Then $O A=O C$ and $\angle A C P=90^{\circ} . \quad \therefore O A=O P$.
\therefore the circumscribing circle of $\triangle A B C$ passes through P. But $\angle P=\frac{1}{2} \angle A O C=\angle B=$ constant.
$\therefore B$ lies on the fixed circle which circumscribes the fixed right-angled triangle $A C P$ in which $\angle P=$ given $\angle B$.

If $\angle B$ is obtuse (Fig. 2), B lies on the circumscribing circle of the fixed right-angled triangle $A C P$ in which $\angle P=180^{\circ}-\angle B$
(2) If in the quadrilateral $A B C D$ the angles B and D are supplementary, D being acute (Fig. 2), then by the previous theorem B and D both lie on the fixed circle which circumscribes the fixed right-angled triangle $A C P$ in which $\angle A C P=\angle D$.

R. F. Blades.

An Elementary Proof of Feuerbach's Theorem.

Let O be the centre of the circumscribing circle of $\triangle A B C, A_{1}$ the middle point of $B C$, and $E A_{1} O F$ the diameter at right angles to $B C$. Draw $A X$ perpendicular to $B C$ and produce it to meet the circle in K. Let H be the orthocentre of $\triangle A B C$; join $O H$ and bisect it in N, the centre of the nine-point circle.

Draw $O Y$ perpendicular to and bisecting $A K$.
Join $E A$, which bisects $\angle B A C$ and contains the incentre I; draw $I D, N M$ perpendicular to $B C$. Join $A F$ and draw $A G$ perpendicular to $E F$; also draw $P I Q$ parallel to $B C$ and meeting $E F$ in P and $A X$ in Q.

Then we have $A H=2 O A_{1}, H K=2 H X, A I . I E=2 R r$.
Also from similar triangles $\frac{P I}{I E}=\frac{F G}{A F}$ and $\frac{I Q}{A I}=\frac{A F}{F E}$.
Thus $\frac{P I \cdot I Q}{A I \cdot I E}=\frac{F G}{F E}$, so that $\frac{P I \cdot I Q}{2 R \cdot r}=\frac{F G}{2 R}$, and $P I . I Q=r . F G$.
Now the projection of $I N$ on $F E=I D-N M=r-\frac{1}{2}\left(O A_{1}+H X\right)$

$$
\begin{equation*}
=r-\frac{1}{4}(A H+H K)=r-\frac{1}{2} A Y \tag{11}
\end{equation*}
$$

Hence the square of this projection $=r^{2}-r . A Y+\frac{1}{4} A Y^{2}$

$$
\begin{equation*}
=r^{2}-r \cdot G O+\frac{1}{4} A Y^{2} \tag{1}
\end{equation*}
$$

Again, the square of the projection of

$$
\begin{align*}
I N \text { on } B C & =D M^{2}=A_{1} M^{2}-A_{1} D . D X \\
& =\frac{1}{4} A_{1} X^{2}-P I \cdot I Q \\
& =\frac{1}{4} O Y^{2}-r \cdot F G \quad \ldots \ldots \ldots . . \tag{2}
\end{align*}
$$

Adding the results (1) and (2) we get

$$
\begin{aligned}
I_{1} N^{:} & =\frac{1}{4}\left(A Y^{2}+O Y^{2}\right)-r(F G+G O)+r^{2} \\
& =\frac{1}{4} R^{2}-r \cdot R+r^{2} .
\end{aligned}
$$

Thus $I N=\frac{1}{2} R-r$, and the theorem is proved for the incircle. The proof for an excircle proceeds on exactly similar lines.

> K. J. Sanjana.

