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Shaken Rogers’s Theorem for
Homothetic Sections

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

J. Jerónimo-Castro, L. Montejano, and E. Morales-Amaya

Abstract. We shall prove the following shaken Rogers’s theorem for homothetic sections: Let K and

L be strictly convex bodies and suppose that for every plane H through the origin we can choose

continuously sections of K and L, parallel to H, which are directly homothetic. Then K and L are

directly homothetic.

1 Introduction

Let K be a convex body in affine 3-space and let p0 be a point. Suppose that every

section of K through p0 is centrally symmetric, then Rogers proved [6] that K is

centrally symmetric, although p0 may not be the centre of K . If this is the case,

Aitchison, Petty, and Rogers [1] and Larman [2] proved that K must be an ellipsoid.

Suppose now that for every direction we can choose continuously a section of K that

is centrally symmetric. If, in addition, K is strictly convex, then Montejano [4] proved

that K must be centrally symmetric.

Rogers’s obtained his result as a corollary of the following more interesting theo-

rem [6].

Theorem Let K and L be convex bodies in affine 3-space and let p ∈ int K and

q ∈ int L. If for every plane H through the origin, the section K ∩ (H + p) is directly

homothetic to the section L ∩ (H + q), then K is directly homothetic to L.

Montejano’s result [3] is a corollary of the following shaken version of Rogers’s

Theorem for strictly convex bodies and translations instead of homothety.

Theorem Let K and L be strictly convex bodies in affine 3-space. If for every plane H

through the origin we can choose continuously sections of K and L, parallel to H, which

are translated copies one of each other, then K is a translate of L.

The purpose of this paper is to prove the shaken version of Rogers’s theorem for

homothetic sections. That is, we prove the following result.

Theorem Let K and L be strictly convex bodies in affine 3-space and suppose that

for every plane H through the origin we can choose continuously sections of K and L,

parallel to H, which are directly homothetic. Then K and L are directly homothetic.
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We shall also generalize Rogers’s and Montejano’s theorems for centrally symmet-

ric sections as follows.

Theorem Let K be a strictly convex body in affine 3-space. Suppose that for every

plane H through the origin we can choose continuously two sections of K, parallel to H,

which are inversely homothetic. Then K is centrally symmetric.

2 The Main Theorem

Let δ : S
2 → R be a continuous function such that δ(−x) = −δ(x). Let us denote by

[δ] the following set of hyperplanes in E
3:

[δ] = {Hδ
y = {x ∈ E

3 | 〈x, y〉 = δ(y)}}y∈S2 .

If this is the case, we shall say that [δ] is a 2-cycle of planes in E
3. This 2-cycle should

be considered as a subset of the Grassmannian manifold G(3, 4) = P
3 (identifying

E
3 with a hyperplane of E

4 that does not contain the origin, and every plane of E
3

with the hyperplane of E
4 that passes through the origin and contains the plane).

The cohomology ring H∗(G(3, 4), Z2) = {Z2[κ] ; κ
4

= 0}, where the generator

κ ∈ H1(G(3, 4), Z2) = Z2, by duality can be realized through every 2-cycle of planes.

The interested reader may consult [7] for more information about the cohomology

ring.

Let K ⊂ E
3 be a convex body and for every y ∈ S

2 let Kδ
y = K ∩ Hδ

y . We say that

{Kδ
y}y∈S2 is a 2-cycle of sections of K if Kδ

x ∩ Kδ
y ∩ int K 6= φ for every x, y ∈ S

2.

Lemma 1 Let [δ1] and [δ2] be two 2-cycles of planes in E
3 and let p ∈ E

3. Then there

is x0 ∈ S
2 such that p ∈ Hδ1

x0
= Hδ2

x0
.

Proof Let [δ3] be the 2-cycle of planes that pass through p. It is enough to prove that

[δ1]∩[δ2]∩[δ3] 6= φ. That is, there exist x0 ∈ S
2 such that Hδ1

x0
= Hδ2

x0
= Hδ3

x0
, but this

is true because any 2-cycle of planes realizes the generator κ ∈ H1(G(3, 4), Z2) = Z2

and we know that κ
3, the generator of H3(G(3, 4), Z2) = Z2, is not zero.

Lemma 2 Let [δ] be a 2-cycle of planes in E
3 and let L be a line in E

3. Then there is

x0 ∈ S
2 such that L ⊂ Hδ

x0
.

Proof Let p1 and p2 be two different points of L and let [δi] be the 2-cycle of planes

that pass through pi , i = 1, 2. As in the above lemma, we have that [δ1]∩[δ2]∩[δ] 6=
φ, that is, there exists x0 ∈ S

2 such that L ⊂ Hδ
x0

.

Theorem 3 Let K and L be strictly convex bodies in affine 3-space and let [δi] be such

that {Kδ1
y }y∈S2 is a 2-cycle of sections of K and {Lδ2

y }y∈S2 is a 2-cycle of sections of L.

Suppose that for every x ∈ S
2, Kδ1

x is directly homothetic to Lδ2
x . Then K is directly

homothetic to L.

Proof Suppose, by contradiction, that K is not directly homothetic to L. For every

x ∈ S
2, let Ωx : E

3 → E
3 be the homothety such that Ωx(Kδ1

x ) = Lδ2
x . We shall prove

that ∂(ΩxK) ∩ ∂L = ∂Lδ2
x .
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For that purpose, let us fix the point x ∈ S
2. We may assume, without loss of

generality, that ΩxK = K . If this is the case, then Kδ1
x = Lδ2

x and Ωx = IdE3 is the

identity. So, we need to prove that ∂K ∩ ∂L = ∂Lδ2
x = ∂Kδ1

x .

At this point of the proof, it is convenient to give a name for those points which

are at the same time in the boundary of K and in the boundary of L. So we shall say

that a point p ∈ ∂K ∪ ∂L is a double point if p ∈ ∂K ∩ ∂L. Hence every point in

∂Lδ2
x = ∂Kδ1

x is double. Suppose that there is another double point p ∈ ∂K ∩ ∂L, but

p /∈ Hδ1
x = Hδ2

x . By Lemma 1, there is x0 ∈ S
2 such that p ∈ Hδ1

x0
= Hδ2

x0
. The convex

figures Kδ1
x0

and Lδ2
x0

lie in the same plane Hδi
x0

, i = 1, 2, and are directly homothetic.

Notice now that the directly homothetic convex figures Kδ1
x0

and Lδ2
x0

share at least

three points of their boundaries; the point p and, since Kδ1
x ∩ Kδ1

x0
∩ int K 6= φ, the

two double points of Hδ1
x ∩ Hδ1

x0
∩ ∂K = Hδ1

x ∩ Hδ1
x0
∩ ∂L. So, keeping in mind that

Kδ1
x0

and Lδ2
x0

are strictly convex, we have that Kδ1
x0

= Lδ2
x0

.

Since K 6= L, we can consider q ∈ ∂L − ∂K . Again, by Lemma 1, there is x1 ∈ S
2

such that q ∈ Hδ1
x1

= Hδ2
x1

. The section Kδ1
x1

shares at least two double points of its

boundary with the section Kδ1
x = Lδ2

x . This is so because Kδ1
x ∩ Kδ1

x1
∩ int K 6= φ.

Similarly, the section Kδ1
x1

shares at least two double points of its boundary with the

section Kδ1
x0

= Lδ2
x0

. So either Kδ1
x1

shares at least three double points of its boundary

with the section Lδ2
x1

, or the plane Hδ1
x1

= Hδ2
x1

contains the line Hδi
x ∩ Hδi

x0
, i = 1, 2. In

the first case, Kδ1
x1

= Lδ2
x1

, because two distinct, planar, strictly convex figures that are

directly homothetic share at most two points of its boundary. In the second case also

Kδ1
x1

= Lδ2
x1

, but this time the reason is that two distinct, planar, strictly convex figures

that are homothetic cannot have two common boundary points with common sup-

porting line. Effectively, we shall next show that Kδ1
x1

and Lδ2
x1

share two supporting

lines. Let {a, b} = Hδi
x ∩ Hδi

x0
∩ ∂K , and let Γa and Γb be supporting planes of K at

a and b, respectively. Notice that Γa and Γb are also supporting planes of L at a and

b, respectively, because Kδ1
x = Lδ2

x and Kδ1
x0

= Lδ2
x0

. Now {a, b} ⊂ ∂Kδ1
x1
∩ ∂Lδ2

x1
and

Γa ∩ Hδi
x1

is a supporting line of both Kδ1
x1

and Lδ2
x1

at a and similarly Γb ∩ Hδi
x1

is a sup-

porting line of both Kδ1
x1

and Lδ2
x1

at b. In any case, Kδ1
x1

= Lδ2
x1

, which is a contradiction,

since q ∈ ∂L − ∂K . Therefore ∂K ∩ ∂L = ∂Lδ2
x = ∂Kδ1

x .

So, we have proved that for every x ∈ S
2, ∂(ΩxK)∩∂L = ∂Lδ2

x , where Ωx : E
3 → E

3

is the homothety with the property that Ωx(Kδ1
x ) = Lδ2

x .

Let us define the following continuous function Ψ : S
2 → R as follows: for every

x ∈ S
2 let ∆

x be the closed half space bounded by the plane Hδ2
x which has the vector

x as an outer normal vector. Define, for every x ∈ S
2,

Ψ(x) = Vol[(L − ΩxK) ∩ ∆
x] − Vol[(ΩxK − L) ∩ ∆

x].

Notice that by the above either (L − ΩxK) ∩ ∆
x 6= φ or (ΩxK − L) ∩ ∆

x 6= φ. Note

also that Ψ(x) 6= 0, otherwise ∂(ΩxK) ∩ ∂L 6= ∂Lδ2
x . Consequently, either Ψ(x) > 0

for every x ∈ S
2 or Ψ(x) < 0, for every x ∈ S

2.

Suppose first that Ψ(y) and Ψ(−y) are greater than zero, for some y ∈ S
2, then

ΩyK ⊂ L. Fix the point y ∈ S
2 and assume, without loss of generality, that ΩyK = K

and δ1 is such that Kδ1
y = Lδ2

y and Ωy = IdE3 .

Let p ∈ ∂L − ∂K . Again, by Lemma 1, there is x2 ∈ S
2 such that p ∈ Hδ1

x2
= Hδ2

x2
.

The section Kδ1
x2

shares at least two double points of its boundary with the section
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Kδ1
y = Lδ2

y and Kδ1
x2

⊂ Lδ2
x2

, because K ⊂ L. Since Kδ1
x2

and Lδ2
x2

are planar, homothetic,

strictly convex figures, we have that Kδ1
x2

= Lδ2
x2

, contradicting the fact that p ∈ ∂L −
∂K . Similarly, there is a contradiction when Ψ(x) < 0, for every x ∈ S

2. Therefore,

K must be directly homothetic to L. This completes the proof of the theorem.

Theorem 4 Let K be a strictly convex body in affine 3-space and let [δi] be such that

{Kδ1
y }y∈S2 and {Kδ2

y }y∈S2 are two 2-cycles of sections of K. Suppose that for every x ∈ S
2,

Kδ1
x is inversely homothetic to Kδ2

x . Then K is centrally symmetric.

Proof Let L = −K and let δ3 = −δ2. Therefore, {Kδ1
y }y∈S2 is a 2-cycle of sections of

K and {Lδ3
y }y∈S2 is a 2-cycle of sections of L with the property that for every x ∈ S

2,

Kδ1
x is directly homothetic to Lδ3

x . Then by Theorem 3 K is directly homothetic to

L = −K , and therefore K is centrally symmetric.
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