a population whose
size had increased linearly from 100 000 to 2 000 000
individuals during those 500 generations. The re-
productive behavior in the considered population
was defined by setting the numbers of males and
females to be equal in each generation and choosing
monogamy parameter b=5r10x8 and generation-
dependent male dominance parameter at=bNt, where
Nt is the number of females in generation t. For
details on the effects of the parameters, see Gasbarra
et al. (2005).

The founder individuals of the pedigree were as-
sumed to represent two populations (in proportions
of 35% and 65%) whose allele frequencies were
sampled from Dirichlet distributions. Genetic data
were simulated by sampling the alleles for the

founders from the corresponding allele frequencies
assuming Hardy–Weinberg and linkage equilibrium.
The younger generations then inherited their alleles
from their parents according to the Mendelian laws
and the recombination process. The recombination
fractions between adjacent markers were 1.5r10x4

per meiosis. Note that even though the linkage equi-
librium was assumed at the founder level, the genetic
drift on the fixed pedigree structure had time to
create linkage disequilibrium during the considered
500 generations. The number of segregating alleles
was two at each locus and no mutations were con-
sidered. Thus the haplotype frequency distribution of
the youngest generation was completely shaped by the
recombination process.

In order to concentrate purely on the performance
of the statistical models, we let the number of loci be
6. This guaranteed that all loci could be analysed
simultaneously by LDPooled and that no partition-
ligation procedure was needed for PHASE. We
sampled 90 individuals (180 haplotypes) from the
youngest generation of the simulated pedigree and
divided these individuals into 30 pools, whence each
pool contained six haplotypes. We analysed the
pooled data by various methods, always comparing
the results with the true haplotype frequencies of the
sample. Thus, in order to simplify the comparisons,
we ignored the sampling error caused by the fact that
usually the population frequencies are estimated by
using only a subsample of the whole population.

In addition to the complete PHASE algorithm, we
also applied PHASE to the data without the recom-
bination model (denoted as PHASE-M, to emphasize
that only the mutation model was used). In both cases
we started the algorithm from 30 different initial
states in order to monitor the convergence properties
of the Markov chains. For a maximum-likelihood
estimation under the multinomial model, the program
LDPooled was utilized. There again 30 runs were
executed and each run reported the maximum-
likelihood configuration that was found when the EM
algorithm was started 1000 times from random initial
values of haplotype frequencies. We also applied the
greedy algorithm to the data, and finally finished the
comparisons by creating 30 random haplotype con-
figurations on the pools. By ‘random’, we mean that
the haplotypes were sampled within each pool by as-
suming independence between the loci.

Table 1 lists the 18 existing haplotypes together
with the estimates, by PHASE, LDPooled and
GREEDY. The nature of our target distribution as an
empirical distribution of a certain Markov chain
makes it also straightforward to quantify the uncer-
tainty in the estimates, and the 95%-probability in-
tervals of the results given by PHASE are shown. The
relative errors of the estimates (i.e. |ehxth|/th, where eh
and th are the estimated and true relative frequencies,
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respectively) are reported in Fig. 1 for the nine
haplotypes whose true frequency was over 2%. In
Table 1 and Fig. 1, the results of PHASE are from
the run with the highest PAC-B likelihood (see the
Appendix for details).

Ito et al. (2003) reported that on their examples
LDPooled gave rather accurate estimates of the major
haplotypes (frequency at least 10% at population).
In our example, it seems that PHASE can yield ac-
curate results for such major haplotypes but for
LDPooled and the greedy algorithm the relative
errors, even for those major haplotypes, rise to about
80% (Fig. 1).

Table 2 lists the statistics of the variation distance
between the estimates and the true distribution over
30 different runs. It seems that the convergence of the
PHASE is not complete as there are some variations
between the runs started from different initial states,
but it is very much better than without the recombi-
nation model (PHASE-M). It can also be seen that in
terms of the total variation distance, PHASE clearly
outperforms the other methods. LDPooled is per-
fectly consistent in its maximum-likelihood estimate
(all 30 runs are at the same distance from the truth),
but this distribution seems to be relatively far from
the true distribution, compared with the estimates
given by PHASE. We have also studied the relation
between the multinomial likelihood of the pooled
data and the total variation distance to the true dis-
tribution more thoroughly in Fig. 2. There it can be
seen that LDPooled gives haplotype frequency esti-
mates whose multinomial likelihoods are the highest
and in that sense LDPooled works exactly as ex-
pected. However, in terms of both total variation
distances and multinomial likelihoods, the estimates

of PHASE seem to be closer to the true distribution.
In conclusion, it seems that the properties of the
simulated process (meiosis on a fixed pedigree) are
better captured by the model of PHASE than the
multinomial likelihood.

(ii) HapMap data

The International HapMap Project (International
HapMap Consortium, 2003, 2005, 2007) aims to
catalogue the major (SNP) haplotype variation within
and between several human populations. Currently,
over 3.1 million SNPs from the human genome have
been genotyped on 270 individuals originating from
four geographically different populations. A valuable
feature of the project is that it releases all the gathered
information to the public domain. In the following
examples we concentrate on one of the HapMap
populations, Utah residents with ancestry from
northern and western Europe (CEU population). For
this population the database contains the estimated
haplotype information on 30 trios (mother, father and
their child) whose 60 parents are utilized in our
analyses. The original procedure of the HapMap
project was to use the genotypes of the children to
estimate the haplotypes of the parents and if some
ambiguities still remained, to apply PHASE (v.2.1) on
the data. Because we are interested in estimating
haplotype frequencies from population samples we do
not utilize the data on the children of trios. Naturally,
this makes our estimates less accurate than those of
the HapMap database. In the following, we consider
the results of the HapMap project as the ‘correct ’
ones with which the accuracy of the results achieved
on pooled samples are then compared. Indeed, the

Table 1. Frequency estimates on the simulated data set. The best estimate
for each haplotype is shown in boldface

Haplotype true PHASE LDPooled GREEDY

000110 0.456 0.474 (0.444…0.523) 0.560 0.606
000010 0.100 0.112 (0.061…0.134) 0.041 0.011
011101 0.089 0.092 (0.083…0.095) 0.020 0.028
101110 0.089 0.086 (0.078…0.112) 0.051 0.022
010110 0.039 0.025 (0.011…0.029) 0.000 0.000
010111 0.039 0.070 (0.033…0.079) 0.000 0.017
010101 0.033 0.031 (0.022…0.034) 0.076 0.017
000101 0.022 0.009 (0.000…0.034) 0.000 0.006
010011 0.022 0.008 (0.000…0.040) 0.035 0.017

001110 0.017 0.006 (0.000…0.007) 0.000 0.000
011110 0.017 0.012 (0.000…0.023) 0.034 0.006
000111 0.017 0.011 (0.000…0.012) 0.019 0.006
011010 0.011 0.013 (0.000…0.023) 0.028 0.006
101101 0.011 0.025 (0.000…0.029) 0.032 0.017
011111 0.011 0.022 (0.017…0.023) 0.044 0.095
001111 0.011 0.000 (0.000…0.001) 0.000 0.000
110111 0.011 0.000 (0.000…0.001) 0.014 0.006
100110 0.006 0.006 (0.000…0.007) 0.000 0.000
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HapMap project has estimated that switch errors –
where the phase of the adjacent marker loci is
incorrectly inferred – occur extraordinarily rarely in
CEU data sets : one error in every 8r106 base pairs
(International HapMap Consortium, 2005). There are
ten so-called ENCODE regions in the HapMap
database from which the HapMap project has ex-
tracted detailed information on common DNA vari-
ation. Each of these regions is about 500 kilobases
(kb) long and they are spread over seven different
chromosomes of the human genome.

In the following examples we consider three data
sets collected from the ENCODE regions. E100 is
extracted by including for each ENCODE region the
first ten such markers that the physical distance
between the adjacent markers becomes at least
100 base pairs. The other sets, E5k and E25k, are
otherwise similar but the constraints imposed on the

distances between the neighbouring markers are set
to 5 and 25 kb, respectively. Table 3 contains more
details of the marker spacing in these data sets.

(a) Effect of pool size on the accuracy of estimates

The most important question concerning the pro-
posed method is the relationship between the accu-
racy of the haplotype frequency estimates and the
pool size. It is clear that the accuracy decreases as the
pool size increases, but how fast this happens depends
on the particular data set.

For the data sets E100 and E5k, we performed
analyses with five different pool sizes : 2, 3, 4, 5 and 10
individuals per pool. Thus the corresponding number
of pools in these settings was 30, 20, 15, 12 and 6,
respectively. Each pool configuration was analysed
100 times, starting each time from a random initial
state. The upper panels of Figs 3 & 4 show the distri-
bution of the total variation distance of the estimates
to the true distribution (HapMap database) and can
be used to monitor the convergence of the algorithm.
In the lower panels we have chosen one particular run
out of each set of 100 replicates to represent our final
estimate. This choice is made using the PAC-B likeli-
hood criterion as explained in the Appendix. In order
to validate the utilization of PAC-B likelihood, Fig. 5
shows that larger PAC-B likelihood values seem to
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Fig. 1. Relative errors of frequency estimates of nine most common haplotypes in the simulated example.

Table 2. Distances to the true distribution on the
simulated data set

Method Min. 1st qu. Median Mean 3rd qu. Max.

PHASE 0.064 0.083 0.094 0.097 0.107 0.166
PHASE-M 0.093 0.122 0.178 0.184 0.249 0.288
LDPooled 0.298 0.298 0.299 0.299 0.300 0.300
Random 0.411 0.435 0.450 0.455 0.471 0.528
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imply more accurate estimates (smaller distance to the
true distribution). The lower panels of Figs 3 and 4
also contain the levels of accuracy that are achieved
when PHASE is applied to the same data but with
pools of size 1 (black horizontal lines). We can see
that pools of size 2 manage to give the same accuracy
as pools of size 1 in almost all the cases and that with
the data set E100 even the pools of size 5 give esti-
mates that are very close to those from the pools of
size 1.

From the results with larger pool sizes (3, 4, 5 or 10)
on the data set E5k, it is clear that in order to achieve
reliable results, several runs are needed together
with some monitoring of their likelihood values. The
possible sources of the failure to convergence to a
single haplotype distribution are considered in the
Discussion section.

(b) Effect of pool size when the number of pools
is fixed

In this example we show that analysing pooled data
with PHASE can be effective when the goal is to
have the most credible estimates of the population
haplotype frequencies when only a fixed number of
genotyping events can be carried out. At the same
time, we also study the variability of the estimates
when the compositions of pools are changed, i.e.
when the group of individuals that are pooled
together is varied.

As seen in the previous example, increasing the size
of the pools decreases the accuracy of the estimates.
On the other hand, small pools result in a small total
number of analysed haplotypes, whence one is more
likely to miss some properties of the whole population
already due to a small sample size.

Fig. 6 illustrates the results for the cases where
the number of pools is either 30 or 20, and where
either all available samples are used (pool sizes of
2 and 3 individuals, respectively) or only a single
individual is assigned to each pool. Each point in
Fig. 6 denotes the median of the total variation dis-
tances of 20 pool compositions of the corresponding
pooling scheme, and the interval around the median
extends from the minimum to the maximum of
those 20 total variation distances. For pooled data
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Fig. 2. Relation between multinomial likelihood and the total variation distance to the true haplotype distribution in the
simulated example.

Table 3. Marker spacing (in base pairs) in HapMap
data sets

Data
set Min. 1st qu. Median Mean 3rd qu. Max.

E100 104 275 533 964 1043 8791
E5k 5003 5191 5452 6054 6050 17 480
E25k 25 003 25 119 25 479 25 840 26 159 31 437
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the PHASE algorithm was run 10 times on each of
the 20 pool compositions, and the one with the high-
est PAC-B likelihood was considered as the final
result.

In almost all the cases, pooling 2 or 3 individuals
yields results that are closer to the frequencies in the
HapMap database than analysing the same number
of individuals (30 or 20, respectively) separately using
the original PHASE algorithm. Thus, in those cases,
the reduction in haplotyping accuracy caused by
pooling several individuals is well compensated by the
ability to analyse larger samples from the underlying
population. Currently, the HapMap database in-
cludes only 60 (unrelated) individuals from CEU
population and thus we have not made comparisons
in situations where also the pooled samples would be
just a subset of the whole population.

(c) Performance comparisons between the methods

We were not able to run LDPooled on the data sets
with ten markers, when there were more than 2
individuals per pool. Thus we decreased the number

of markers to 7 and studied the accuracy of PHASE,
LDPooled and the greedy algorithm on the data set
E25k. For each ENCODE region and pool sizes of 2
and 3 individuals, 20 different pool configurationswere
analysed and the results are shown in Fig. 7. For both
PHASE and LDPooled, each pool configuration was
analysed 10 times, starting each time from a different
initial haplotype configuration, and the estimate with
the highest likelihood (PAC-B likelihood for PHASE
and multinomial likelihood for LDPooled) was re-
corded. The results show that in the majority of the
cases, PHASE has smaller median distance to the
HapMap database than LDPooled, and both of them
clearly outperform the greedy algorithm. The running
time on a single region was on average 0.5 (pool size 2)
and 36.6 (pool size 3) seconds for LDPooled, and for
PHASE the corresponding analyses took about 25
min, independently of the pool size.

4. Discussion

The haplotyping problem – to estimate the two
multilocus allelic combinations of each sampled
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individual from their unphased genotype data – has
been studied extensively in the literature (Niu, 2004),
because haplotype information is valuable in many
genetic analyses. On the other hand, current tech-
nology allows us to pool DNA from several indi-
viduals and estimate reliably the allele frequencies
of the whole pool at one genotyping, thus reducing
the overall genotyping costs (Sham et al., 2002). One
disadvantage of the pooling techniques is that an
increase in the pool size results in a decrease in the
haplotype information. In this article, we have studied
to what extent it is possible to reveal the haplotype
configurations from the pooled allelic information of
several diploid individuals.

Several earlier studies have relied on the numerical
maximization of the likelihood function that arises
from the multinomial sampling model of the haplo-
types (Ito et al., 2003; Wang et al., 2003; Yang et al.,
2003). Recently, that approach was also improved by
several pre- and post-processing steps of the SNP data
(Kirkpatrick et al., 2007). Here, we extended the
current state-of-the-art method for population-based
haplotyping of individual data, the PHASE algorithm
(Stephens & Scheet, 2005), to the setting of pooled

data, and compared the results with the maximum-
likelihood estimates given by LDPooled (Ito et al.,
2003) and with a deterministic greedy algorithm.

There are two appealing properties of PHASE that
encouraged us to apply it to the pooled data. The first
is of course the top performance of PHASE in the
extensive comparisons carried out among several
haplotyping methods (Marchini et al., 2006). The
second is the simplicity in the modifications that are
needed in order to extend the algorithm to pooled
data. The PHASE algorithm conducts a series of
iterations through the space of possible haplotype
configurations of the individuals given their genotype
data. Hence, it is straightforward to introduce an
additional step between consecutive iterations that
randomly pairs the current haplotypes within each
pool and thus permits the algorithm to explore the
whole space of the possible haplotypes given the
pooled data. The original PHASE algorithm can be
seen as a version of the extended algorithm where
the pool size equals 1. As PHASE estimates also the
recombination fractions for each marker interval, the
same could also be done when the algorithm is applied
to the pooled data.
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Fig. 4. Total variation distances from the estimated haplotype distributions on E5k to the true ones. The horizontal axis
contains ten different genomic regions and for each the analyses are carried out for five different pool sizes (2, 3, 4, 5 and
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Computationally, the PHASE algorithm is based
on the ideas from the theory of MCMC computing.
Nevertheless, PHASE (v.2.1) lacks a rigorous theor-
etical basis since it has not been proved that there
exists an underlying haplotype distribution towards
which the algorithm converges (Niu et al., 2002;
Stephens & Scheet, 2005). However, to our knowl-
edge, no such problems in practice have been reported
in the literature. This being said, we found out that in
more complex pooled data cases, our modification of
the algorithm failed to converge to a single distri-
bution within the given number of iterations. A pos-
sible explanation for this could be multimodality
of the (assumed-to-exist) target distribution together
with the extremely local updates performed by Gibbs
sampler. Indeed, since the algorithm updates only a
single pair of haplotypes at a time, it may not move
from a local mode of the distribution once it reaches
there. The same should be true with the original
PHASE algorithm, but since the number of possible
haplotype combinations increases dramatically as the
pool size grows, it may be that these problems are not
likely to emerge on single-individual pools. A pos-
sible solution might be updating more haplotypes

simultaneously at each MCMC step (e.g. updating a
whole pool at a time). Unfortunately, this would be
computationally more demanding. Another possible
explanation for the observed convergence problems
could be insufficient number of iterations carried out
in our examples. However, we consider the multi-
modality of the vast state space of consistent haplo-
type configurations as the most likely source of these
problems, because it seemed that the posterior dis-
tributions of the runs did not vary much anymore
after those 100 PHASE cycles (see the Appendix) that
were reported in our results. This was noticed when
some of the runs were extended some hundreds of
PHASE cycles longer (results not shown).

To overcome the convergence issues, we discovered
that the PAC-B likelihood value reported by PHASE
can very effectively rank different distributions, since
a high likelihood value seems to indicate lower dis-
tance to the correct result (see Fig. 5). This led us to
run many small runs rather than a single long one
in our examples. Thus we consider the proposed pro-
cedure not as a proper MCMC method but more
like a search algorithm through a set of modes of
the distribution that are ranked according to their
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accordance with a reasonable genetic model (PAC-B
likelihood).

In our examples we found out that in order to have
accurate results the pool size needs to be quite small,
2–5 individuals per pool, depending on the data set.
This is in line with the earlier studies where at most 3
(Kirkpatrick et al., 2007) or 4 individuals per pool are
reported to yield optimal efficiency (Ito et al., 2003;
Yang et al., 2003). There are a few immediate ways to
increase the pool size by influencing the information
content of the pools. Firstly, one might try to mini-
mize the variability within each pool, whence the pool
size could be increased as the number of possible
combinations of haplotypes in each pool would de-
crease. Here observed information on covariates or
prior information on the known family or population
structure could be utilized by pooling closely related
individuals. Another way to increase the pool sizes
would be to include in the model some prior infor-
mation on the population haplotype distribution that
has been gathered from some previous studies or a
public database like the HapMap project. This might
effectively decrease the number of likely haplotype
combinations within the pools, and thus also improve

the efficiency and the convergence of the algorithm.
A shortcut for implementing this idea in the modified
version of PHASE would be to add some pseudo-
individuals to the data. These artificial genotypes
would be homozygous for some haplotypes that
are known to exist in the population. As a result
the algorithm would not spend time updating these
homozygous pseudo-individuals, whereas the Gibbs
update step of the unknown pooled haplotypes would
be altered by putting more weight on the artificially
added haplotypes.

The proposed modification of PHASE to pooled
data is very flexible with respect to the compositions
of pools. Indeed, there are no technical constraints
limiting the pool sizes, as for the fixed number
of haplotypes the running time per iteration and
memory requirements remain the same independently
of the number of haplotypes per pool. This is opposite
to the strong growth of memory requirements as a
function of pool size in the EM algorithm imple-
mented in LDPooled. One must keep in mind, how-
ever, that in order to get accurate results with
PHASE, larger pools require more and/or longer runs
than small ones.
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Both PHASE and LDPooled can analyse pools of
different sizes at the same run. For more difficult data
sets it may be useful to utilize the pooling techniques
only to a part of the data and genotype the remaining
individuals separately. We compared for example
the following pooling schemes on HapMap data:
30r2,10r1+10r2+10r3and20r1+10r4.Each
scheme considers 30 pools and 120 haplotypes but the
pool sizes vary from 1 to 4 (individuals per pool). The
estimates of the different schemes were so similar to
each other that in this article we have reported only
the basic versions with the constant pool size (here
30r2).

In our examples we concentrated our efforts on
producing comprehensive results by studying several
different regions from the human genome and by
assessing the effects of the pool assignment of the
individuals by repeating each analysis several times
with varying pool composition. On the other hand,
our examples did not consider more than ten mar-
kers at a time. The reason for this is that for compu-
tational reasons the current approach to haplotype
estimation on larger sets of markers with PHASE (or

with the multinomial model) proceeds through the
partition-ligation steps (Niu et al., 2002). There only
small regions (tens of markers) are analysed at a time
and only afterwards these regions are combined to
cover the whole haplotypes. Thus the essential part of
the kind of haplotyping algorithms we have studied
here is in estimating the haplotype patterns in small
segments.

The simple greedy algorithm was presented for
testing the complexity of the data sets. In the
HapMap data sets the greedy method performed
clearly much worse than PHASE and LDPooled. For
the data set E25k, this can be seen in Fig. 7 and the
same pattern was also present for the data sets El00
and E5k (results not shown). In the simulated data
set, we used the greedy algorithm to guide our choice
of the distance between markers. For very close mar-
kers the greedy method seemed to yield similar results
to PHASE but for the data set reported in Table 1 and
Fig. 1, this was no longer the case. While testing the
method we also experimented using the haplotype
frequencies given by the greedy algorithm as starting
values for PHASE. However, this led to the mixing
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problems of the MCMC chain. A potential reason for
these problems is that the greedy method has max-
imized the number of certain haplotypes given the
allele frequencies in the pools. This may prevent the
Gibbs updates of the PHASE algorithm to move
away from the greedy configuration, because these
updates sample only two haplotypes at a time con-
ditional on the other haplotypes.

The comparisons of accuracy between PHASE and
LDPooled did not yield a completely consistent con-
clusion. On the simulated data set PHASE performed
much better but from the HapMap data a few regions
were found on which LDPooled was the superior
method (e.g. E25k – region 6–30 pools and E25k –
region 7–20 pools). However, in most of the cases
reported in Fig. 7, PHASE had an advantage over
LDPooled. Because of insufficient memory, LD-
Pooled was not able to analyse HapMap data sets
with ten markers for pool sizes larger than 2. For pool
size 2, PHASE and LDPooled gave similar accuracy
on E100, and PHASE had a slight advantage on E5k
(results not shown). On the other hand, when memory
was not a problem, LDPooled was faster than the
procedure involving PHASE. We also note that
Kirkpatrick et al. (2007) have reported that their
program HaploPool outperforms LDPooled both in
accuracy and in speed. Comparisons between PHASE
and HaploPool will remain a question for further
study.

From Figs 6 and 7, we can conclude that an as-
signment of the individuals to the pools has a stronger
effect on the accuracy of the results when the distance
between the SNPs is larger. For E100 the pool com-
position has a negligible role in the accuracy (except in
region 5), whereas for E5k and especially for E25k,
different pooled combinations of individuals result in
very different accuracy of the estimates. In these ex-
amples, the PHASE algorithm was run only 10 times
for each data set and, as is apparent from Fig. 5, the
results might be improved if 100 or even more rep-
etitions per pool composition were conducted. On the
other hand, as Fig. 6 shows, the same kind of vari-
ability of the accuracy is also present in the case where
only a subset of the subjects is analysed individually.
Thus pooling can be advantageous also in cases where
one has to compromise between the number of geno-
typings (i.e. pools) and the number of analysed sam-
ples, as is the case with the example of Fig. 6.

There are two sources of errors related to the hap-
lotyping problem on pooled data which we have par-
tially ignored in this study. Firstly, there is sampling
error occurring because only a subset of the whole
population is usually utilized in the studies. Secondly,
there are certain sources of genotyping errors in the
pooling techniques which may affect the accuracy of
the estimated allele frequencies of pools. The question
of sampling error was considered in the examples of

Fig. 6 for single-individual pools, but the relatively
small number of individuals (60) in the HapMap
database made us refrain from studying the issue for
larger pools. Since we study relatively small pools
(2–5 individuals), the proportion of each allele in a
pool has only a few possible values that are clearly
distinct from each other. As several pooling technol-
ogies generally give the allele frequencies within the
accuracy of 5% or less (Sham et al., 2002), we are not
expecting the accuracy of the techniques to be a con-
siderable problem in this setting. Kirkpatrick et al.
(2007) studied the effect of perturbation of the allele
frequencies of pools by Gaussian noise and found that
their program HaploPool (pool size 2) was advan-
tageous over single-individual genotyping as long as
the standard deviation of the noise was less than 0.05.
Also in the setting of Quade et al. (2005) the geno-
typing error did not have a serious effect on the ac-
curacy of the haplotype frequency estimates, although
one must keep in mind that their study considered
only the case of two SNPs.

In conclusion, our results show that pooling may
be efficient on data sets like E100, where even pools
of size 5 (individuals per pool) seem to give almost
equal accuracy of the population haplotype fre-
quencies as ordinary single-individual analysis (Figs 3
and 6). Obvious challenges for our approach still re-
main concerning the convergence issues encountered
in more complex data sets. We hope that our idea of
using PHASE on pooled data encourages more re-
search on these issues and that some further modi-
fications of the algorithm can bring robustness to the
method. Important topics for future work also include
incorporating external information of population
haplotype distribution into the model, considering
the settings where the exact sizes of the pools are
unknown (e.g. in forensic genetics), and modelling
genotyping errors, especially for larger pools. Fur-
thermore, the extendibility of other promising haplo-
typing methods to the pooled DNA data as well as
comparisons between the method presented here and
HaploPool software of Kirkpatrick et al. (2007) are
important issues requiring some further study.

Appendix: Implementation and parameters

As described in the Methods section, our modified
version of PHASE (v.2.1) for pooled data proceeds
by (i) forming for each pool i randomly ni pairs of
haplotypes from the 2ni haplotypes present in the pool
and (ii) applying the transition kernel of PHASE
(R times) to these paired haplotypes. In the following,
we shall call the part (ii) a PHASE cycle.

Once a new PHASE cycle is commenced, we must
also transfer the final recombination parameters r
from the previous cycle to the new one. This can be
done by implementing a function which reads in the
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parameters written by the function OutputRho().
Note that PHASE includes a switch (xi2) which
allows us to input the genotype data in such a way
that the given haplotypes are preserved between the
PHASE cycles.

There are also parameters sp and sl that control the
sizes of the updates of recombination parameters.
These could also be transferred between the adjacent
PHASE cycles, but we found it better to let the
PHASE algorithm tune these parameters at the be-
ginning of each PHASE cycle. This can be done by
introducing some burn-in iterations into each PHASE
cycle.

The results reported in this article have been pro-
duced by setting R=10 and using two burn-in iter-
ations at the beginning at each PHASE cycle. We also
tried the values R=5 and R=25 but the differences
were very small (with some advantage for R=10).
The number of PHASE cycles conducted in the
simulated data example was 1500, whereas for the
HapMap data sets the corresponding figure was 100.
For each run the first 50 PHASE cycles were dis-
carded as a burn-in part. On the HapMap data,
the executed time by a single analysis (100 PHASE
cycles with R=10 and 2 burn-in iterations on a single
ENCODE region) was about 2.5 min (Pentium 4,
2.80 GHz). We note, however, that in order to get
reliable results, several runs must be conducted (100
and 10 repetitions were used in our HapMap ex-
amples) and their consistency should be evaluated.
In order to monitor the convergence properties of
the chain, the original PHASE algorithm reports
two quantities : the pseudo-likelihood of Stephens &
Donnelly (2003) and the PAC-B likelihood (Li &
Stephens, 2003). These can be thought of as providing
a measure of the goodness of fit of the estimated
haplotypes to the underlying model. We utilized these
quantities because the runs with larger pool sizes (>3)
were not converging to a single distribution (within
the given time) and thus it did not seem reasonable
to average the results over different runs. Instead, we
ranked the runs according to their average values of
PAC-B likelihoods and chose the run with the highest
PAC-B likelihood to serve as our final estimate of the
haplotype distribution. PAC-B likelihood was used
because it was found to perform better in this task
than the pseudo-likelihood. Its name abbreviates
‘product of approximative conditionals ’ and version
B has been modified from version A using empirical
results to correct the bias that was observed in version
A (Li & Stephens, 2003). The same function is also
used by PHASE to provide the likelihood of recom-
bination parameters given the haplotypes (eqn 2 in
this article).

Our philosophy was to keep the modifications to
the PHASE code as small as possible : only inputting r
at the beginning of each PHASE cycle and outputting

r and the current haplotypes at the end of the cycle. In
addition to these changes to the PHASE code one also
needs helper programs that (i) shuffle the haplotypes
within pools after each PHASE cycle and (ii) combine
the results of the different PHASE cycles.

We are grateful to Matthew Stephens for providing the
source codes of PHASE and to Toshikazu Ito for the pro-
gram LDPooled and also to two anonymous reviewers
whose comments helped us to improve the manuscript. This
work was supported by research grant numbers 114786,
122883 and 202324 from the Academy of Finland and the
ComBi Graduate School.
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Uimari, P. & Sillanpää, M. J. (2001). Bayesian oligogenic
analysis of quantitative and qualitative traits in general
pedigrees. Genetic Epidemiology 21, 224–242.

Wang, J., Koehler, K. J. & Dekkers, J. C. M. (2007).
Interval mapping of quantitative trait loci with selective
DNA pooling data. Genetics Selection Evolution 39,
685–709.

Wang, S., Kidd, K. & Zhao, H. (2003). On the use of
DNA pooling to estimate haplotype frequencies. Genetic
Epidemiology 24, 74–82.

Wijsman, E. (1987). A deductive method of haplotype
analysis in pedigrees. American Journal of Human
Genetics 41, 356–373.

Yang, H. C., Pan, C. C., Lin, C. Y. & Fann, C. S. J. (2006).
PDA: pooled DNA analyzer. BMC Bioinformatics 7, 233.

Yang, Y., Zhang, J., Hoh, J., Matsuda, F., Xu, P., Lathrop,
M. & Ott, J. (2003). Efficiency of single-nucleotide
polymorphism haplotype estimation from pooled DNA.
Proceedings of the National Academy of Sciences, USA
100, 7225–7230.

Zhang, K., Zhu, J., Shendure, J., Porreca, G. J., Aach, J. D.,
Mitra, R. D. & Church, G. M. (2006a). Long-range
polony haplotyping of individual human chromosome
molecules. Nature Genetics 38, 382–387.

Zhang, Y., Niu, T. & Liu, J. S. (2006b). A coalescence-
guided hierarchical Bayesian method for haplotype
inference. American Journal of Human Genetics 79,
313–322.

Zou, G. H. & Zhao, H. Y. (2005). Family-based association
tests for different family structures using pooled DNA.
Annals of Human Genetics 69, 429–442.

M. Pirinen et al. 524

https://doi.org/10.1017/S0016672308009877 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009877

