Tensor Integrals

By WILLIAM FABIAN

(Received 13th May, 1955.)

1. Introduction.

A form of integration of tensors will be introduced here, which will preserve the character of a tensor when so integrated.

Let $T_{v_1}^{u_1 \dots u_p}$ be the components of a given tensor, defined in the co-ordinate system x^r at all points of a curve l, in a space V_n of affine connection ¹ with connection coefficients L_{jk}^i . We consider the n^{p+q} differential equations

$$T_{v_1 \dots v_q}^{u_1 \dots u_p} = \frac{\delta}{\delta t} \left(X_{v_1 \dots v_q}^{u_1 \dots u_p} \right),$$

where the quantities on the right are the intrinsic derivatives ² of the components $X_{v_1 \dots v_q}^{u_1 \dots u_p}$ of a tensor with respect to a parameter *t* which defines *l*

defines l.

Definition. If these differential equations have a solution

$$X_{v_1\ldots v_q}^{u_1\ldots u_p} = Z_{v_1\ldots v_q}^{u_1\ldots u_p}$$

(the indices taking the values 1 to n), then $Z_{v_1 \cdots v_q}^{u_1 \cdots u_p}$ will be called a tensor

integral of $T_{v_1 \dots v_q}^{u_1 \dots u_p}$ along l with respect to t, and will be written $\int T_{v_1 \dots v_q}^{u_1 \dots u_p} \delta t$.

2. Properties of tensor integrals.

The quantities $Z_{v_1 \dots v_q}^{u_1 \dots u_p}$ transform as components of a tensor and

¹ Eisenhart, Non-Riemannian Geometry (1927), chapter I.

² These intrinsic derivatives must not be confused with ordinary differential coefficients. For definitions see Eisenhart, *op. cit.*, chapter I. All quantities used in this paper are real.

WILLIAM FABIAN

represent therefore a tensor which has the same transformation coefficients as the tensor $T_{v_1 \dots v_q}^{u_1 \dots u_p}$.

The tensor integral $\int T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} \delta t$, if it exists, represents therefore the components of a tensor of the same type and order as the tensor $T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$.

From theorems on differential equations 1 we can deduce immediately the following two theorems:—

THEOREM 1. If the quantities dx^r/dt , the coefficients of the connection of the space and the components $T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$ of a tensor in the co-ordinate system x^r are continuous functions of the parameter t which defines a curve l, then a tensor integral $\int T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} \delta t$ exists, representing components of a tensor which are continuous along l.

THEOREM 2. If the co-ordinates x^r , the coefficients of the connection of the space and the components $T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$ of a tensor in this co-ordinate system are analytic functions of the parameter t which defines a curve l, then a tensor integral $\int T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} \delta t$ exists as a set of analytic functions of t along l.

3. Types of tensor integrals.

Definition. Quantities $P_{v_1 \dots v_q}^{u_1 \dots u_p}$ satisfying the equations

$$\frac{\delta}{\delta t} \left(X_{v_1 \dots v_q}^{u_1 \dots u_p} \right) = 0 \tag{1}$$

will be said to be the components of tensors parallel with respect to l such that any one of these tensors may be obtained from any other by parallel displacement along this curve.

Hence, if $X_{v_1 \dots v_q}^{u_1 \dots u_p} = A_{v_1 \dots v_q}^{u_1 \dots v_p}$ be a *particular* solution of the equations

$$T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} = \frac{\delta}{\delta t} \left(X_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} \right), \tag{2}$$

146

¹ Goursat, Mathematical Analysis, translated by Hedrick, vol. II (1916).

then, by (1), the complete solution of equations (2) is given by

$$X_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} = A_{v_1,\ldots,v_q}^{u_1,\ldots,u_p} - P_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}.$$

(a) Thus we obtain the theorem :---

THEOREM 3. Under the conditions of either Theorem 1 or Theorem 2, all tensor integrals of $T_{v_1 \dots v_q}^{u_1 \dots u_v}$ with respect to t are given by

$$\int T_{v_1\,\ldots,v_q}^{u_1\,\ldots,u_p}\,\delta t=A_{v_1\,\ldots,v_q}^{u_1\,\ldots,u_p}-P_{v_1\,\ldots,v_q}^{u_1\,\ldots,u_p},$$

where $A_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$ form a particular tensor integral of the given tensor with respect to t, and $P_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$ are the components of tensors obtained by parallel displacement along l of an arbitrary initial tensor.

(b) Under the conditions of Theorem 3, we define the tensor integral of $T_{v_1,\ldots,v_q}^{u_1,\ldots,u_p}$ along l between the limits t_0 and t_1 by

 $\int_{t_0}^{t_1} T \frac{u_1 \dots u_p}{v_1 \dots v_q} \, \delta t = \left(A_{v_1 \dots v_q}^{u_1 \dots u_p} \right)_{t_1} - \left(P_{v_1 \dots v_q}^{u_1 \dots u_p} \right)_{t_1} \,,$

where $\begin{pmatrix} A_{v_1}^{u_1} \cdots u_p \\ v_1 \cdots v_q \end{pmatrix}_{t_1}$ are the components of the tensor $A_{v_1}^{u_1} \cdots u_p$ at a point t_1 on l, and $\begin{pmatrix} P_{v_1}^{u_1} \cdots u_p \\ v_1 \cdots v_q \end{pmatrix}_{t_1}$ are the components of a tensor at the same point t_1 obtained by parallel displacement of the tensor $\begin{pmatrix} A_{v_1}^{u_1} \cdots u_p \\ v_1 \cdots v_q \end{pmatrix}_{t_0}$ along l from the point t_0 to t_1 .

(c) The tensor integral of a tensor of order zero is the ordinary integral of the function representing this tensor.

4. Tensor integration by parts.

From the definition and properties of tensor integrals (stated in sections 1 and 2) it follows at once that tensor integration with respect to a parameter defining a curve and intrinsic differentiation with respect to this parameter are inverse operations. **THEOREM 4.** Let the quantities dx^r/dt and the coefficients of the connection of the space be continuous along a curve l defined by the parameter t.

Let the components U of a tensor in the co-ordinate system x^r have continuous intrinsic derivatives $\delta U/\delta t$ along l, and let the components W of another tensor in this co-ordinate system be continuous along l.

Then

$$\int_{t_0}^{t_1} UW \,\delta t = \left(U \int W \delta t \right)_{t_1} - \left(P \right)_{t_1} - \int_{t_0}^{t_1} \left[\frac{\delta U}{\delta t} \int W \delta t \right] \delta t,$$

where $(P)_{t_1}$ are the components of a tensor at the point t_1 obtained by parallel displacement of the tensor $(U \int W \delta t)_{t_0}$ along l from the point t_0 to t_1 .

Proof. Put $\int W \delta t = M$.

We have

$$\frac{\delta}{\delta t} \left(U M \right) = U \frac{\delta M}{\delta t} + M \frac{\delta U}{\delta t}$$

Hence

$$\int_{t_0}^{t_1} \frac{\delta}{\delta t} \Big(UM \Big) \delta t = \int_{t_0}^{t_1} U \frac{\delta M}{\delta t} \, \delta t + \int_{t_0}^{t_1} M \frac{\delta U}{\delta t} \, \delta t,$$

that is,

$$\left(UM\right)_{t_1} - \left(P\right)_{t_1} = \int_{t_0}^{t_1} U \frac{\delta M}{\delta t} \,\delta t + \int_{t_0}^{t_1} M \,\frac{\delta U}{\delta t} \,\delta t.$$

The conclusion follows.

5. The mth tensor integral of a tensor.

THEOREM 5. Let the quantities dx^r/dt and the coefficients of the connection of the space be continuous along a curve l defined by the parameter t.

If the components W of a tensor in the co-ordinate system x^{τ} are continuous along l, then, for all positive integers m, the mth tensor integral of W with respect to t between t_0 and z is given by

$$\frac{1}{(m-1)!} \int_{t_0}^{z} (z-t)^{m-1} W \delta t.$$

Proof. $(z-t)^{m-1}$ is a tensor of order zero. Applying Theorem 4, we obtain

https://doi.org/10.1017/S0013091500014267 Published online by Cambridge University Press

$$\begin{aligned} &\frac{1}{(m-1)!} \int_{t_0}^{z} (z-1)^{m-1} W \delta t \\ &= \left(\frac{(z-t)^{m-1}}{(m-1)!} \int_{t_0}^{t} W \delta t \right)_{z} - (P)_{z} + \int_{t_0}^{z} \left[\frac{(z-t)^{m-2}}{(m-2)!} \int_{t_0}^{t} W \delta t \right] \delta t \\ &= \frac{1}{(m-2)!} \int_{t_0}^{z} \left[(z-t)^{m-2} \int_{t_0}^{t} W \delta t \right] \delta t, \end{aligned}$$

since the components $(P)_z$ belong to a tensor obtained by parallel displacement of a zero tensor and are therefore zero for all values of the indices.

Continuing this process of tensor integration by parts, we obtain the conclusion.

6. Fractional tensor integrals and intrinsic derivatives.¹

Now let *m* have any real value, but let the conditions of Theorem 5 be otherwise satisfied. Then we define the m^{th} tensor integral, or the $(-m)^{th}$ intrinsic derivative, of *W* with respect to *z* by ²

$$\left(\frac{\delta}{\delta z}\right)^{-m}W = \frac{1}{\Gamma(m+c)} \left(\frac{\delta}{\delta z}\right)^{c} \int_{t}^{z} (z-t)^{m+c-1} W \delta t,$$

where c is the least integer greater than or equal to zero such that $m + c \ge 1$.

Since tensor integration and intrinsic differentiation do not alter the type and order of a tensor, and $(z-t)^{m+c-1}$ is a tensor of order zero, it follows that, for any real value of m, the mth tensor integral $\left(\frac{\delta}{\delta z}\right)^{-m}W$ is a tensor of the same type and order as the tensor W.

7. Tensor expansions.³

THEOREM 6. Let the quantities dx^r/dt and the coefficients of the connection of the space be continuous along a curve l defined by the parameter t. Let the derivatives $\delta^m T_{v_1 \dots v_q}^{u_1 \dots u_p} / \delta^{tm}$ of the components $T_{v_1 \dots v_q}^{u_1 \dots u_p}$ of

¹ See my paper in Phil. Mag. (7), XX (1935), 781-789.

² The gamma function $\Gamma(m + c)$ is not to be confused with the Christoffel symbols.

³ These expansions correspond to the Taylor series for ordinary functions.

WILLIAM FABIAN

a tensor in the co-ordinate system x^r be continuous along l for all positive and zero integers m. Then, in the interval of convergence,

$$\left(T_{v_{1}\cdots v_{q}}^{u_{1}\cdots u_{p}}\right)_{z} = \sum_{m=0}^{\infty} \frac{(z-t_{0})^{m}}{m!} \left(U_{v_{1}\cdots v_{q}}^{u_{1}\cdots u_{p}}\right)_{z},$$

where $\binom{(m)}{v_1} U_{v_1}^{u_1 \dots u_p}_{v_1 \dots v_q}$ are the components of a tensor obtained by parallel

displacement of the tensor $\begin{pmatrix} \delta^m T^{u_1 \cdots u_p} \\ \frac{1}{\delta t^m} \end{pmatrix}_{t_0}^t$ along l from t_0 to z.

Proof. Write T for $T_{v_1...v_q}^{u_1...u_p}$, and apply the process of tensor

integration by parts of Theorem 4 to the tensor integral $\int_{t_0}^{t} 1T \delta t$. Since 1 is a tensor of order zero (so that its tensor integral is its ordinary integral), we have, by Theorem 4,

$$\int_{t_0}^z 1T\delta t = (-(z-t)T)_z - (P)_z + \int_{t_0}^z (z-t)\frac{\delta T}{\delta t}\delta t$$
$$= -(P)_z + \int_{t_0}^z (z-t)\frac{\delta T}{\delta t}\delta t, \qquad (1)$$

where $(P)_z$ is the tensor at the point z obtained by parallel displacement of the tensor $(-(z-t)T)_{t_0}$ along l from t_0 to z.

We have also
$$\frac{\delta P}{\delta t} = 0$$

and $\frac{\delta}{\delta t} ({}^{(0)} U) = 0, \int$ (2)

where ⁽⁰⁾ U stands for ⁽⁰⁾ $U_{v_{1}\cdots v_{q}}^{u_{1}\cdots u_{p}}$

At the point
$$t = t_0$$
,

$$P = (-(z - t) T)_{t_0} = -(z - t_0) ({}^{(0)} U)_{t_0}.$$
(3)

By (2) and (3), $P = -(z - t_0) (^{(0)}U)$ is a solution of $\delta P/\delta t = 0$. Hence by (1) we have

$$\int_{t_0}^{z} T\delta t = (z - t_0) (\ ^{0)}U)_z + \int_{t_0}^{z} (z - t) \frac{\delta T}{\delta t} \delta t$$

https://doi.org/10.1017/S0013091500014267 Published online by Cambridge University Press

$$= (z - t_0) ({}^{(0)}U)_z + \ldots + \frac{(z - t_0)^m}{m!} ({}^{(m-1)}U)_z + \ldots$$
$$\ldots + \int_{t_0}^z \frac{(z - t)^m}{m!} \frac{\delta^m T}{\delta t^m} \delta t$$

on continuing this tensor integration by parts, where (m-1)U stands for $(m-1)U_{v_{1}}^{u_{1}\cdots u_{p}}$. Hence $(T)_{z} \equiv \frac{\delta}{2\pi} \int_{0}^{z} T \delta t$

$$= \sum_{n=1}^{m} \frac{(z-t_0)^{n-1}}{(n-1)!} \ (^{(n-1)}U)_z + \frac{\delta}{\delta z} \int_{t_0}^{z} \frac{(z-t)^m}{m!} \frac{\delta^m T}{\delta t^m} \delta t.$$

This gives the required series, which converges if

$$\frac{\delta}{\delta z} \int_{t_0}^{z} \frac{(z-t)^m}{m!} \frac{\delta^m T}{\delta t^m} \, \delta t \to 0$$

when $m \to \infty$.

14 GROSVENOR AVENUE. CANONBURY, LONDON, N.5.