Path analysis under generalized assortative mating

II. American I.Q.

D. C. RAO, ${ }^{1}$ N. E. MORTON, ${ }^{2}$ J. M. LALOUEL ${ }^{3}$ and R. LEW ${ }^{2}$
(Received 22 May 1981 and in revised form 21 October 1981)

Abstract

SUMMARY Rice, Cloninger \& Reich (1980) showed that correlational data on American I.Q. is consistent with a rather low genetic heritability. Here we confirm their general results with a more parsimonious model. From phenotypic data alone, the estimates of genetic and cultural heritability are 0.31 and 0.42 , respectively. Using environmental indices, the parsimonious estimates become $0 \cdot 34$ and $0 \cdot 26$, respectively.

INTRODUCTION

A linear modelincorporating generalized assortative mating, cultural inherritance, specific maternal effects, intergenerational differences in heritabilities, and sibship common environment was presented earlier (Rao, Morton \& Cloninger, $1979 a$). In this paper we present an application of the model to correlational data on American I.Q., henceforth referred to as I.Q.

Although data on family resemblance for I.Q. are old and flawed, they have stimulated recent advances in path analysis. Rice et al. (1980) have shown that the evidence is consistent with a lower heritability than was previously inferred. Their argument depends on recognition of determinacy in a subset of the data, separation of paternal and maternal correlations for indices, novel treatment of SES as an index of I.Q., and different assumptions about the nature of assortative mating. By application to an extended data set of the generalized assortative mating model (Rao et al. 1979a), called mixed homogamy, we here confirm the general results of Rice et al. (1980) and examine the nature of assortative mating for I.Q.

[^0]
BACKGROUND

Correlational analysis of family resemblance has passed through two stages, which Haldane (1964) called the Halieutic (from Greek halieutes, a Fisher) and the Tectonic (from Greek tekton, a Wright). Both were characterized by use of pre-existing data collected for other purposes and by reliance of hand calculation, rather than a computer program. The Halieutic was exploratory, following the

Fig. 1. Wright's interpretation of Burks' data.
brilliant synthesis of biometrical and Mendelian genetics by Fisher (1918). His interest was to show that familial correlations may be consistent with Mendelian expectations. For lack of experimental data he chose observations of Pearson \& Lee (1903) as an illustration of this principle, without questioning their assumption that familial environment was negligible.

The Tectonic school tried seriously to model family environment, but was plagued by statistical indeterminacy. Wright (1931) fitted the path diagram of Fig. 1 to I.Q. data of Burks. His treatment was sophisticated in taking parents' I.Q. and environment as joint causes of child's environment, but much simplified in assuming that a score for material and cultural advantages of the home is a perfect measure of child'senvironment. Therefore hisestimate of genetic heritability for children, $h^{2}=0.71^{2}=0.50$, is biased upward. We shall see that his estimate for adults, $h^{2}=0.55^{2}=0.30$, is remarkably accurate.

The two classical stages were dominated by single individuals. By contrast the current phase is synarchic (from Greek synarchia, joint rule). We take tests of hypotheses from Fisher and path analysis from Wright. The phenotype is jointly determined by genes, family environment, and random environment. Correlation of marital phenotypes is jointly determined by phenotypic and social homogamy. Environment is estimated by an imperfect index, as described later. An investigator is free to pursue two strategies: analysis of familial correlations on multiple
relationships, testing that they do not involve unique parameters: and analysis of phenotype and index, testing a model which specifies their joint determination. Here we will investigate both strategies for the analysis of I.Q. data.

AMERICAN I.Q.

Rao \& Morton (1978) compiled 65 estimates of 16 relevant correlations in samples which appeared representative of the predominantly white, non-farm American population. Here we separate dizygous twins from other sibs, distinguish

Table 1. Heterogeneity χ^{2} among multiple estimates

Relation	r	N	χ^{2}	b.F.
Marital phenotypes	0.5126	1118	17.85	7
Parent-child	0.4847	1310	6.23	4
Sibs	$0 \cdot 5132$	2261	32.04	8
Ego as child and adult	0.8300	40	0	0
Child's phenotype with self index	$0 \cdot 3046$	4717	10.21	3
Adult's phenotype with self index	0.3480	887	0	0
Father's phenotype with child's index	0.5709	1272	10-47	3
Marital indices	$0 \cdot 2260$	1165	0	0
Father-child indices	$0 \cdot 3486$	16267	16.49	4
Mother-child indices	$0 \cdot 2600$	1165	0	0
Foster sibs together	0.3622	421	$9 \cdot 10$	5
Natural-adopted sibs	$0 \cdot 2835$	228	$2 \cdot 07$	3
Sibs apart	0.2500	125	0	0
Parent and child adopted out	$0 \cdot 4100$	63	0	0
Foster parent-child	0.2285	1181	$10 \cdot 49$	5
Phenotype and index of a foster child	0.2862	774	$8 \cdot 34$	2
$M Z$ twins together	0.8427	421	$11 \cdot 25$	2
Adult $M Z$ twins apart	0.6900	19	0	0
$D Z$ twins together	0.5632	206	0.71	1
Parents as children	$0 \cdot 3300$	1016	0	0
Child and parent as child	$0 \cdot 4400$	2032	0	0
Index of child and phentoype of father as child	$0 \cdot 3630$	4386	0	0
Total				
Only phenotypes			89.74	35
Including indices			45.51	12
All data			$135 \cdot 25$	47

father-child and mother-child correlations for indices, and add 4 additional correlations as described below, generating 69 estimates of correlations on 22 types of relationships:
(a) Childhood and adulthood IQs of the same person, $r=0.83, N=40$ (Bayley, 1949).
(b) Childhood I.Q.'s of parents, $r=0.33, N=1016$ (Higgins, Reed \& Reed, 1962).
(c) I.Q. of a child and the childhood I.Q. of a parent, $r=0 \cdot 44, N=2032$ (Higgins et al. 1962).
(d) Index of a child and childhood I.Q. of father , $r=0.363, N=4386$ (Duncan, Featherman \& Duncan, 1972).

There is clear heterogeneity among estimates of the same correlations, especially with indices (Table 1). This is not surprising, since there was some variation in the measures of I.Q. (mostly Stanford-Binet or Wechsler), and of the index (mostly the Duncan occupational scale), and correlations are as spatiotemporally limited as gene frequencies. Total heterogeneity among multiple estimates is divided into two parts: one dealing with the 14 phenotype correlations ($\chi_{35}^{2}=89 \cdot 745$), and the other 8 involving indices ($\chi_{12}^{2}=45.504$), both of which are highly significant. To accommodate significant heterogeneity as well as possible, we scale the sample sizes and take the new 'scaled sample sizes' as $n=N / V$, where V is the ratio of heterogeneity χ^{2} to its degrees of freedom. As shown by McGue, Gottesman \& Rao (1981), the expected value of V can be approximated by $1+\sigma_{h}^{2}$, where σ_{h}^{2} denotes heterogeneity variance among multiple studies. Also, under significant heterogeneity, the variance of a pooled z-transformation is given by $\left(1+\sigma_{n}^{2}\right) / N$, and not $1 / N$ (McGue et al. 1981). Therefore, we take the estimated variance of a pooled z-transformation as $V / N=1 / n$, which gives $n=N / V$ as done here. For these data, $V=89 \cdot 745 / 35=2 \cdot 564$ for phenotypic correlations, and $V=45 \cdot 504 / 12=$ 3.792 for correlations involving indices. Sample sizes are scaled separately for the two types.

THE MODEL

Original development of mixed homogamy (Morton.\& Rao, 1979; Rao et al. $1979 b$) is refined in terms of a copath which is designated by a headless bar (Cloninger, 1980). The revised path model, as appropriate for I.Q., is shown in Fig. 2 where phenotypic homogamy is treated in terms of a copath (p) which can be traced in either direction in deriving expected correlations, and social homogamy is represented by a simple correlation between parental environments (u). Indices are most useful when they are merely estimates of the environment, as has been validated for physiological phenotypes by nonsignificant goodness of fit tests (Rao et al. 1979b; Morton et al. 1980; Gulbrandsen et al. 1979; Krieger et al. 1980). Adopting father's occupation on the Duncan scale as index for child's I.Q. is much more questionable (Wright, 1931; Goldberger, 1978, and Rice et al. 1980). Following Rice et al. (1980), we therefore introduce a path j from father's I.Q. to his occupation as an index for his children. Apart from this new path shown in Fig. 2, and another parameter designating environmental effect unique to $M Z$ twins reared together (t), the model is given in Rao et al. (1972a). All the 12 relevant parameters are defined in Table 2. Statistical analysis is based on the overall log-likelihood for m pooled correlations.

$$
\begin{aligned}
\ln L & =-\chi^{2} / 2+\text { constant } \\
\chi^{2} & =\sum_{i=1}^{m} n_{i}\left(z_{i}-\bar{z}_{i}\right)^{2}
\end{aligned}
$$

Where, n_{i} is the total scaled sample size for the $i^{\text {th }}$ correlation, z_{i} is the z-transform

Fig. 2. Mixed homogamy model for American I.Q. Variables P, G, C, I, B denote phenotype, genotype, transmissible environment, index, and non-transmitted sibling common environments. Subscripts F, M, 1, 2 denote father, mother and two children. See Table 2 for definition of the parameters. For simplicity only the index of the first child is shown.

Table 2. Parameters of the path model
Symbol
Definition

General	
h	Eff
$h z$	Effect of genotype on adult's phenotype
c	Effect of child's indexed environment on the child's phenotype
cy	Effect of adult's indexed environment on the adult's phenotype
p	Primary correlation between parental phenotypes, not due to secondary resemblance through social homogamy (Copath; Cloniger, 1980)
u	Correlation between parental indexed environments through social homogamy
f	Effect of parent's indexed environment on child's indexed environment
b	Effect of non-transmitted common sibship environment on child's indexed environment
i	Effect of child's indexed environment on child's index
$i v$	Effect of adult's indexed environment on adult's index
t	Effect of environment specific to $M Z$ twins reared together, which adds t^{2} to the expected correlation
$\stackrel{j}{\text { derived }}$	Effect of father's phenotype on child's index
a	Correlation between genotype and environment as a function of other parame

of the pooled sample correlation, and z_{i} is the z-transform of the corresponding expected correlation derived as a function of the path coefficients ($m \leqslant 22$).

PHENOTYPIC CORRELATIONS

We first analysed the 14 phenotypic correlations not involving indices. This analysis requires only 9 of the 12 parameters. Tests of hypotheses and estimates of parameters are summarized in Table 3. The general model fits very well ($\chi_{5}^{2}=3 \cdot 60, P>0.6$). The data can be 'explained' by either social homogamy ($\chi_{1}^{2}=4.39-3.60=0.79$) or phenotypic homogamy ($\chi_{1}^{2}=3.81-3.60=0.21$). Intergenerational differences ($\chi_{2}^{2}=4 \cdot 50-3 \cdot 60=0 \cdot 9$) and environment unique to MZ twins ($\chi_{1}^{2}=7 \cdot 16-3 \cdot 6=3 \cdot 56$) are not significant. However, both cultural inheritance $\left(\chi_{5}^{2}=71.38-3.60=67.78, P<0.0001\right)$ and genetic inheritance $\left(\chi_{2}^{2}=\right.$ $51.95-3.60=48.35, P<0.0001$) are highly significant. Nontransmitted sibling common environment (b) is also significant ($\chi_{1}^{2}=8 \cdot 42-3 \cdot 60=4.82, P<0 \cdot 03$). This analysis arrives at two alternative parsimonious models: phenotypic homogamy without intergenerational differences ($y=z=1, u=0$), and social homogamy with no intergenerational difference for genetic heritability ($z=1, p=0$). Under the phenotypic homogamy model, genetic heritability is $h^{2}=0.31$ and cultural heritability is $c^{2}=0.42$. The social homogamy model nearly reverses these heritabilities in children ($h^{2}=0.44, c^{2}=0.33$), with greater cultural heritability in adults ($c^{2} y^{2}=0 \cdot 48$). Even if heterogeneity among replicates were ignored, neither residual χ^{2} would be significant. Goodness-of-fit of both models is shown in Table 4. For phenotypic homogamy these results are in close agreement with those of Rice et al. (1980).

I.Q. AND INDICES

Here we analyse all the 22 pooled correlations on I.Q. and indices. Tests of hypotheses and estimates of parameters are summarized in Table 5. The general model in 12 parameters gives a conventionally acceptable fit, even though the scale χ^{2} value is uncomfortably large ($\chi_{10}^{2}=16.99, P>0.07$). It must be possible to improve the fit by adding other paths to the index, as done by Rice et al. 1980. However, having decided on the general model in 9 parameters for the I.Q. correlations (Table 3), our inclination was to expand such a 9 -parameter model by adding only the minimum number of interpretable paths required to make the residual χ^{2} nonsignificant. This consideration resulted in the 12 -parameter general model for I.Q. and indices. A remarkable outcome under such a model is that whereas the cultural heritability remains the same, the genetic heritability is halved compared to the general model fitted to the phenotypic correlations (Table 3). Neither social homogamy ($\chi_{1}^{2}=24.41-16.99=7.42, P<0.007$) nor phenotypic homogamy ($\chi_{1}^{2}=33.35-16.99=16.36, P<0.0001$) alone fits the data, implicating mixed homogamy. I.Q. data alone did not resolve the two models for homogamy, perhaps due to reduced power. Intergenerational differences are not significant
Table 3. Estimates and tests of hypotheses for phenotypic correlations

Scaled n											

[^1]** The likelihood ratio χ^{2} is significant at 0.01% level.
$\left(\chi_{2}^{2}=19.57-16.99=2.58, P>0.25\right)$. Environment unique to $M Z$ twins (t) is now highly significant ($\chi_{1}^{2}=29.54-16.99=12.55, P<0.0004$), consistent with the results of Rice et al. (1980). Nontransmitted sibling environment (b) is not significant ($\chi_{1}^{2}=17 \cdot 37-16.99=0.38, P>0.5$).

As inferred by Rice et al., father's I.Q. has a profound effect on the child's index ($\chi_{1}^{2}=33 \cdot 24-16.99=16 \cdot 25, P<0 \cdot 00006$). The parsimonious model of phenotypic

Table 4. Goodness of fit of the two parsimonious models to the 14 phenotypic correlations

Relation	r	$y=z=1, u=0$		$z=1, p=0$	
		ρ	χ^{2}	ρ	χ^{2}
Marital	0.513	0.511	0.00	0.482	0.72
Parent-child	$0 \cdot 485$	0.477	0.06	0.476	0.07
Sibs	0.513	0.525	0.23	0.532	0.60
Ego as child and adult	0.830	$0 \cdot 807^{4}$	0.07	0.839	0.01
Foster sibs together	0.362	$0 \cdot 288$	$1 \cdot 15$	$0 \cdot 313$	0.50
Natural-adopted sibs	0.283	0.315	$0 \cdot 10$	$0 \cdot 313$	$0 \cdot 10$
Sibs apart	$0 \cdot 250$	$0 \cdot 200$	$0 \cdot 13$	$0 \cdot 219$	0.05
Parent-child adopted out	0.410	0.272	0.60	$0 \cdot 219$	$1 \cdot 12$
Foster parent-child	0.228	$0 \cdot 223$	0.02	0.257	$0 \cdot 42$
$M Z$ twins together	0.843	0.842	0.00	0.831	0.24
Adult $M Z$ twins apart	0.690	0.334	1.85	0.438	$1 \cdot 06$
$D Z$ twins together	0.563	0.525	0.24	0.532	$0 \cdot 16$
Parents as children	0.330	$0 \cdot 333$	0.01	0.334	$0 \cdot 01$
Child and parent as child	0.440	$0 \cdot 445$	0.04	$0 \cdot 433$	0.06
Totals			$4 \cdot 50$		$5 \cdot 12$

homogamy without intergenerational differences ($y=z=1, u=0$) does not fit $\left(\chi_{3}^{2}=34 \cdot 10-16.99=17 \cdot 11, P<0.0007\right)$. The parameter estimates are remarkably similar to those of column C, table II of Rice et al. (1980).

A special case of our present model that corresponds to the social homogamy model of Rao \& Morton (1978), given by $j=t=p=0$, does not fit the data ($\chi_{3}^{2}=39.05-16.99=22.06, P<0.00007$). Parameter estimates obtained under this unacceptable model are in close agreement with those of Rao \& Morton (1978).

It is of some incidental interest that the correlation for MZ twins reared together is inflated by common environment, measured by t^{2}. This cannot plausibly be attributed to dominance, since adding t^{2} to both $M Z$ correlations, $t^{2} / 4$ to both sibling correlations, and $t^{2} / 4$ to the $D Z$ correlation gives a poorer fit ($\chi_{10}^{2}=24 \cdot 22$, $P<0.008$). This result is presented in the last line of Table 5. Details of goodness-of-fit of the general model and the special case of $y=z=1$ are presented in Table 6.
American I.Q.
Table 5. Analysis of American I.Q. with indices

Hypothesis	Scaled n		h^{2}	c^{2}	t^{2}	y	z	p	u	f	b	i	v	j	$\begin{gathered} \text { Derived } \\ \text { parameter } \\ a \end{gathered}$
	χ^{2}	D.F.													
General	16.99	10	$0 \cdot 228$	0292	$0 \cdot 250$	0.573	$1 \cdot 440$	0.453	0.570	0.510	0379	$0 \cdot 201$	$2 \cdot 633$	$0 \cdot 476$	$0 \cdot 140$
$p=0$	24.41*	11	$0 \cdot 473$	0.276	0.093	$1 \cdot 329$	0.767	0	1.000	$0 \cdot 381$	$0 \cdot 647$	$0 \cdot 356$	1.269	$0 \cdot 334$	0
$u=0$	3335**	11	0.250	0.334	0.229	$0 \cdot 660$	$1 \cdot 293$	0.540	0	$0 \cdot 474$	0.535	0.147	3.880	0.511	0.170
$j=0$	33.24**	11	0.511	0.176	$0 \cdot 121$	1510	$0 \cdot 804$	0.145	0.935	$0 \cdot 500$	0.000	0.747	$0 \cdot 618$	0	0.059
$y=z=1$	19.59	12	$0 \cdot 344$	0.260	$0 \cdot 191$	1	1	0.310	0.740	$0 \cdot 422$	0.589	0.252	1.908	$0 \cdot 424$	0.079
$y=z=1, u=0$	34.10**	13	0302	0.248	0.198	1	1	0.538	0	$0 \cdot 469$	0.671	0.183	2-699	$0 \cdot 485$	$0 \cdot 182$
$j_{1}=t=p=0$	39.05**	13	0.628	0.191	0	1.619	0.674	0	1.000	0.500	$0 \cdot 000$	0.764	0.592	0	0
$b=0$	17.37	11	$0 \cdot 209$	0.285	0.267	0.506	1.556	0.465	0.587	0.549	0	0.198	$2 \cdot 607$	$0 \cdot 474$	0.166
$y=z=1, b=0$	30.34*	13	$0 \cdot 346$	0.175	$0 \cdot 217$			0.434	0.394	0.573	0	$0 \cdot 294$	$1 \cdot 483$	$0 \cdot 381$	0.215
$t=0$	29.54**	11	$0 \cdot 601$	0.218	0	$1 \cdot 492$.	0.684	0.032	0.984	$0 \cdot 372$	0.668	$0 \cdot 397$	1.017	$0 \cdot 342$	$0 \cdot 007$
General with dominance \dagger	$24 \cdot 22$	10	$0 \cdot 409$	0.212	$0 \cdot 186$	$1 \cdot 279$	$0 \cdot 856$	$0 \cdot 234$	0.794	$0 \cdot 422$	0.572	0316	1.228	$0 \cdot 398$	$0 \cdot 062$
Note. The para * The likelihoo ** The likeliho \dagger For this entr	ter ' a ' is atio χ^{2} is ratio χ^{2} \imath^{2} corresp	uncti signif sign nds	nally d cant at icant domin	pende \% le 0.1% nee	on vel. Z-spec	ther env	rame men	ev	uated d).	om a	adrat	equat	as do	$\mathrm{e} \text { in } \mathrm{R}$	et al. (1979a)

Table 6. Goodness-of-fit of two models to correlations on I.Q. and indices

Relation	r	ρ	χ^{2}	ρ	χ^{2}
Marital	0.513	0.508	$0 \cdot 02$	$0 \cdot 503$	0.08
Parent-child	0.485	0.465	0.33	$0 \cdot 479$	0.03
Sibs	0.513	0.506	0.08	0.500	$0 \cdot 26$
Ego as child and adult	0.830	0.568	$4 \cdot 60$	0.651	$2 \cdot 63$
Child's phenotype with self index	$0 \cdot 305$	0.344	$2 \cdot 36$	$0 \cdot 343$	$2 \cdot 30$
Adult's phenotype with self index	$0 \cdot 348$	0.446	$3 \cdot 21$	0.470	$5 \cdot 07$
Father's phenotype with childs index	0.571	0.555	$0 \cdot 18$	0.542	0.60
Marital indices	0.226	0.250	0.20	0.239	0.06
Father-child indices	$0 \cdot 349$	0.337	0.73	0.333	1.26
Mother-child indices	$0 \cdot 260$	0.282	$0 \cdot 17$	$0 \cdot 305$	0.74
Foster sibs together	$0 \cdot 362$	0.315	$0 \cdot 46$	0.273	1.61
Natural-adopted sibs	$0 \cdot 283$	0.341	0.36	0.291	0.01
Sibs apart	$0 \cdot 250$	$0 \cdot 153$	0.50	$0 \cdot 202$	0.12
Parent-child adopted out	$0 \cdot 410$	0.263	0.68	$0 \cdot 247$	0.83
Foster parent-child	$0 \cdot 228$	$0 \cdot 220$	0.04	$0 \cdot 244$	0.12
Phenotype-index of foster child	$0 \cdot 286$	$0 \cdot 217$	$1 \cdot 10$	$0 \cdot 235$	0.62
$M Z$ twins together	0.843	0.843	0.00	0.843	0.00
Adult $M Z$ twins apart	0.690	0.502	0.65	$0 \cdot 361$	1.64
$D Z$ twins together	$0 \cdot 563$	0.506	0.51	$0 \cdot 500$	0.62
Parents as children	$0 \cdot 330$	0.313	$0 \cdot 14$	0.324	0.02
Child and parent as child	$0 \cdot 440$	$0 \cdot 458$	$0 \cdot 43$	$0 \cdot 446$	0.04
Index of child-phenotype of father as child	$0 \cdot 363$	$0 \cdot 375$	$0 \cdot 24$	$0 \cdot 387$	0.93
Totals		$\chi_{10}^{2}=16.99$		$\chi_{\text {I2 }}^{2}=19.59$	

Table 7. Relative variance components under most parsimonious models for phenotypic correlations

| | Phenotypic
 homogamy

 Source | Social homogamy $(z=1, p=0)$ | |
| :--- | :---: | :---: | :---: | :---: |
| | $(y=z=1, u=0)$ | Children | Adults |
| Genetic | 0.310 ± 0.050 | 0.438 ± 0.059 | 0.438 ± 0.019 |
| Cultural | 0.424 ± 0.073 | 0.334 ± 0.039 | 0.482 ± 0.035 |
| Covariance | 0.073 ± 0.012 | 0 | 0 |
| Residual | 0.193 ± 0.017 | 0.228 ± 0.019 | 0.080 ± 0.047 |
| Goodness-of-fit χ_{8}^{2} | 4.50 | 5.12 | |

Table 8. Relative variance components under mixed homogamy with indices

	General		
	Most parsimonious		
\quad Source	Children	Adults	
$(y=z=1)$			

DISCUSSION

There are several paradoxes in the data. Genetic heritability is less than cultural heritability when estimated under phenotypic homogamy, but the difference is reversed under social homogamy (Tables 7 and 8). Environment common to $M Z$ twins is suggestive but nonsignificant in phenotype data and highly significant with indices, but the converse is true for nontransmitted sibling environment. Geneenvironment covariance is small but significant for phenotopic and mixed homogamy, but nil for social homogamy. Genetic heritability is less in adults for social homogamy but greater for phenotypic homogamy, and the converse is true for cultural heritability.

Because of these unresolved differences, there is considerable uncertainty in the estimates. Acceptable models give a genetic heritability as low as 0.228 and as high as 0.438 in children, compared with a low of 0.310 and a high of 0.472 in adults. Cultural heritability may be as low as 0.096 or as high as 0.482 (Tables 7 and 8). Residual variation may be as low as 0.080 or as high as 0.408 .

Variable as they are, the estimates are strikingly consistent in implicating both genetic and cultural inheritance, with no clear preponderance of one over the other. There are no grounds for a strongly hereditarian or environmentalist position. Thus the conclusions as well as the methods are synarchic.

Rice et al. fitted a more complicated eclectic model which they emphasized was descriptive rather than causal. They used the raw χ^{2} test, without allowance for highly significant heterogeneity among estimates of the same correlation, and obtained two negative paths, from maternal phenotype to child's index and from child's environment to the index. We prefer the alternative criterion of testing the residual variance against the variance among replicates, here represented as scaled chi-squares. The negative paths are no longer required, but the parsimonious model gives estimates of the primary variance components in reasonable agreement with Rice et al. In particular, all analyses appear to rule out high genetic heritability. Of course, agreement does not signify truth. Other data or truer models may modify these conclusions, as in all science.

REFERENCES

Bayley, N. (1949). Consistency and variability in the growth of intelligence from birth to eighteen years. Journal of Genetic Psychology 75, 165-196.
Cloniger, C. R. (1980). Interpretation of intrinsic and extrinsic structural relations by path analysis: Theory and applications to assortative mating. Genetical Research 36, 133-145.
Duncan, O. D., Featherman, D. L. \& Duncan, B. (1972). Socioeconomic background and achievement. New York: Seminar Press.
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52, 399-433.
Goldberger, A. S. (1978). Pitfalls in the resolution of I.Q. inheritance. In Genetic Epidemiology (ed. N. E. Morton and C. S. Chung), pp. 195-222. New York: Academic Press.
Gulbrandsen, C. L., Morton, N. E., Rao, D. C., Rhoads, G. G. \& Kagan, A. (1979). Determinants of plasma uric acid. Human Genetics 50, 307-312.

Haldane, J. B. S. (1964). A defense of beanbag genetics. Perspectives in Biology and Medicine 7, 343-359.
Higoins, J. V., Reed, E. W. \& Reed, S. C. (1962). Intelligence and family size: a paradox resolved. Eugenics Quarterly 9, 84-90.
Krieger, H., Morton, N. E., Rao, D. C. \& Azevêdo, E. (1980). Familial determinants of blood pressure in Northeastern Brazil. Human Genetics 53, 415-418.
MgGue, M., Gottesman, I. I. \& Rao, D. C. (1981). Genetics of schizophrenia (in preparation).
Morton, N. E. \& Rao, D. C. (1979). Causal analysis of family resemblance. In The Genetics of Common Diseases: Applications to Predictive Factors in Coronary Heart Disease (ed. C. F. Sing and M. Skolnick), pp. 431-452. New York: Alan R. Liss.
Morton, N. E., Gulbrandsen, C. L., Rao, D. C., Rhoads, G. G. \& Kagan, A. (1980). Determinants of blood pressure in Japanese-American families. Human Genetics 53, 261-266.
Pearson, K. \& Lee, A. (1902-3). On the laws of inheritance in man. I. Inheritance of physical characters. Biometrika 2, 367-462.
Rao, D. C. \& Morton, N. E. (1978). I.Q. was a paradigm in genetic epidemiology. In Genetic Epidemiology (ed. N. E. Morton and C. S. Chung), pp. 145-194. New York: Academic Press.
Rao, D. C., Morton, N. E. \& Cloninger, C. R. (1979a). Path analysis under generalized assortative mating. I. Theory. Genetical Research 33, 175-188.
Rao, D. C., Morton, N. E., Gulbrandsen, C. L., Rhoads, G. G., Kagan, A. \& Yee, S. (1979b). Cultural and biological determinants of lipoprotein concentrations. Annals of Human Genetics 42, 467-477.
Rice, J., Cloninger, C. R. \& Reich, T. (1980). The analysis of behavioral traits in the presence of cultural transmission and assortative mating: Application to I.Q. and SES. Behavior Genetics 10, 73-92.
Wright, S. (1931). Statistical methods in biology. Journal of the American Statistical Association 26, 155-163.

[^0]: ${ }^{1}$ Division of Biostatistics, Washington University Medical School, Box 8067, 4566 Scott Avenue, St. Louis, MO 63110 , U.S.A. Partly supported by NIH and NIMH Grants GM 28719 and MH 31302. This work was carried out when the author was a visitor at the Population Genetics Laboratory.
 ${ }^{2}$ Population Genetics Laboratory, University of Hawaii, Honolulu, Hawaii 96822. Partly supported by NIH Grant GM 17173.
 ${ }^{3}$ University of Paris, Paris, France.

[^1]: Hypothesis
 $y=z=1$
 $=y=f=u=b=0$
 $=z=0$
 $=z=1, u=0$

 | 0 |
 | :---: |
 | 11 |
 | 2 |
 | 2 |
 | 11 |
 | N |
 | N |
 | 1 |

