ON CERTAIN PAIRS OF MATRICES

WHICH DO NOT GENERATE A FREE GROUP¹

Rimhak Ree

(received November 7, 1960)

A complex number λ will be said to be <u>free</u> if the multiplicative group F, generated by the two matrices

$$\mathbf{A} = \begin{pmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{\lambda} & \mathbf{1} \end{pmatrix}$$

is a free group, and <u>non-free</u>, otherwise. Very little is known about the distribution of free and non-free numbers [1]. It is, for instance, unknown whether the domain

$$D = \{\lambda : |\lambda| < 1 \text{ or } |\lambda + 1| < 1 \text{ or } |\lambda - 1| < 1\}$$

contains an open set which consists of only free points.

In this note, it will be shown, among other things, that the open segment joining -2 and 2 and the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$ are contained in an open domain (in the complex plane) in which non-free points are densely distributed.

For the history and motivation of the problem considered here and for the ramifications of the problem, see [1] and the references therein. The main result in [2], which appeared later than [1], is much weaker than that of [1].

¹ This paper was written while the author held a Research Associateship of the Office of Naval Research, U.S. Navy.

Canad. Math. Bull. vol. 4, no. 1, January 1961

49

(1)
$$\mathbf{G} = \begin{pmatrix} \mathbf{p}(\lambda) & \mathbf{q}(\lambda) \\ \mathbf{r}(\lambda) & \mathbf{s}(\lambda) \end{pmatrix}$$

is any word generated by A and B, where $p(\lambda)$, $q(\lambda)$, $r(\lambda)$, and $s(\lambda)$ are polynomials in λ , and if $q(\lambda)$ is not identically zero, then non-free points are densely distributed in the domain (in the complex plane) defined by $|\lambda q(\lambda)| \leq 1$.

Proof. Define the words $G_1, G_2, \ldots, G_n, \ldots$, inductively by $G_1 = G$, and $G_{n+1} = G_n B G_n^{-1} B^{-1}$. If

$$G_{n} = \begin{pmatrix} p_{n}(\lambda) & q_{n}(\lambda) \\ \\ r_{n}(\lambda) & s_{n}(\lambda) \end{pmatrix},$$

then

$$G_{n}^{-1} = \begin{pmatrix} s_{n}(\lambda) & -q_{n}(\lambda) \\ & \\ -r_{n}(\lambda) & p_{n}(\lambda) \end{pmatrix}$$

since the determinant of G_n is 1. Hence we can compute G_{n+1} and check easily that

$$q_{n+1}(\lambda) = -\lambda q_n^2(\lambda);$$
 tr $G_{n+1} = 2 + \lambda_n^2 q_n^2(\lambda).$

It follows from these that

$$\operatorname{tr} \mathbf{G}_{n+1} = 2 + (\lambda \mathbf{q}(\lambda))^{2^{n}}.$$

Now, fix n, take θ arbitrarily such that $0 < \theta < 2\pi$, $\theta \neq \pi$, and let λ be any complex number satisfying

(2)
$$2 + (\lambda q(\lambda))^{2^n} = e^{i\theta} + e^{-i\theta}$$
.

Then, since det $G_{n+1} = 1$, the characteristic roots of G_{n+1} are $e^{i\theta}$ and $e^{-i\theta}$; since $e^{i\theta} \neq e^{-i\theta}$, G_{n+1} can be diagonalized, and if, moreover, θ is a rational multiple of π , then G_{n+1} has a finite period and hence λ is non-free. Since the rational multiples of π are densely distributed in $[0, 2\pi]$ and since n can be made arbitrarily large, it is clear from (2) that any complex number λ satisfying $|\lambda q(\lambda)| \leq 1$ is a limit of non-free points. Thus the theorem is proved.

By taking G = A, we obtain the following

COROLLARY 1. Non-free points are densely distributed in the circle $|\lambda| \leq \frac{1}{2}$.

In order to obtain some other $q(\lambda)$'s, let

$$(AB)^{n} = \begin{pmatrix} 2\lambda + 1 & 2 \\ \lambda & 1 \end{pmatrix}^{n} = \begin{pmatrix} p_{n} & 2q_{n} \\ r_{n} & s_{n} \end{pmatrix}.$$

Then we have

(3)
$$q_{n+2} = \mu q_{n+1} - q_n$$
 (n = 1, 2,), $q_1 = 1$, $q_2 = \mu$,

where $\mu = 2\lambda + 2$. The polynomials $f_n(\mu)$ defined by sin $n\theta / \sin \theta = f_n(2 \cos \theta)$ satisfy the relations (3). Hence we have $q_n = f_n$ for all n.

Now any real number λ in (-2, 0) can be expressed as $\lambda = \cos \theta - 1$, $0 < \theta < \pi$, and for some integer n we have

$$\begin{aligned} \left| (\cos \theta - 1) \frac{\sin n\theta}{\sin \theta} \right| < 1, \\ \left| \lambda q_n(\lambda) \right| < 1. \end{aligned}$$

or

Since λ is free if and only if $-\lambda$ is free, we may conclude by theorem 1 that the open segment joining -2 and 2 is contained in an open domain in the complex plane in which non-free points are densely distributed.

Using $(ABA^{-1}B^{-1})^n$ instead of $(AB)^n$, above, and arguing similarly, we may obtain a similar conclusion about the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$. Thus we have proved

COROLLARY 2. The open segment joining -2 and 2 and the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$ are contained in an open domain in the complex plane in which non-free points are densely distributed.

REFERENCES

- B. Chang, S.A. Jennings and R. Ree, On certain pairs of matrices which generate free groups, Canad. J. Math. 10 (1958), 279-284.
- W. Specht, Freie Untergruppen der binären unimodularen Gruppe, Math. Z. 72 (1960), 319-331.

University of British Columbia