ON THE PROBLEME DES MENAGES
MAX WYMAN ano LEO MOSER

Introduction. The classical probléme des ménages asks for the number of
ways of seating at a circular table #» married couples, husbands and wives
alternating, so that no husband is next to his own wife.

An outline of the history of the problem to 1946 was given by Kaplansky
and Riordan (11). They also presented a bibliography, which is augmented
and brought up to date in the bibliography of the present paper.

The first explicit solution of the problem is due to Touchard (23) and the
simplest derivation of Touchard’s formula is due to Kaplansky (9). In the
present paper a new explicit solution to the problem is obtained, via an
exponential generating function for certain numbers closely related to the
ménage numbers and introduced by Cayley (4). Although the new explicit
expression is quite complicated, it does lead to some new and deep results
concerning the ménage numbers. In particular, it is shown that the usual
asymptotic formula for these numbers can actually be used to compute the
numbers exactly.

Several other new explicit expressions for the ménage numbers are obtained
and one of these suggests a strong conjecture concerning Latin rectangles for
which some evidence is presented.

The most extensive published tables of the ménage numbers are those given
by Lucas (13). These go up to » = 25. In the present paper we present tables
which give the numbers up to #» = 65. These were computed by F. L. Miksa,
using a recursion formula of Cayley (4), and checked by means of congruences
due to Riordan (20).

1. A Generating Function. Rather than deal directly with the ménage
numbers M, many authors introduce the number U, defined by

(1.1) M, = 2 (n!) U,.

Further, Cayley (4) introduced an auxiliary sequence ¢, defined by
(1.2) U, = @n — qn-2

and showed that the g, satisfy the recurrence relation

(1.3) G =Nqur+ Guz+ (— 1) (n — 2).

If we introduce the generating function F({) by

(14) FO) = 2 gy,
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then it is easily shown that F(¢) is the solution of
(1.5) (1—f)F—2F—F=te"
F(0) = F(0) = 0,

where the ‘““dot” means differentiation with respect to ¢.
The substitution

(1.6) F=(1-20dlyx=201-1¢t
makes (1.5) take the form
(L7) Y by = (L ey = de(l = ) &7,

¥(2) =5'(2) =0,
where the prime denotes differentiation with respect to x. The homogeneous
equation is well known and the complementary function can be expressed in
terms of the modified Bessel functions as

(1.8) A Ii(x) + BK; (x),

where A4, B are constants.
In order to determine a particular integral P(x) of (1.7), we assume a series
solution of the form

(1.9) PE) = an

Substituting into (1.7) we immediately are led to

(1.10) ag = € /16, a4 = 0,
400, (n + D(n + 2) — aops = € (1 — n) /2" !

This recurrence relation is easily solved and our particular solution can be put
into the form

(L11) P(x) = 8_1[11(30) — et 2 i bn (%x)2"+1:|,
n=1

where

by = < s‘; s!>/n!(n + !,

f e’ 2'dz,
0
we find

(1.12) P(x) = e_l[Il(x) — 1y 42 f: F(x, z)dz],

where F(x,2) = z ¢~ (I1(x) — 2 I, (x 27%))/(1 — 2).
If we introduce the principal value of the integral at z = 1 we can rearrange
the terms so that

Replacing s! by

https://doi.org/10.4153/CJM-1958-045-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1958-045-6

470 MAX WYMAN AND LEO MOSER

(1.13) P(x) = e"l[L L(x) — b &t 4 2 f: Gl, z)dz} ,

where

(1.14) L=2f:°lejzdz—1, G(x,z)=zlljz£—1(l@.
Thus the general solution of (1.7) must be of the form

(L15) y = 4 I (5) + BKy(x) + P(x),

where the constants 4, B must be chosen to satisfy y(2) = 4'(2) = 0.

The analysis so far is straight-forward and it seems likely that it has been
carried thus far before. The major difficulty is in the evaluation of the con-
stants 4 and B. In view of the complexity of the functions involved it is,
indeed, remarkable that these constants can be evaluated in a tractable form.
The evaluation of the constants is given in the next section.

2. Evaluation of the constants. If fi(x), f:(x) denote two functions of x
we introduce the usual Wronskian notation W(fy, f2) by
(2.1) W(fy fo) = fifd — fofY.

In order to satisfy the boundary conditions y(2) = 3'(2) = 0 we have
AILi(2)+ BKi(2)+P2)=0

(2.2) A I72) + BK/(2) + P'(2) = 0.
Since it is well known that W (7,(2), K1(2)) = — % we have
(2.3) A4 =2W(P(?2),K:(2)), B=2W(I(2),PQ2)).

We evaluate these Wronskians, by the usual procedure, from the differential
equations satisfied by P(x) and I;(x). These differential equations are

(24) xP"4+ P — (x+4HP=3"1— ") exp (6" — 1),
@25 xIV+I—(x4+xHI=0.

We multiply (2.4) by I, and (2.5) by P. By subtraction of the resulting
equations and integration from x = 0 to x = 2 we obtain

2
(2.6) 2W(I1(2), P(2)) = ¢t f x*(1 — ix%) & Ih(x) dx.
0
Hence
2
2.7 B= %e_l‘j; (1 — 1x%) &/ I (x) dx,

and similarly

2
(2.8) A=— %e_lf x*(1 — eh) et Ky (x) dx.
0
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In order to evaluate (2.7) we write (2.5) in the form
(2.9) Y4+ (') =1, =0.

Multiplying (2.9) by exp(x2?/4) and integrating from 0 to 2 we can show, by
integrating by parts, that

(2.10) fo EM A =D Lix)de =1 — e I}(2) + L e I,(2).

Similarly by multiplying the differential equation by x2exp (x?/4) and repeating
the process we find

2
(2.11) f & 4 1Y) Lix)de = 6 ¢ 1,(2) — 4 e I4(2).
0

Multiplying (2.10) by eight and subtracting (2.11) we obtain

2 2
(2.12) f & — 1) Ii(x)dx = 8 — de I}(2) — 2¢ I,(2) + sf ¢ I, (x)dx
0 0

From the known recurrence relations of the modified Bessel functions we
have

(2.13) 21y (2) + Ii(2) = 2 I(2).
Hence

2 - 2
(2.14) f & (" — ') Ii(x) de = 8 — 4 e I(2) + 8 f ¢ I, (x) dx.
0 0
Let us now consider the integral
2
J= f & I (%) dx.
0

The substitution ¥ = 24 transforms J into

1
(2.15) J = f e I,(2 u}) uidu
0

3 R 1 ! U n
3 I=—n+4+nr—1)...(—D"e+ (= 1)"'nl
n=0 nl(n + 1)!
el[1(2) — [,(2) + I;(2) ... 1+ e — 1

=e i (= D)"™L@Q) + et —1.
n=1

However, from the generating function for I,(x) we can prove that

(2.16) ¢ = I)@2) + 2 i‘l (= 1" L(2).
Thus
(2.17) J=1¢74 Lelp(2) — 1
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and, from (2.14),
2

(2.18) f M (xF — Lx*) I(x) dx = 4¢
0

Finally from (2.7), (2.18) we have that the constant B is given by
(2.19) B =2¢"

The evaluation of the constant 4 can also be carried out with the help of
the integral representation.

(2.20) 2K, @ut) uwt = f: exp(— uz — 2 V)dz.

The final result is that

(2.21) A4 =e¢'+ Qe_lj;m e /(z — 1)dz.
These results imply that the desired solution of (1.7) is

(2.22) y = 26K, (x) — ¢ ket — 26—1f z'e le(x(z) )dz
o —

and that the generating function F(¢), for ¢, is given by
(2.23) F(t) =2¢°(1 — K1 (2(1 — )} — et — 2¢7F f H(z, t)dz
0

where
H@t) =ste? 1,23z — 2)1)/(1 — 2)(1 — ph.

The modified Bessel functions satisfy the well known differentiation formulae

(2.24) (%)m Z—aIa(Z) = Z—a_m a+m(z),
(2.25) (ﬁ)m 27 Ky(2) = (= 1) "Kaym(2).
Hence

(2.26) g = FP(0) = 26 Kpa(2) + (— 1" 4 2(= )" J;m Mi14(2)dz,

where
Moii(2) = gD g n+1 (22%)/(1 — 2).

Since the ménage numbers U, are given by U, = ¢, — ¢.—2 we find that
(2.27) U, = 26K, (2) + 2(— 1)" + 2n(— 1)"} f M,(2)dz.
0

If we replace K, (2), I,(2 2*) by their known series expansions we can obtain
an explicit series expression for U, in terms of #. This expression is very com-
plicated. However (2.27) is a useful expression in that one can derive many of
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the known results directly without resorting to the series expression. For
example, it is readily shown from (2.27) that

(2.28) ZZ UuL,26) = e2/(1 — £) — To(2) + I.(26).

Hence, by redefining U, Ui, to be 1 and — 1 respectively we obtain Touchard’s
result (24):

(2.29) ﬁj}o U J,(2t) = /(1 — ¢).

In the next section we shall use (2.27) to derive some new results for the
ménage numbers.

3. New results. It has been shown (11) that an asymptotic expansion for
U, is given by

o 1 1
3.1) U ~e ”![1"(n—1)+2!(n-1)(n—2)"']'

By means of (2.27) we shall prove a much deeper result.
To prove this result we write (2.27) in the form

(3.2) U, =2 nK,2) + J,
where

o n/2 —z %
(3.3) Ty = 2(— 1)”{1 +n e—lf Z—L—Ilgg%—)dz}.

0 1— Z
In (3.3) we replace the first term of the bracket by means of
(3.4) 1=¢'> 1/m!

m=0
and I, (2 #) by its series expression
By dn $ A

(3.5) I,(22%) = 2 ";0 o 1

Hence J, takes the form

36) Ju=2(= l)n"’_l[ >, {(1/’”!) + ”Lw = m!(f::l— n)!dz}]'

m= 1 -2

This can be put in the form

3.7) Ju=2(— 1)”e_1{Cn L+ > -—’Zm—},

= m!(m + n)!
[s-3 e—Z
C= J; 1= Zd.z,

B8 o mt ) —n{mtn =D+ (mtn—2 ... +1)
=m+n—-Dm—nim+n—2!+m+n—3)+...+1}.

where
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It is trivial to show

(3.9) IC] < 4¢7,
and
(3.10) [nI,(2)| < e/(n — 1)L
Hence
(3.11) |Cnl,(2)] < 4/(n — 1)
Let us consider the series term of (3.7) and write

(3.12) H, = Z ——————m,(m Y

_nl=n{r =14 ...+ 1)}

= ]

(n+1)'—n(n‘+(n—1)' .+ 1)

(n+ 1)!
- bomn
+ Z > m!(m + n)!

=24+ m—3)+...+1 1
- (n — 1)! <l+n+1>

+ mZ—~2 m'(m + n)!’
If n > 7 it is easily shown that

3.13) (n—2)!+(n—3)!+...+1(1+ 1 >< 2

(n — 1)! n+1/ Sn+1
and
- bmn 2(6 - 1)

(3.14) ,;2 m!m+n)!l > n4+1 "

Hence forn > 7,

2e

(3.15) [H,| < 1

Actually (3.15) is a very crude inequality. It is, however, sufficient for our
purposes.

Combining these results we have from (3.7)

4 8

(3.16) [Jal < n—4+1 + e(n — 1)!
ifn>"7.

Hence for » > 8 we have
3.17) [Ja] < 0.45.
Let us now return to (3.2) and examine the series expression for K,(2). This
is given by
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(3.18) K,(@2) = 3 m;: (- 1)’"(nm—! m — 1)!

FPTERNS S8 (CELESVES JUESY

o m!(n + m)!

where
(319)  WE+D=1+3+d+. -0 =~
and v is Euler’s constant.

It is easily shown that

2 ¥Yn+m+1)+¥(m+ 1) e
2 ml(n + m)! S2m =11’

(3.20)
This implies

(3.21) MKy (2) = n 2_:: (=D —m— 1)

m!

+ Ra,

where the remainder satisfies |R,| < ne/(n — 1)!
Combining the results of (3.2), (3.17) and (3.21) we obtain

n—1l ¢ m _ _ |
(3.22) Uy=c'n X, e )

where for # > 8 the remainder R, is definitely less than 1.
Using the notation {x} to denote the closest integer to x, we have shown
that, forn > 8
n—1 _ m _ . 1
(3.23) U, = {e_zn > D —m 1)'}.

m=0 m!

It is easy to verify that (3.23) remains valid for 0 < » < 7. Hence we have
proved the following theorem:

THEOREM. For all values of n the ménage numbers U, are given by (3.23).

It is thus seen that the asymptotic expansion obtained in (11) is much
more than an asymptotic expansion.

In concluding this section we might remark that about half of the terms in
(3.23) are redundant in that their sum adds up to less than %. Further our

analysis also implies that

(3.24) U, = {2¢*n K,(2)}.
We shall make use of (3.24) in the next section to make an interesting
conjecture.

4. A Conjecture. The modified Bessel function K,(2) has the integral
representation

4.1) K,(2) =1 f e L.

0
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Hence (3.24) may be written

(4.2) U, = {8—2 n fw o e_t_'_ldt} .
0

The discovery of (4.2) led us to re-examine some of the known results in
Latin rectangles. The simplest problem in this class is the so-called ‘‘probléme
des rencontres.” This asks for the number of ways R, of writing a second line
of integers 1, 2, . . . #» which is discordant with a first line of integers written
in their normal order. It is well known that

4.3) R, = {e'nl} = {e-lj;m e dx}.

Next in simplicity, in this class of problems, is the so-called reduced three line
Latin rectangle problem. This asks for the number of ways P, of having two
lines of integers each of which is discordant with the first line of integers,
written in normal order. For this case it was shown by Yamamoto (26) that

(4.4) Py~ (n!)2[1+H‘(; b +f(jl(__%1>)+]

where H,(x) is a Hermite polynomial.
We have been able to prove an equivalent formula, namely

@ e [
0

Finally Erdos and Kaplansky (7) have shown that the number P,* of reduced
(n by (B + 1)), Latin rectangles is given asymptotically by

(4.6) P~ g 0D (n!)k—l[l - <§)n_1 + <%<§)2 + §<§> & — 5)) ni ]

for K < (log n)*?—¢. The validity of the same formula was proved by Yama-
moto (26) for k£ < n1#~% The structure of the formula suggests an integral
representation of the type

(4.7) Pk~ @D (n!)k—“’fomx" exp(— x — <§)x"1
+ %<§> (k—5)x"+ .. ) dx.

Formula (4.7) is, as we have seen, true for k£ = 2,3. If it were possible to prove
an integral relation of this type then the asymptotic behavior of P,* could be
determined for all values of %.

5. An exact expression for the ménage numbers. The usual explicit
expression given for the ménage numbers U, is

(5.1) U= (=10 anf—k (2" - k> (n — k).

k=0
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In this section we shall derive a second expression from Touchard’s generat-
ing function (2.9)

(.2) fjo U, L26) = e2/(1 — 1).

Touchard has remarked that (5.2) constitutes a Neumann expansion for the,
function ¢~2¢/(1 — ) in terms of the modified Bessel functions I,,(2t). However
as far as we are aware; (5.2) has never been inverted to give an explicit expres-
sion for the U,.

If we expand e~2¢/(1 — ¢) into a Maclaurin expansion of the form

—2¢

e 2 kit
(5.3) ke ;0 p
then
dr e—?l :] (_ 2)
= =L = p!
(5.4) k. [dt, 13 r! ; .

Further from the well formulae for the coefficients of a Neumann expansion,
(5.2) gives

(5.5) R

where C is any closed contour, enclosmg ¢t = 0, such that |t| < 1. O,(z) are the
so-called Neumann polynomials given explicitly by

[3nl — - 1 (1, 2m—n—1
(5.6) Oue) =1 3 Mn—m 1')- (32) .
m=0 m.
It follows immediately from (5.4), (5.5) and (5.6) that
[3n] (__ l)mn(n — — 1)’ k,,_m
6D s = mzz:o m!(n — 2m)!

If we use the umbral convention of replacing &, by k™ we obtain the neat,
mnemonic, formula

(5.8) U, = 2 T,(3k).
where 77, (k) is the Chebyshev polynomial.
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Table of Ménage Numbers, U,

36 4
37 181
38 6889
39 2 68887
40 107 62771

11
387
13579

89263
17111
66679
96926
05129

1076
34481
39021
63360
25683

68181
44161
77874
13377
32852

141
3976
15464
68204

37754
07559
31602
88757
97610

72674
23578
33823
25044
47921

33
803
20136

24412
80874
29238
79231
08266

44394
89439
21345
64510
83548

64273
95013
33907
79310
55467

15
312

6577
45051
43382
99425
19745

12770
54121
67612
29989
14983

44821
56929
03795
83282
12838

50357
36816
79975
17322
77103

264
4522
81705
57461
40021

61864
25042
81820
36462
87449

21518
35441
00144
49665
47273

25463
18585
43638
09689
24806

97412
90501
80757
96268
56797

48
592
7755
09274
48064

93914
64356
64062
89109
86712

45769
12302
37841
30706
39236

36760
26917
54828
85597
40955

33529
03293
02432
42454
55155

89388
14249
02511
42696
10498

80
579
4738
43387
39792

90741
16642
96313
34464
35783

69058
01207
24416
94665
53762

02053
24304
46955
80706
99123

81296
90045
24194
50193
31712

40175
19426
51567
55168
91633

39554
74653
45232
37331
56642
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Table of Ménage Numbers, U,.
n

41 4415 56290 19891 48194 39830 83196 99970 42707 08660 48747
42 1 85566 65097 95828 03659 83212 57515 14716 68334 59763 96848
43 79 83906 04833 63418 59137 63816 96992 08396 12446 35031 15589
44 3514 90268 88496 81285 48747 33216 99334 22942 19228 03980 73090
45 1 58254
17445 46717 35843 13657 70852 22706 45836 45728 90212 00713

46 72 83366
69590 77881 51946 38308 62111 11982 87007 50904 26641 27392

47 3424 83522
40098 53669 54471 72547 68779 40243 86115 44706 26361 30391

48 1 64468 09110
06041 87840 60152 09219 74918 57252 67810 16409 45316 09090

49 80 62507 03682
27218 60142 82965 59317 42716 23933 33754 57054 84141 72839

50 4032 96672 76936
58890 36142 10938 08808 59685 47971 75030 78168 58457 34752

51 2 05765 21900 19435
33778 81355 42153 61997 39439 63306 20885 84756 93390 60409

52 107 03985 67349 78651
61744 28069 71363 85025 44933 81813 48096 08655 89107 05410

53 5675 25075 13866 33831
27158 19299 47659 39404 93066 88177 80601 40960 60903 31861

54 . 3 06574 69734 91799 35488
42199 94397 97715 89238 83812 11946 29345 13169 39005 76112

55 168 67497 76536 19957 88857
92576 17576 87982 88650 64735 97608 01398 80030 29273 13563

56 9448 97804 17604 12841 09142
04695 41458 72821 08832 08427 22881 97653 69427 61227 49570

57 5 38766 55699 35481 92625 84146
19035 75909 00166 11666 74714 78157 33164 78496 20304 86819

58 312 58246 74716 90470 28455 64948
52151 42090 06485 17961 70756 96110 13984 56829 80382 26128

59 18447 94228 72968 63947 37917 08535
14181 37324 89815 08658 95856 70696 19067 11401 86377 75277

60 11 07199 89841 10584 13191 32048 20675
04487 31311 19751 93291 00461 34299 17114 32556 45129 57442

61 675 58267 09933 77006 40277 16176 92091
00422 09590 14676 72585 11993 77206 51822 90952 23565 78401

62 41897 56666 72062 88667 24148 39418 91007
40473 50277 33700 66678 14090 58913 27371 86013 61045 83552

63 26 40244 43295 64975 42616 59667 86983 89232
61742 01966 97316 33064 88618 71601 99260 68529 43996 56223

64 1690 18892 81029 16685 73828 37219 43143 46766
12623 19720 95291 01110 79691 33663 80938 68220 78795 03874

65 1 09889 52094 38550 08753 98369 25269 57562 74720
74686 09288 18130 98379 85654 60435 38029 33627 62308 89183

NOTE: Uy = 15825417445 . . . etc.
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