AN ELEMENTARY PROOF OF FEUERBACH'S THEOREM.

Then OA = OC and $\angle ACP = 90^{\circ}$. $\therefore OA = OP$.

: the circumscribing circle of $\triangle ABC$ passes through P. But $\angle P = \frac{1}{2} \angle AOC = \angle B = \text{constant.}$

 \therefore *B* lies on the fixed circle which circumscribes the fixed right-angled triangle *ACP* in which $\angle P = \text{given } \angle B$.

If $\angle B$ is obtuse (Fig. 2), B lies on the circumscribing circle of the fixed right-angled triangle ACP in which $\angle P = 180^\circ - \angle B$

(2) If in the quadrilateral ABCD the angles B and D are supplementary, D being acute (Fig. 2), then by the previous theorem B and D both lie on the fixed circle which circumscribes the fixed right-angled triangle ACP in which $\angle ACP = \angle D$.

R. F. BLADES.

An Elementary Proof of Feuerbach's Theorem.

Let *O* be the centre of the circumscribing circle of $\triangle ABC$, A_1 the middle point of *BC*, and EA_1OF the diameter at right angles to *BC*. Draw *AX* perpendicular to *BC* and produce it to meet the circle in *K*. Let *H* be the orthocentre of $\triangle ABC$; join *OH* and bisect it in *N*, the centre of the nine-point circle.

Draw OY perpendicular to and bisecting AK.

Join *EA*, which bisects $\angle BAC$ and contains the incentre *I*; draw *ID*, *NM* perpendicular to *BC*. Join *AF* and draw *AG* perpendicular to *EF*; also draw *PIQ* parallel to *BC* and meeting *EF* in *P* and *AX* in *Q*.

Then we have $AH = 2OA_1$, HK = 2HX, $AI \cdot IE = 2Rr$.

Also from similar triangles $\frac{PI}{IE} = \frac{FG}{AF}$ and $\frac{IQ}{AI} = \frac{AF}{FE}$.

Thus $\frac{PI \cdot IQ}{AI \cdot IE} = \frac{FG}{FE}$, so that $\frac{PI \cdot IQ}{2R \cdot r} = \frac{FG}{2R}$, and $PI \cdot IQ = r \cdot FG$.

Now the projection of IN on $FE = ID - NM = r - \frac{1}{2}(OA_1 + HX)$ = $r - \frac{1}{4}(AH + HK) = r - \frac{1}{2}AY$.

(11)

Hence the square of this projection = $r^2 - r \cdot A Y + \frac{1}{4}A Y^2$ = $r^2 - r \cdot GO + \frac{1}{4}A Y^2$ (1)

Again, the square of the projection of

IN on
$$BC = DM^2 = A_1M^2 - A_1D \cdot DX$$

= $\frac{1}{4}A_1X^2 - PI \cdot IQ$
= $\frac{1}{4}OY^2 - r \cdot FG$ (2)

Adding the results (1) and (2) we get $I_1 N^2 = \frac{1}{4} (A Y^2 + O Y^2) - r (FG + GO) + r^2$ $= \frac{1}{4} R^2 - r \cdot R + r^2.$

Thus $IN = \frac{1}{2}R - r$, and the theorem is proved for the incircle. The proof for an excircle proceeds on exactly similar lines.

K. J. SANJANA.

(12)