ON CERTAIN PAIRS OF MATRICES

WHICH DO NOT GENERATE A FREE GROUP ${ }^{1}$

Rimhak Ree

(received November 7, 1960)

A complex number λ will be said to be free if the multiplicative group F_{λ} generated by the two matrices

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right)
$$

is a free group, and non-free, otherwise. Very little is known about the distribution of free and non-free numbers [1]. It is, for instance, unknown whether the domain

$$
D=\{\lambda:|\lambda|<1 \text { or }|\lambda+1|<1 \text { or }|\lambda-1|<1\}
$$

contains an open set which consists of only free points.
In this note, it will be shown, among other things, that the open segment joining -2 and 2 and the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$ are contained in an open domain (in the complex plane) in which non-free points are densely distributed.

For the history and motivation of the problem considered here and for the ramifications of the problem, see [1] and the references therein. The main result in [2], which appeared later than [1], is much weaker than that of [1].
${ }^{1}$ This paper was written while the author held a Research Associateship of the Office of Naval Research, U.S. Navy.

Canad. Math. Bull. vol. 4, no. 1, January 1961

$$
G=\left(\begin{array}{ll}
p(\lambda) & q(\lambda) \tag{1}\\
r(\lambda) & s(\lambda)
\end{array}\right)
$$

is any word generated by A and B, where $p(\lambda), q(\lambda), r(\lambda)$, and $s(\lambda)$ are polynomials in λ, and if $q(\lambda)$ is not identically zero, then non-free points are densely distributed in the domain (in the complex plane) defined by $|\lambda q(\lambda)| \leq 1$.

Proof. Define the words $G_{1}, G_{2}, \ldots, G_{n}, \ldots$, inductively by $G_{1}=G$, and $G_{n+1}=G_{n} B G_{n}^{-1} B^{-1}$. If

$$
G_{n}=\left(\begin{array}{ll}
p_{n}(\lambda) & q_{n}(\lambda) \\
r_{n}(\lambda) & s_{n}(\lambda)
\end{array}\right),
$$

then

$$
G_{n}^{-1}=\left(\begin{array}{cc}
s_{n}(\lambda) & -q_{n}(\lambda) \\
-r_{n}(\lambda) & p_{n}(\lambda)
\end{array}\right)
$$

since the determinant of G_{n} is 1 . Hence we can compute G_{n+1} and check easily that

$$
q_{n+1}(\lambda)=-\lambda q_{n}^{2}(\lambda) ; \quad \operatorname{tr} G_{n+1}=2+\lambda_{n}^{2} q_{n}^{2}(\lambda) .
$$

It follows from these that

$$
\operatorname{tr} G_{n+1}=2+(\lambda q(\lambda))^{2^{n}}
$$

Now, fix n, take θ arbitrarily such that $0<\theta<2 \pi$, $\theta \neq \pi$, and let λ be any complex number satisfying

$$
\begin{equation*}
2+(\lambda q(\lambda))^{2^{n}}=e^{i \theta}+e^{-i \theta} \tag{2}
\end{equation*}
$$

Then, since $\operatorname{det} G_{n+1}=1$, the characteristic roots of G_{n+1} are $e^{i \theta}$ and $e^{-i \theta}$; since $e^{i \theta} \neq e^{-i \theta}, G_{n+1}$ can be diagonalized, and if, moreover, θ is a rational multiple of π, then G_{n+1} has a finite period and hence λ is non-free. Since the rational multiples of π are densely distributed in $[0,2 \pi]$ and since n
can be made arbitrarily large, it is clear from (2) that any complex number λ satisfying $|\lambda q(\lambda)| \leq 1$ is a limit of nonfree points. Thus the theorem is proved.

By taking $G=A$, we obtain the following
COROLLARY 1. Non-free points are densely distributed in the circle $|\lambda| \leq \frac{1}{2}$.

In order to obtain some other $q(\lambda)^{\prime} s$, let

$$
(A B)^{n}=\left(\begin{array}{cc}
2 \lambda+1 & 2 \\
\lambda & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
p_{n} & 2 q_{n} \\
r_{n} & s_{n}
\end{array}\right)
$$

Then we have
(3) $q_{n+2}=\mu q_{n+1}-q_{n}(n=1,2, \ldots), q_{1}=1, q_{2}=\mu$,
where $\mu=2 \lambda+2$. The polynomials $f_{n}(\mu)$ defined by $\sin n \theta / \sin \theta=f_{n}(2 \cos \theta)$ satisfy the relations (3). Hence we have $q_{n}=f_{n}$ for all n.

Now any real number λ in ($-2,0$) can be expressed as $\lambda=\cos \theta-1,0<\theta<\pi$, and for some integer n we have

$$
\left|(\cos \theta-1) \frac{\sin n \theta}{\sin \theta}\right|<1
$$

or

$$
\left|\lambda q_{n}(\lambda)\right|<1
$$

Since λ is free if and only if $-\lambda$ is free, we may conclude by theorem 1 that the open segment joining -2 and 2 is contained in an open domain in the complex plane in which non-free points are densely distributed.

Using $\left(A B A^{-1} B^{-1}\right)^{n}$ instead of $(A B)^{n}$, above, and a rguing similarly, we may obtain a similar conclusion about the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$. Thus we have proved

COROLLARY 2. The open segment joining -2 and 2 and the open segment joining $-\sqrt{-1}$ and $\sqrt{-1}$ are contained in an open domain in the complex plane in which non-free points are denseIy distributed.

REFERENCES

1. B. Chang, S. A. Jennings and R. Ree, On certain pairs of matrices which generate free groups, Canad. J. Math. 10 (1958), 279-284.
2. W. Specht, Freie Untergruppen der binären unimodularen Gruppe, Math. Z. 72 (1960), 319-331.

University of British Columbia

