# Tensor Integrals 

By William Fabian<br>(Received 13th May, 1955.)<br>1. Introduction.

A form of integration of tensors will be introduced here, which will preserve the character of a tensor when so integrated.

Let $T_{v_{1}}^{u_{1} \ldots v_{q}}$ be the components of a given tensor, defined in the co-ordinate system $x^{r}$ at all points of a curve $l$, in a space $V_{n}$ of affine connection ${ }^{1}$ with connection coefficients $L_{j k}^{i}$. We consider the $n^{p+q}$ differential equations

$$
T_{v_{1} \cdots v_{q}}^{u_{1} \ldots u_{p}}=\frac{\delta}{\delta t}\left(X_{v_{1} \cdots v_{q}}^{u_{1} \ldots u_{p}}\right)
$$

where the quantities on the right are the intrinsic derivatives ${ }^{2}$ of the components $X_{v_{1} \ldots v_{q}}^{u_{1} \ldots u_{p}}$ of a tensor with respect to a parameter $t$ which defines $l$.

Definition. If these differential equations have a solution

$$
X_{v_{1} \ldots v_{q}}^{u_{1} \cdots u_{p}}=\mathscr{Z}_{v_{1} \ldots v_{q}}^{u_{1} \ldots u_{p}}
$$

(the indices taking the values 1 to $n$ ), then $Z_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$ will be called a tensor integral of $T_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$ along $l$ with respect to $t$, and will be written $\int T_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}} \delta t$.
2. Properties of tensor integrals.

The quantities $\mathbb{Z}_{v_{1}}^{u_{1}} \cdots{ }^{\ldots} u_{p}$ p transform as components of a tensor and

[^0]represent therefore a tensor which has the same transformation coefficients as the tensor $T_{r_{1} \cdots p_{q}}^{u_{1} \cdots u_{p}}$.

The tensor integral $\int T_{v_{1} \cdots v_{g}}^{u_{1} \cdots u_{p}} \delta t$, if it exists, represents therefore the components of a tensor of the same type and order as the tensor $T_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$.

From theorems on differential equations ${ }^{1}$ we can deduce immediately the following two theorems:-

Theorem 1. If the quantities $d x^{\gamma} / d t$, the coefficients of the connection of the space and the components $T_{r_{1} \ldots v_{q}}^{u_{1} \ldots \ldots u_{p}}$ of a tensor in the co-ordinate system $x^{r}$ are continuous funclions of the parameter $t$ which defines a curve $l$, then a tensor integral $\int T_{v_{1} \ldots v_{g}}^{u_{1} \cdots u_{p}} \delta t$ exists, representing components of a tensor which are continuous along $l$.

Theorem 2. If the co-ordinates $x^{r}$, the coefficients of the connection of the space and the components $T_{v_{1} \ldots v_{q}}^{u_{1} \cdots u_{p}}$ of a tensor in this co-ordinate system are analytic functions of the parameter $t$ which defines a curve $l$, then a tensor integral $\int T_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}} \delta t$ exists as a set of analytic functions of $t$ along $l$.

## 3. Types of tensor integrals.

Definition. Quantities $P_{t_{1} \cdots v_{g}}^{u_{1} \cdots u_{p}}$, satisfying the equations

$$
\begin{equation*}
\frac{\delta}{\delta \ell}\left(X_{v_{1} \ldots, v_{q}}^{u_{1} \ldots \ldots u_{p}}\right)=0 \tag{1}
\end{equation*}
$$

will be said to be the components of tensors parallel with respect to $l$ such that any one of these tensors may be obtained from any other by parallel displacement along this curve.

Hence, if $X_{v}^{u_{1} \cdots u_{p}}=A_{v_{1} \ldots v_{q}}^{u_{1} \ldots v_{p}}$ be a particular solution of the equations

$$
\begin{equation*}
T_{v_{1} \cdots \cdot v_{q}}^{u_{1} \cdots u_{p}}=\frac{\delta}{\delta t}\left(X_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right) \tag{2}
\end{equation*}
$$

[^1]then, by (1), the complete solution of equations (2) is given by
$$
X_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}=A_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}-P_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}} .
$$
(a) Thus we obtain the theorem:-

Theorem 3. Under the conditions of either Theorem 1 or Theorem 2, all tensor integrals of $T_{v_{1}}^{u_{1} \cdots u_{v}}$ with respect to $t$ are given by

$$
\int T_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}} \delta t=A_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}-P_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}},
$$

where $A_{v_{1} \cdots v_{q}}^{u_{1} \ldots u_{p}}$ form a particular tensor integral of the given tensor with respect to $t$, and $P_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$ are the components of tensors obtained by parallel displacement along $l$ of an arbitrary initial tensor.
(b) Under the conditions of Theorem 3, we define the tensor integral of $T_{v_{1} \ldots v_{q}}^{u_{1} \ldots u_{p}}$ along $l$ between the limits $t_{0}$ and $t_{1}$ by

$$
\int_{0}^{t_{1}} T_{v 1}^{u_{1} \cdots u_{p}} \delta t=\left(A_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right)_{t_{1}}-\left(P_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right)_{t_{1}}
$$

where $\left(A_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right)_{t_{1}}$ are the components of the tensor $A{ }_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$ at a point $t_{1}$ on $l$, and $\left(P_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right)_{t_{1}}$ are the components of a tensor at the same point $t_{1}$ obtained by parallel displacement of the tensor $\left(A_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}\right)_{t_{0}}$ along $l$ from the point $t_{0}$ to $t_{1}$.
(c) The tensor integral of a tensor of order zero is the ordinary integral of the function representing this tensor.
4. Tensor integration by parts.

From the definition and properties of tensor integrals (stated in sections 1 and 2) it follows at once that tensor integration with respect to a parameter defining a curve and intrinsic differentiation with respect to this parameter are inverse operations.

Theorem 4. Let the quantities $d x^{*} / d t$ and the coefficients of the connection of the space be continuous along a curve $l$ defined by the parameter $t$.

Let the components $U$ of a tensor in the co-ordinate system $x^{r}$ have continuous intrinsic derivatives $\delta U / \delta t$ along $l$, and let the components $W$ of another tensor in this co-ordinate system be continuous along $l$.

Then

$$
\int_{t_{0}}^{a} U W \delta t=\left(U \int W \delta t\right)_{t_{1}}-(P)_{t_{1}}-\int_{t_{0}}^{t_{1}}\left[\frac{\delta U}{\delta t} \int W \delta t\right] \delta t
$$

where $(P)_{t_{1}}$ are the components of a tensor at the point $t_{1}$ obtained by parallel displacement of the tensor $\left(U \int W \delta t\right)_{t_{0}}$ along lfrom the point $t_{0}$ to $t_{1}$.

Proof. Put $\int W \delta t=M$.
We have

$$
\begin{gathered}
\frac{\delta}{\delta t}(U M)=U \frac{\delta M}{\delta t}+M \frac{\delta U}{\delta t} \\
\int_{t_{0}}^{t_{1}} \frac{\delta}{\delta t}(U M) \delta t=\int_{t_{0}}^{t_{1}} U \frac{\delta M}{\delta t} \delta t+\int_{t_{0}}^{t_{1}} M \frac{\delta U}{\delta t} \delta t
\end{gathered}
$$

Hence
that is,

$$
(U M)_{t_{1}}-(P)_{t_{1}}=\int_{t_{0} .}^{t_{1}} U \frac{\delta M}{\delta t} \delta t+\int_{t_{0}}^{t 1} M \frac{\delta U}{\delta t} \delta t
$$

The conclusion follows.
5. The $m^{\text {th }}$ tensor integral of a tensor.

Theorem 5. Let the quantities $d x^{r} / d t$ and the coefficients of the connection of the space be continuous along a curve $l$ defined by the parameter $t$.

If the components $W$ of a tensor in the co-ordinate system $x^{r}$ are continuous along $l$, then, for all positive integers $m$, the $m^{\text {th }}$ tensor integral of $W$ with respect to $t$ between $t_{0}$ and $z$ is given by

$$
\frac{1}{(m-1)!} \int_{t_{0}}^{z}(z-t)^{m-1} W \delta t
$$

Proof. $\quad(z-t)^{m-1}$ is a tensor of order zero. Applying Theorem 4, we obtain

$$
\begin{aligned}
& \frac{1}{(m-1)!} \int_{t_{0}}^{z}(z-1)^{m-1} W \delta t \\
& =\left(\frac{(z-t)^{m-1}}{(m-1)!} \int_{t_{0}}^{t} W \delta t\right)_{z}-(P)_{z}+\int_{t_{0}}^{z}\left[\frac{(z-t)^{m-2}}{(m-2)!} \int_{t_{0}}^{t} W \delta t\right] \delta t \\
& =\frac{1}{(m-2)!} \int_{t_{0}}^{z}\left[(z-t)^{m-2} \int_{t_{0}}^{t} W \delta t\right] \delta t,
\end{aligned}
$$

since the components $(P)_{z}$ belong to a tensor obtained by parallel displacement of a zero tensor and are therefore zero for all values of the indices.

Continuing this process of tensor integration by parts, we obtain the conclusion.
6. Fractional tensor integrals and intrinsic derivatives. ${ }^{1}$

Now let $m$ have any real value, but let the conditions of Theorem 5 be otherwise satisfied. Then we define the $m^{\text {th }}$ tensor integral, or the $(-m)^{\text {th }}$ intrinsic derivative, of $W$ with respect to $z$ by ${ }^{2}$

$$
\left(\frac{\delta}{\delta z}\right)^{-m} W=\frac{1}{\Gamma(m+c)}\left(\frac{\delta}{\delta z}\right)^{c} \int_{t_{0}}^{z}(z-t)^{m+c-1} W \delta t,
$$

where $c$ is the least integer greater than or equal to zero such that $m+c \geqslant 1$.

Since tensor integration and intrinsic differentiation do not alter the type and order of a tensor, and $(z-t)^{m+c-1}$ is a tensor of order zero, it follows that, for any real value of $m$, the $m^{\text {th }}$ tensor integral $\left(\frac{\delta}{\delta z}\right)^{-m} W$ is a tensor of the same type and order as the tensor $W$.

## 7. Tensor expansions. ${ }^{3}$

Theorem 6. Let the quantities $d x^{\tau} / d t$ and the coefficients of the connection of the space be continuous along a curve $l$ defined by the parameter $t$. Let the derivatives $\delta^{m} T_{v_{1} \ldots v_{q}}^{u_{1} \cdots u_{p}} / \delta t^{m}$ of the components $T_{v_{1}}^{u_{1} \cdots u_{p}}$ of

[^2]a tensor in the co-ordinate system $x^{r}$ be continuous along lor all positive and zero integers $m$. Then, in the interval of convergence,

where $\left(\begin{array}{c}(m) \\ U_{v_{1}}^{\prime \prime} \ldots u_{p} \\ v_{1}\end{array}\right)_{z}$ are the components of a tensor obtained by parallel displacement of the tensor $\left(\frac{\delta^{m} T_{r_{1} \cdots v_{p}}^{u_{1} \cdots u_{p}}}{\delta t^{m}}\right)_{t_{0}}$ along $l$ from $t_{0}$ to $z$.

Proof. Write $T$ for $T_{v_{1} \cdots v_{q}}^{u_{1} \ldots u_{p}}$, and apply the process of tensor integration by parts of Theorem 4 to the tensor integral $\int_{t_{0}}^{z} 1 T \delta t$. Since 1 is a tensor of order zero (so that its tensor integral is its ordinary integral), we have, by Theorem 4,

$$
\begin{align*}
\int_{t_{0}}^{z} 1 T \delta t & =(-(z-t) T)_{z}-(P)_{z}+\int_{t_{0}}^{z}(z-t) \frac{\delta T}{\delta t} \delta t \\
= & -(P)_{z}+\int_{t_{0}}^{z}(z-t) \frac{\delta T}{\delta t} \delta t \tag{1}
\end{align*}
$$

where $(P)_{z}$ is the tensor at the point $z$ obtained by parallel displacement of the tensor $(-(z-t) T)_{t_{0}}$ along $l$ from $t_{0}$ to $z$.
$\left.\begin{array}{rlr}\text { We have also } & \frac{\delta P}{\delta t} & =0 \\ \text { and } & \frac{\delta}{\delta t}\left({ }^{(0)} U\right) & =0,\end{array}\right\}$
where ${ }^{(0)} U$ stands for ${ }^{(0)} U_{v_{1}}^{u_{1} \cdots u_{p}}{ }_{2}$
At the point $t=t_{0}$,

$$
\begin{equation*}
P=(-(z-t) T)_{t_{0}}=-\left(z-t_{0}\right)\left(^{(0)} U\right)_{t_{0}} \tag{3}
\end{equation*}
$$

By (2) and (3), $P=-\left(z-t_{0}\right)\left({ }^{(0)} U\right)$ is a solution of $\delta P / \delta t=0$.
Hence by (1) we have
$\int_{t_{0}}^{z} T \delta t=\left(z-t_{0}\right)\left({ }^{0} U\right)_{2}+\int_{t_{0}}^{z}(z-t) \frac{\delta T}{\delta t} \delta t$

$$
\begin{gathered}
=\left(z-t_{0}\right)\left({ }^{(0)} U\right)_{z}+\ldots+\frac{\left(z-t_{0}\right)^{m}}{m!}\left({ }^{(m-1)} U\right)_{z}+\ldots \\
\ldots \ldots+\int_{t_{0}}^{z} \frac{(z-t)^{m}}{m!} \frac{\delta^{m} T}{\delta t^{m}} \delta t
\end{gathered}
$$

on continuing this tensor integration by parts, where ${ }^{(n-1)} U$ stands for ${ }^{(m-1)} U_{v_{1} \cdots v_{q}}^{u_{1} \cdots u_{p}}$.

Hence $(T)_{z} \equiv \frac{\delta}{\delta_{1}} \int_{t_{0}}^{z} T \delta t$

$$
=\sum_{n=1}^{m} \frac{\left(z-t_{0}\right)^{n-1}}{(n-1)!}\left({ }^{(n-1)} U\right)_{z}+\frac{\delta}{\delta z} \int_{t_{0}}^{z} \frac{(z-t)^{m}}{m!} \frac{\delta^{m} T}{\delta t^{m}} \delta t
$$

This gives the required series, which converges if

$$
\frac{\delta}{\delta z} \int_{t_{0}}^{z} \frac{(z-t)^{m}}{m!} \frac{\delta^{m} T}{\delta t^{m}} \delta t \rightarrow 0
$$

when $m \rightarrow \infty$.
14 Grosvenor Avende.
Canonbury,
London, N.5.


[^0]:    ${ }^{1}$ Eisenhart, Non-Riemannian Geometry (1927), chapter I.
    ${ }^{2}$ These intrinsic derivatives must not be confused with ordinary differential coefficients. For definitions see Eisenhart, op. cit., chapter I. All quantities used in this paper are real.

[^1]:    ${ }^{1}$ Goursat, Mathematical Analysis, translated by Hedrick, vol. II (1916).

[^2]:    ' See my paper in Phil. Mag. (7), XX (1935), 781-789.
    2 The gamma function $\Gamma(m+c)$ is not to be confused with the Christoffel symbols.
    3 These expansions correspond to the Taylor series for ordinary functions.

