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Abstract We introduce different notions of invertibility for generalized functions in the sense of
Colombeau. Several necessary conditions for (left, right) invertibility are derived, giving rise to the
concepts of compactly asymptotic injectivity and surjectivity. We analyse the extent to which these
properties are also sufficient to guarantee the existence of a (left, right) inverse of a generalized function.
Finally, we establish several Inverse Function Theorems in this setting and study the relation to their
classical counterparts.
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1. Introduction

In the theory of generalized functions, there is a growing need for an appropriate notion
of invertibility, together with corresponding Inverse Function Theorems. Classical dis-
tribution theory does not allow us to address such concepts, since generalized functions
are modelled as continuous linear functionals on certain spaces of test functions, so a
sufficiently general notion of point values is absent in this setting. Algebras of general-
ized functions, on the other hand, model generalized functions as equivalence classes of
nets of smooth functions (see, for example, [5,6,14,26,27]). Thus, they naturally lend
themselves to a direct generalization of certain concepts from classical (smooth) analysis
in a componentwise manner.

The notion of composition of generalized functions was first introduced in [2]. This
was later extended in [19,22,24] to provide a functorial theory of manifold-valued gen-
eralized functions. This geometric approach to algebras of generalized functions soon
required adequate notions of invertibility: as a main example, we note that Lie group
analysis of differential equations in generalized functions considers group actions that
automatically induce certain one-parameter groups in generalized functions, and hence
furnish a first example of ‘generalized diffeomorphisms’ (see [8, 18, 20]). In particular,
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in [18, Definition 3.5] Konjik and Kunzinger introduce an ad hoc notion of rank for gen-
eralized functions and note that an appropriately general concept will require an Inverse
Function Theorem in this setting. More generally, flows of generalized vector fields on
differentiable manifolds are studied in [23]. Again, such flows provide examples of invert-
ible generalized functions. The assumptions made in [23, Theorems 3.1, 3.3 and 3.5]
are all global in nature. Keeping in mind the equivalence of the main classical existence
theorems (flows of ordinary differential equations, the Inverse Function Theorem and
Frobenius Theorem) this reflects the fact that we still do not have a truly local existence
result.

An independent approach to the composition and inversion of generalized functions
can be found in [3, 4], in which Aragona et al . consider invertibility in terms of the
ultrametric structure on the space of generalized numbers. Contrary to our approach,
they do not obtain local results in the usual topology on Euclidean space.

As a third main source underlining the need for Inverse Function Theorems, we mention
regularity theory in algebras of generalized functions. In [16, § 3.3] an explicit inversion
in the Colombeau algebra is carried out in the course of solving linear Cauchy problems
(see also [17]). More generally, inversion, of course, plays a central role in studying the
generalized bicharacteristic flow (see [12,13]). In [15] generalized pullbacks of Colombeau
functions are studied from a microlocal point of view. Here too the question of inversion
of generalized functions is of central importance.

Concerning applications in mathematical physics, ‘discontinuous coordinate trans-
forms’ had been applied successfully in general relativity as early as in 1968 (though on
an informal level [28]). This approach was later embedded into the Colombeau picture
and analysed further in [21]. Invertibility of the generalized coordinate transformation
in this setting is based on a global invertibility result by Gale and Nikaido [11]. Again,
at the time, no local invertibility result was available.

In summary, there is a strong need for a general local Inverse Function Theorem in the
context of algebras of generalized functions. This paper aims at closing this conceptual
gap. The results presented here, essentially, comprise [9, Chapter 3].

The (remarkable) fact that, despite many appearances in the literature (see above),
the question of local invertibility of generalized functions has not yet been settled may
be due to a large extent to the lack of a sensible notion of the range or image of a set
under a generalized function.

Let us illustrate briefly the kind of problems one runs into when attempting to develop
the notion of an inverse of a generalized function. For a classical function f : U → Rn

(where U is an open subset of Rn), the notion of f being invertible is unambiguous: f is
invertible if there exists g : f(U) → U with g ◦ f = idU , f ◦ g = idf(U). Thus, in the purely
set-theoretic setting, f is invertible if and only if it is injective. If f is, say, smooth, we may
also require g to be smooth. Considering a generalized Colombeau function u ∈ G(U)n,∗

however, the presumptive meaning of the statement ‘u is invertible’ is by no means clear:
even before starting to look for some generalized function v with v ◦ u = idU , u ◦ v = id?,

∗ In this expository section, we shall make free use of the basic notions of Colombeau theory; for
details, see § 2 or [14].
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we are confronted with the problem of what the image of U under u is supposed to
be. In practice, the generalized function u is given by some representative (uε)ε with
uε : U → Rn smooth. Yet the sets uε(U), for different values of ε, might be vastly
different from each other; they do not even need to ‘converge’ in any sense as ε → 0.

Now, the most plausible remedy certainly would consist in requiring uε(U) = uε′(U) for
all ε, ε′ (at least for some representative (uε)ε). Yet this assumption turns out to be much
too strong a restriction for important applications (see, for example, [14, § 5.3.2.] or [10])
and, moreover, it fails to lead to a well-defined notion of u(U), since every (uε + nε)ε

with (nε)ε ∈ N (U) is also a representative of u. As the following example shows, we can
have (uε + nε)(U) = (uε′ + nε′)(U) for all ε, ε′, yet (uε +nε)(U) is different from uε(U).

Example 1.1. Let U be the open interval (−1, 1) and set uε(x) := x for all ε ∈ (0, 1].
Then, for all ε, we have uε(U) = (−1, 1). Choose ñε ∈ C∞(R) with ñ′

ε � 0, ñε(±1) = ±1
and ñε = 0 on [−(1 − ε), 1 − ε]; set nε := ñε|(−1,1). Then (nε)ε ∈ N (U) and, for all ε,
(uε + nε)(U) = (−2, 2). Thus, [(uε)ε](U) is not well defined, even if only representatives
(ûε)ε are considered with ûε(U) being independent of ε.

The lower bound of the scope of an inversion theory for generalized functions should
certainly be chosen so as to allow for the applications to general relativity envisaged
in [14, § 5.3.2] and [10]. A glance at the third equation of [14, (5.45), p. 463] (involving
the Heaviside function in a non-trivial way) reveals that a sensible inversion theory should
be able to cope with, at least, generalized functions modelling jumps. As will become clear
in the following sections, this modest looking requirement already imposes considerable
technical intricacies upon us.

From the statements above it can be expected that the study of a simple one-
dimensional example of a jump function would provide a good basis for motivating the
main ideas behind the notion of invertibility introduced in § 3. Indeed, the following
paradigmatic example will be reconsidered in several places throughout the paper, in
order to illustrate quite a number of important features of the theory.

Example 1.2. Let u := [(uε)ε] ∈ G(U), with U := (−α, α), α > 0, be defined by
uε(x) := x + arctan(x/ε). Then u models a function with a jump of height π at 0.

After providing prerequisites in § 2 (in particular, the appropriate notion of compactly
bounded generalized functions will be introduced), we give definitions of left and right
invertibility, invertibility and strict invertibility in § 3, followed by a discussion of the
immediate implications. Motivated by several questions arising naturally when trying to
invert a net of smooth functions, we find several necessary conditions for (left, right)
invertibility (§ 4), giving rise to the concepts of compactly asymptotic injectivity and
surjectivity. In § 5, we analyse the extent to which the properties ‘ca-injective’ and ‘ca-
surjective’ defined in the preceding section are sufficient to guarantee the existence of
a (left, right) inverse of a generalized function. Finally, in § 6, we prove some general-
ized inverse function theorems and study their relation to the classical Inverse Function
Theorem.
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2. Notation and preliminaries

Throughout this paper, Ck(U) and D′(U) respectively denote the spaces of k-times con-
tinuously differentiable functions (k ∈ N0 ∪ {∞}) and the spaces of distributions on U

with values in K, where K can be either R or C and U is a non-empty subset of Rn for
some n ∈ N. For subsets A, B of a topological space (X, T ), the relation A ⊂⊂ B is
shorthand for the statement that A is a compact subset of the interior of B.

Our main reference for the (special) Colombeau algebra G(U) on some open subset U

of Rn is [14, Chapter 1]. Note that G(U) is denoted by Gs(U) in [14], and analogously
for related spaces. We shall use notation and results from this main source freely in the
following. This refers to G(U) itself, as well as to the embeddings σ : C∞(U) → G(U) and
ι : D′(U) → G(U). For the convenience of the reader, we explicitly recall the definition
of the spaces of moderate and negligible functions on U , as well as the very definition of
the Colombeau algebra.

Definition 2.1. Let U be an open subset of Rn. Set

E(U) := C∞(U)(0,1],

EM (U) :=
{

(uε)ε ∈ E(U)
∣∣∣ ∀K ⊂⊂ U, ∀α ∈ Nn

0 , ∃N ∈ N :

sup
x∈K

|∂αuε(x)| = O(ε−N ) as ε → 0
}

,

N (U) :=
{

(uε)ε ∈ E(U)
∣∣∣ ∀K ⊂⊂ U, ∀α ∈ Nn

0 , ∀m ∈ N :

sup
x∈K

|∂αuε(x)| = O(εm) as ε → 0
}

.

Elements of EM (U) and N (U) respectively are called moderate and negligible functions.
EM (U) is a subalgebra of E(U); N (U) is an ideal in EM (U). The special Colombeau algebra
on U is defined as

G(U) := EM (U)/N (U).

A generalized function on some open subset U of Rn with values in Rm is given as an
m-tuple (u1, . . . , um) ∈ G(U)m of generalized functions uj ∈ G(U), where j = 1, . . . , m

and the range space of uj is R. From now on, the term ‘generalized function’ will be used
exclusively in this sense.

The composition v ◦ u of two arbitrary generalized functions is not defined, even if
u ∈ G(U)m and v ∈ G(Rm)l. However, if a generalized function u is assumed to be
‘compactly bounded’ (c-bounded) into the domain of a generalized function v (see [14,
Definitions 1.2.7, 3.2.49]), the composition v ◦ u is well defined. However, before giving
the definition of c-boundedness, a certain inconsistency in [14] as to the precise meaning
of ‘c-boundedness from Ω into Ω′’ for moderate nets (uε)ε has to be dealt with.

• On the one hand, viewing Ω and Ω′ simply as open subsets of Rn and Rm, respec-
tively, Definition 1.2.7 of [14] does not require that any uε actually maps Ω into
Ω′; only the corresponding compactness condition is stipulated (Definition 2.2 (i)).
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• Alternatively, viewing Ω and Ω′ as smooth manifolds of dimensions n and m,
respectively, in the natural way, Definition 3.2.44 of [14] can also be applied, requir-
ing that, in addition, each uε actually maps Ω into Ω′.

Contrary to the statement of [14, Example 3.2.50 (i)] it seems not to be known, in
general, whether Definitions 1.2.7 and 3.2.49 in [14] lead to the same notion of c-bounded
generalized functions from Ω into Ω′. Since in the present paper we focus on range
spaces in many places, we shall include the requirement uε(Ω) ⊆ Ω′ in our definition of
c-boundedness. Moreover, this leaves the door open for an immediate generalization to
the manifold setting. Therefore, we shall adopt Definitions 3.2.44 and 3.2.49 (rather than
Definition 1.2.7) of [14] for our definition of c-boundedness.

Definition 2.2. Let U and V be open subsets of Rn and Rm, respectively. An element
(uε)ε ∈ C∞(U, V )(0,1] is called compactly bounded (c-bounded) if the following conditions
are satisfied:

(i) for every K ⊂⊂ U there exist L ⊂⊂ V and ε0 ∈ (0, 1] such that uε(K) ⊆ L for all
ε � ε0;

(ii) for every K ⊂⊂ U and every α ∈ Nm
0 there exists N ∈ N with

sup
x∈K

|∂αuj
ε(x)| = O(ε−N )

for all component functions uj
ε, j = 1, . . . , m, of uε.

The collection of c-bounded elements of C∞(U, V )(0,1] is denoted by EM [U, V ].

From V ⊆ Rm, it is immediate that EM [U, V ] can be viewed as a subset of EM (U)m

(cf. Definition 2.1). For u, v ∈ EM [U, V ] we define an equivalence relation ∼ by

u ∼ v ⇐⇒ u − v ∈ N (U)m. (2.1)

Note that in the special case at hand this definition reproduces Definition 3.2.46 of [14].
According to [14, Definition 3.2.49], we set

G[U, V ] := EM [U, V ]/∼ (2.2)

to obtain the space of c-bounded generalized functions from U into V .

Remark 2.3. By definition, EM [U, V ] consists of certain nets (uε)ε with uε ∈
C∞(U, V ). It is often convenient to deal with the (larger) set ẼM [U, V ] of all (uε)ε ∈
C∞(U, Rm)(0,1] (satisfying parts (i) and (ii) of Definition 2.2) such that uε(U) ⊆ V is
required only for ε � ε0, for some ε0 ∈ (0, 1] depending on (uε)ε. It follows from (2.1)
that G[U, V ] is not changed if EM [U, V ] is replaced by ẼM [U, V ]. We shall henceforth use
this fact tacitly.

It is immediate from (2.1) that the inclusions EM [U, V ] ⊆ ẼM [U, V ] ⊆ EM (U)m induce
an injective map jU,V : G[U, V ] → G(U)m. From now on, we shall view G[U, V ] as a subset
of G(U)m.
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In practice, we shall often have to discuss for a given (uε)ε ∈ EM (U)m (respectively,
u ∈ G(U)m) whether (uε)ε (respectively, u) can be viewed as c-bounded from U into V

for various open subsets V of Rm. Therefore, we adopt the following terminology.

Definition 2.4. Let U and V be open subsets of Rn and Rm, respectively.

(i) An element (uε)ε of EM (U)m is called c-bounded from U into V if, in fact, (uε)ε ∈
ẼM [U, V ] (cf. Remark 2.3).

(ii) An element u of G(U)m is called c-bounded from U into V if, in fact, u ∈ G[U, V ].

Proposition 2.5. Let u ∈ G(U)m be c-bounded into V and let v ∈ G(V ), with
representatives (uε)ε and (vε)ε, respectively. Then the composition

v ◦ u := [(vε ◦ uε)ε]

is a well-defined generalized function in G(U).

Since, plainly, an invertible generalized function must be capable of being composed
with its inverse, the notion of c-boundedness will play a crucial role in the following.

We call K := EM/N the ring of generalized numbers, where

EM := {(rε)ε ∈ K(0,1] | ∃N ∈ N : |rε| = O(ε−N ) as ε → 0},

N := {(rε)ε ∈ K(0,1] | ∀m ∈ N : |rε| = O(εm) as ε → 0}.

For u := [(uε)ε] ∈ G(U) and x0 ∈ U the point value of u at x0 is defined as the class of
(uε(x0))ε in K. An element r ∈ K is called strictly non-zero if there exist a representative
(rε)ε of r and an N ∈ N such that |rε| � εN for ε → 0. The (multiplicatively) invertible
elements of K are exactly those that are strictly non-zero.

On
UM := {(xε)ε ∈ U (0,1] | ∃N ∈ N : |xε| = O(ε−N ) as ε → 0}

we introduce an equivalence relation by

(xε)ε ∼ (yε)ε ⇔ ∀m ∈ N : |xε − yε| = O(εm) as ε → 0

and denote by Ũ := UM/∼ the set of generalized points. The set of compactly supported
points is

Ũc := {x̃ = [(x̃ε)ε] ∈ Ũ | ∃K ⊂⊂ U, ∃ε0 ∈ (0, 1] such that ∀ε � ε0 : xε ∈ K}.

For U = K we have K̃ = K. Thus, we have the canonical identification K̃n = K̃n = Kn.

Definition 2.6. Let u ∈ G(U) and f ∈ Ck(U) for k ∈ N0 ∪ {∞}. The generalized
function u is called Ck-associated with f (denoted by u ≈k f) if, for all α ∈ Nn

0 with
|α| � k and one (hence any) representative (uε)ε of u,

∂αuε → ∂αf

for ε → 0 uniformly on compact subsets of U .

Proposition 2.7. Let f ∈ Ck(U) for k ∈ N0 ∪{∞}. Then ι(f) is Ck-associated with f .

For a proof of the preceding result, we refer the reader to [9, Proposition 2.39].
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3. Invertibility of generalized functions

We start with a definition of invertibility of a generalized function on an open set.

Definition 3.1 (invertibility). Let U be an open subset of Rn and let u ∈ G(U)n.
Let G be an open subset of U .

(i) u is called left invertible on G if there exist v ∈ G(V )n with V an open subset of
Rn and an open set H ⊆ V such that u|G is c-bounded into H and v ◦ u|G = idG.
Then v is called a left inverse of u on G.

In shorthand, u is left invertible (on G) with left inversion data [G, V, v, H].

(ii) u is called right invertible on G if there exist v ∈ G(V )n with V an open subset of
Rn and an open set H ⊆ V such that v|H is c-bounded into G and u ◦ v|H = idH .
Then v is called a right inverse of u on G.

In shorthand, u is right invertible (on G) with right inversion data [G, V, v, H].

(iii) u is called invertible on G if it is both left and right invertible on G with left
inversion data [G, V, v, Hl] and right inversion data [G, V, v, Hr]. Then v is called
an inverse of u on G.

In shorthand, u is invertible (on G) with inversion data [G, V, v, Hl, Hr].

(iv) u is called strictly invertible on G if it is invertible on G with inversion data
[G, V, v, H, H] for some open subset H of V . Then v is called a strict inverse of u

on G.

In shorthand, u is strictly invertible (on G) with inversion data [G, V, v, H].

Throughout this paper we shall also use the wordings ‘u is invertible (on G) by
[G, V, v, Hl, Hr]’ or ‘[G, V, v, Hl, Hr] is an inverse of u (on G)’. If we do not specify a
set on which a given u ∈ G(U)n is invertible, we always refer to invertibility on U , i.e. on
the whole of its domain. The same applies to the cases of ‘left invertible’, ‘right invertible’
and ‘strictly invertible’.

Remark 3.2.

(i) Note that u need not be a c-bounded function on U . Only the restriction to the set
G where it is composed with a left inverse must have this property.

(ii) The notion of invertibility of a generalized function u is stronger than the combi-
nation of left and right invertibility with respect to the same v and yet possibly
different sets Gl and Gr (where ‘l’ and ‘r’ denote ‘left’ and ‘right’ respectively).

(iii) If a smooth function f : U → V (with U and V open subsets of Rn) is classically
invertible with smooth inverse g : V → U , then, obviously, σ(f) = ι(f) is strictly
invertible on U with inversion data [U, V, σ(g), V ].

Let us apply the above notions to a generalized function modelling a jump.
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Example 3.3. Recall the definition of the generalized function u from Example 1.2:
a representative was given by uε : (−α, α) → R, uε(x) := x + arctan(x/ε). We are inter-
ested in inverting u ‘around the jump’, i.e. we want to find an inverse in the sense of
Definition 3.1 (iii) on some open set G ⊆ U containing 0, with respect to some dataset
[G, V, v, Hl, Hr] ‘as large as possible’ (at least for the particular representative). For the
sake of simplicity, however, we assume all sets to be intervals symmetric around 0.

It is important in the following discussion not to make use of the fact that, actually,
both uε and u−1

ε could be defined as diffeomorphisms of R onto itself. By strictly confining
ourselves to U = (−α, α) and (uε(−α), uε(α)) as the domains of uε and u−1

ε , respectively,
we model the general situation where the images of the uε (and hence, the domains of
their classical inverses) do depend on ε.

For every ε, the function uε has a C∞-inverse vε : (uε(−α), uε(α)) → U . In the fol-
lowing, we shall successively specify sets V , G, Hl and Hr, showing that, in fact, u is
invertible in the sense of Definition 3.1 (iii).

To this end, first note that uε(x) ↗ x + 1
2π for every x > 0. Setting x = α and

choosing β ∈ (0, α), we see that for small ε the set uε(U) contains (−(β + 1
2π), β + 1

2π).
So V := (−(β + 1

2π), β + 1
2π) is a suitable choice for a common domain for all vε (ε

sufficiently small). Note that choosing β � α would fail to give V ⊆ uε(U), for any
ε ∈ (0, 1].

Supposing G to be the interval (−α1, α1), the condition uε(G) ⊆ V forces us to choose
α1 � β, since it is only then that we have uε(α1) ↗ α1 + 1

2π � β + 1
2π.

Looking for a suitable Hl of the form (−(βl + 1
2π), βl + 1

2π), observe that we need
uε(G) ⊆ Hl ⊆ V for all ε � ε0, i.e. supε�ε0

uε(α1) = α1 + 1
2π � βl + 1

2π � β + 1
2π,

and thus we have to choose βl ∈ [α1, β]. The c-boundedness of u from G into Hl is a
consequence of the strict monotonicity of all the uε.

In a final step, we have to specify Hr = (−(βr + 1
2π), βr + 1

2π) ⊆ V such that
vε(Hr) ⊆ G. Here, analogously to the case of V , a limit argument necessitates the
choice βr ∈ (0, α1). Then, for small ε, we obtain the inclusions Hr = (−(βr + 1

2π), βr +
1
2π) ⊆ (uε(−α1), uε(α1)) ⊆ V , implying vε(Hr) ⊆ (−α1, α1) = G. Once more, the
c-boundedness of v from Hr into G follows from the strict monotonicity of all the uε

and vε.
Summing up, we have the following inequalities and corresponding inclusions:

0 < βr < α1 � βl � β < α,

G � U,

Hr � Hl ⊆ V.

In the preceding example the set Hr is contained in Hl. The following proposition
shows that this is no coincidence.

Proposition 3.4. Letting u ∈ G(U)n be invertible on G with inversion data
[G, V, v, Hl, Hr], we have Hr ⊆ Hl.

Proof. Let x ∈ Hr. On the one hand, there exists ε0 such that uε ◦ vε(x) is an element
of some compact subset K of Hl for all ε � ε0 by the c-boundedness of v|Hr and u|G. On
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the other hand, uε ◦ vε(x) = x + nε(x) → x as ε → 0 for some (nε)ε ∈ N (Hr)n. Since K

is compact, the limit x is also an element of K and hence of Hl. �

From the definition of invertibility and the preceding proposition, we immediately
obtain the following results.

Proposition 3.5.

(i) If u ∈ G(U)n is left (right) invertible on G with left (right) inversion data
[G, V, v, H], then v is right (left) invertible on H with right (left) inversion data
[H, U, u, G].

(ii) If u ∈ G(U)n is invertible on G with inversion data [G, V, v, Hl, Hr], then v is left
invertible on Hr with left inversion data [Hr, U, u, G] and right invertible on Hl with
right inversion data [Hl, U, u, G].

(iii) The inverse is unique in the following sense: if u is invertible on G with inversion
data [G, V 1, v1, H1

l , H1
r ] and [G, V 2, v2, H2

l , H2
r ], then v1|Hr = v2|Hr , where Hr :=

H1
r ∩ H2

r .

(iv) If u ∈ G(U)n is strictly invertible on G with inversion data [G, V, v, H], then v is
strictly invertible on H with inversion data [H, U, u, G].

(v) The strict inverse is unique in the following sense: if u is strictly invertible on G

with inversion data [G, V 1, v1, H1] and [G, V 2, v2, H2], then v1|H = v2|H , where
H := H1 ∩ H2.

For the remainder of this section let us discuss various aspects of the notions of invert-
ibility introduced above. In classical inversion theory we are used to the fact that if a
function is invertible (as a function) on some set G, this is still true for any subset of
G. In the case of generalized functions, however, we have to be more careful: for some
left invertible u ∈ G(U)n with left inversion data [G, V, v, Hl] decreasing the size of G

does not affect left invertibility. On the other hand, if u is right invertible with right
inversion data [G, V, v, Hr], shrinking G may not be possible, even if Hr is shrunk as well.
We illustrate this with the following example.

Example 3.6. Consider v from Example 3.3. By Proposition 3.5 (i), it is right invert-
ible with right inversion data [Hl, U, u, G]. (Observe the reversed roles of U and V , as
well as G and Hl, compared with the notation in Definition 3.1 (ii).) Let H be an open
subset of Hl. The generalized function v is right invertible on H, provided H contains
the closed interval [− 1

2π, 1
2π] and G is shrunk accordingly (while still containing 0). If H

fails to satisfy this condition, then no open subset G′ of G is small enough that (uε|G′)ε

is c-bounded into H.

This shows that right invertibility on some set is not a local property in the usual
sense. However, in Example 3.6 it is ‘local around the jump’: the interval [− 1

2π, 1
2π] that

has to be contained in H is exactly the ‘gap’ in the image of the jump function modelled
by u.

https://doi.org/10.1017/S0013091512000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000429


478 E. Erlacher

The issue of shrinking Hl and Hr is settled by the symmetry between left and right
invertibility (see Proposition 3.5 (i)).

For a left invertible u ∈ G(U)n with left inversion data [G, V, v, Hl], enlarging G is not
possible without further information on u, as is the case in classical theory. In contrast,
let [G, V, v, Hr] be a right inverse of u. Replacing G by a larger set (that is still contained
in U) poses no problem at all since (vε|Hr)ε is c-bounded into any superset of G.

Again, the question of modifying Hl and Hr is answered by referring to Proposi-
tion 3.5 (i).

Summarizing, we conclude that for an invertible u with inversion data [G, V, v, Hl, Hr],
without further specific information, G may neither be enlarged nor shrunk; Hr can safely
be made smaller, and Hl larger.

As to strict invertibility, there is no tolerance left for changing the size of either G

or H.
These results reflect the fact that in the case of invertibility of u on G the set G has a

double role: it has to be big enough as to allow (vε|Hr)ε being c-bounded into it and at
the same time it has to be small enough for the composition of (uε|G)ε with (vε|Hl)ε to
still give the identity on G(G)n. So, the size of G has to be carefully balanced between
the requirements of left and right invertibility.

At first sight, a convenient way to circumvent the difficulty of balancing the size of
G might consist in allowing different sets Gl and Gr to obtain a notion of ‘weak invert-
ibility’ involving datasets [Gl, Gr, V, v, Hl, Hr]. This choice, however, would make it dif-
ficult, if not impossible, to prove uniqueness of the inverse (cf. parts (iii) and (v) of
Proposition 3.5).

Finally, the notion of strict invertibility is the one that comes closest to a generalized
equivalent of classical invertibility. However, in most cases we are interested in, it will be
too much to ask for, as may be demonstrated by the following example.

Example 3.7. Again, consider the function u from Example 3.3 modelling a jump.
We attempt to find open sets G and H such that u is strictly invertible with strict
inversion data [G, V, v, H]. Without loss of generality we may assume that G and H are
open intervals.

In Example 3.6 we have already discussed that H must contain the closed interval
[− 1

2π, 1
2π]. Therefore, H := (−(γ + 1

2π), γ + 1
2π) for some γ > 0. For (vε|H)ε to be

c-bounded into G, the set G has to contain the closed interval [−γ, γ]. Let

G := (−(γ + δ), γ + δ)

for some δ > 0. For any 0 < η < δ we eventually obtain H = (−(γ + 1
2π), γ + 1

2π) ⊆
uε([−(γ + η), γ + η]), thereby destroying any hope of c-boundedness into H. Thus, u is
not strictly invertible on any open set G containing 0.

4. Necessary conditions for invertibility

We start with a few (heuristic) questions that arise when looking for an inverse of some
given u ∈ G(U)n by looking at a representative (uε)ε ε-wise.
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Question 4.1. If uε is not injective for every ε, is it possible for another representative
of u to have this property?

Question 4.2. If every uε is injective on U , does there exist an open set that is
contained in all the (possibly different!) domains of the inverses vε, so that we can indeed
speak of a net of functions on some fixed domain V ?

Question 4.3. Are all vε smooth? If yes, is (vε|V )ε in EM (V )n?

Concerning Question 4.1, we consider an example.

Example 4.4. Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 given by
uε(x) := sin(x/ε). No matter how small we choose a subset of U , eventually uε becomes
non-injective on this set. The discussion following Proposition 4.5 will show that this fact
is sufficient to conclude that u is not left invertible.

Proposition 4.5. Let U be an open subset of Rn. Then for every representative (uε)ε

of idU ∈ G(U)n and for every compact subset K of U there exists some ε0 ∈ (0, 1] such
that uε|K is injective for all ε � ε0.

Proof. Let K ⊂⊂ U and mε := idU −uε ∈ N (U)n. By [14, Lemma 3.2.47], for all ε

there exists a constant Cε > 0 such that

|mε(x) − mε(y)| � Cε · |x − y| (4.1)

for all x, y ∈ K. Cε can be chosen as C1 · supz∈L(|mε(z)| + ‖Dmε(z)‖), where L is any
fixed compact neighbourhood of K in U and C1 depends only on L. Since m is negligible
and because of the form of the Cε, we may find some ε0 such that Cε < 1

2 for all ε � ε0.
Then

|uε(x) − uε(y)| = |(x − y) − (mε(x) − mε(y))| � |x − y| − Cε|x − y| � 1
2 |x − y|,

yielding the injectivity of uε on K for all ε � ε0. �

If u is left invertible on G by [G, V, v, Hl], then, for every representative (uε)ε of u

and (vε)ε of v, the composition (vε ◦ uε|G)ε is a representative of the identity in G(G)n.
Therefore, vε ◦ uε, and consequently uε is injective on any compact subset of G for suf-
ficiently small ε. In particular, this implies that the generalized function in Example 4.4
has no chance of being left invertible. This result motivates the following definition.

Definition 4.6. A moderate net (uε)ε ∈ EM (U)n is called compactly asymptotically
injective (ca-injective) if for every compact subset K of U there exists some ε0 ∈ (0, 1]
such that uε|K is injective for all ε � ε0.

An element u of G(U)n is called compactly asymptotically injective (ca-injective) if all
representatives have this property.

Remark 4.7. Note that if one representative of a generalized function is ca-injective,
this is not necessarily true for every other: consider nε(x) := e−1/εx and ñε(x) := 0. (nε)ε

is injective for all ε (even on R), while (ñε)ε is not. Yet they are both representatives of
the same generalized function.
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Using the terminology of Definition 4.6 we obtain the following proposition.

Proposition 4.8. If u ∈ G(U)n is left invertible, then u is ca-injective.

To illustrate Question 4.2, we consider u := [(uε)ε] ∈ G(U) with U := (−1, 1) given by
uε(x) := εx. With ε decreasing, the domains of the inverses vε shrink to the singleton
{0}, so that there is no common open domain on which to define the inverse net. One
could say that, in a sense, the net (uε)ε lacks surjectivity, and hence a common domain
for the inverses u−1

ε . We shall see that this is sufficient to destroy any hope of u being
invertible.

In the one-dimensional case, a simple condition guarantees a common domain for the
inverses: let uε be injective on an open interval U in R for all ε. Suppose that two different
points x and y in U (without loss of generality x < y) can be found such that uε(x) and
uε(y) converge to different limits a and b (without loss of generality a < b). Then the
Intermediate Value Theorem ensures that for all δ > 0 there exists some ε0 such that
[a + δ, b − δ] ⊆ uε((x, y)) for all ε � ε0.

The following theorem provides a generalization of the previous argument based on the
Intermediate Value Theorem to the n-dimensional case. Roughly speaking, it establishes
a kind of continuous dependence of connected parts f(A) of the image set f(U) on the
function f .

Theorem 4.9. Let U be an open subset of Rn, let f, g ∈ C(U, Rn) both be injective
and let W be a connected open subset of Rn with W̄ ⊂⊂ f(U). Choose an open ball
Bδ(y) (y ∈ W , δ > 0) inside W such that the closure of Wδ := W +Bδ(0) is still a subset
of f(U). If, for A := f−1(Wδ),

‖g − f‖∞,A < δ (4.2)

holds, then
W̄ ⊆ g(A)◦.

Proof. By a theorem of Brouwer (e.g. [25, Theorem 7.12]), both f(U) and g(U) are
open and f and g map U homeomorphically to f(U) and g(U), respectively. Clearly, W̄

is the disjoint union of the three sets

G1 := W̄ ∩ g(A)◦,

G2 := W̄ ∩ ∂g(A),

G3 := W̄ ∩ ext g(A).

We shall show that G1 �= ∅ and G2 = ∅. By the connectedness of W̄ , it follows that
W̄ = G1 (note that G1 and G3 are open in the relative topology of W̄ ), that is

W̄ ⊆ g(A)◦.

G1 �= ∅: let x := f−1(y). Then x is an element of A. Since f and g are homeomorphisms
and y is an element of the interior of Wδ, it follows that x ∈ A◦ and g(x) ∈ g(A)◦. By

|g(x) − y| = |g(x) − f(x)| � ‖g − f‖∞,A < δ,
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we obtain
g(x) ∈ Bδ(y) ∩ g(A)◦ ⊆ W̄ ∩ g(A)◦.

G2 = ∅: assume that there exists a ∈ W̄ ∩ ∂g(A). By ∂g(A) = g(∂A), the point
x := g−1(a) is an element of ∂A. Moreover, f(x) ∈ ∂f(A) = ∂Wδ. On the one hand,

|a − f(x)| = |g(x) − f(x)| � ‖g − f‖∞,A < δ. (4.3)

On the other hand, a being an element of W̄ , we obtain

|a − f(x)| � dist(W̄ , ∂Wδ) = dist(W, W c
δ ) = δ,

which contradicts (4.3). Hence, W̄ ∩ ∂g(A) = ∅. �

With respect to generalized functions, the above theorem implies the following corol-
lary.

Corollary 4.10. Let U be an open subset of Rn. Then for every representative (uε)ε

of idU ∈ G(U)n and for every compact subset K of U there exist a compact subset L of
U containing K and a suitable ε0 ∈ (0, 1] such that K ⊆ uε(L) for all ε � ε0.

Proof. Let K be a (non-empty) compact subset of U . Without loss of generality we
may assume that U is connected (otherwise K can be written as a finite union of sets
Ki, where each Ki is contained in only one connected component; L can then be defined
as the finite union of compact sets Li obtained for each Ki). Then there exists a non-
empty connected open subset W of U with W̄ ⊂⊂ U which contains K. Choose δ such
that Bδ(y) ⊆ W for a suitable y and such that the closure of W2δ := W + B2δ(0) is
contained in U . By Proposition 4.5, uε is injective on W2δ. Applying Theorem 4.9 to
W2δ, idW2δ

, uε|W2δ
, W and δ in place of U , f , g, W and δ (ε sufficiently small) and

setting L := W + βδ(0) concludes the proof. �

For right invertible u ∈ G(U)n with right inversion data [G, V, v, Hr], Corollary 4.10 has
the following meaning: for any representatives (uε)ε of u and (vε)ε of v, the composition
(uε ◦ vε|Hr)ε is a representative of the identity in G(Hr)n. Therefore, for every compact
subset K of Hr there exists a compact subset L of Hr with K ⊆ L such that K ⊆
uε ◦ vε(L) for ε sufficiently small. Since (vε|Hr)ε is c-bounded into G, there exists a
compact subset L′ of G such that vε(L) ⊆ L′ for small ε. This entails that K ⊆ uε(L′)
for ε small enough. This observation motivates the next definition.

Definition 4.11. Let U and V be open subsets of Rn. A moderate net (uε)ε ∈ EM (U)n

is called compactly asymptotically surjective (ca-surjective) onto V if for every compact
subset K of V there exist a compact subset L of U and some ε0 ∈ (0, 1] such that
K ⊆ uε(L) for all ε � ε0.

An element u of G(U)n is called compactly asymptotically surjective (ca-surjective)
onto V if all representatives have this property.

Using the terminology of Definition 4.11 we obtain the following proposition.
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Proposition 4.12. If u ∈ G(U)n is right invertible on G with right inversion data
[G, V, v, Hr], then u is ca-surjective onto Hr.

Turning to Question 4.3, we consider u = [(uε)ε] ∈ G(R) given by uε(x) := x3. uε is
invertible as a function on R for every ε, but the inverses are not smooth. As the following
proposition will show, u cannot be inverted on any open set containing 0.

Proposition 4.13. Let U be an open subset of Rn, G an open subset of U and
u ∈ G(U)n left invertible on G with left inversion data [G, V, v, Hl]. Then, for every
representative (uε)ε of u and for every compact subset K of G, there exist C > 0, N ∈ N

and ε0 ∈ (0, 1] such that

inf
x∈K

|det(Duε(x))| � CεN (4.4)

for all ε � ε0. In particular, det(Du(x)) is strictly non-zero for all x ∈ G.

Proof. Let K ⊂⊂ G and (vε)ε be a representative of v. Differentiating the equality
vε ◦ uε|G = idG + nε and applying the determinant on both sides, we obtain, for suffi-
ciently small ε (i.e. such that det(I + Dnε(x)) � 1

2 ),

|det(Duε(x))| � 1
2|det(Dvε(uε(x)))| (4.5)

for all x ∈ K. By the c-boundedness of (uε)ε into Hl, there exists a compact subset L of
Hl such that

sup
x∈K

|det(Dvε(uε(x)))| � sup
y∈L

|det(Dvε(y))| � C1ε
−N

for suitable N ∈ N and C1 > 0. Plugging this inequality into (4.5) yields the desired
estimate. �

Definition 4.14. Let U be an open subset of Rn. A moderate net (uε)ε ∈ EM (U) is
called strictly non-zero if for every compact subset K of U there exist C > 0, a natural
number N and some ε0 ∈ (0, 1] such that

inf
x∈K

|uε(x)| � CεN (4.6)

for all ε � ε0.
An element u of G(U) is called strictly non-zero if it possesses a representative with

this property.

Clearly, if one representative satisfies (4.6), then so do all representatives. Using the
terminology of Definition 4.14, Proposition 4.13 now reads as follows.

Proposition 4.15. If u ∈ G(U)n is left invertible, then det ◦ Du is strictly non-zero.
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5. Sufficient conditions for invertibility

We have determined three properties that are necessary for a given u ∈ G(U)n to be
invertible on some open subset G of U by [G, V, v, Hl, Hr], namely ca-injectivity on G,
ca-surjectivity of u|G onto Hr and det ◦ Duε being strictly non-zero on G. In this section
we shall prove that these three conditions are also sufficient to guarantee at least local
invertibility of a c-bounded u in the following sense.

Definition 5.1 (local invertibility). Let U be an open subset of Rn and let u ∈
G(U)n. We call u locally (left, right) invertible if for every point z ∈ U there exists an
open neighbourhood G of z in U such that u is (left, right) invertible on G.

Obviously, (left, right) invertibility on some open set implies local (left, right) invert-
ibility on that very set but not vice versa.

Note that, contrary to the widespread usage of the term ‘local’ and the intuition based
thereupon, for a generalized function u which is locally (left, right) invertible on some
open set U , and some given z ∈ U , the neighbourhood G of z on which u is (left,
right) invertible cannot, in general, be chosen either arbitrarily small or arbitrarily large.
Local invertibility only guarantees the existence of such a neighbourhood, its (mini-
mum and respectively maximum) size depending on the function u and the point z (cf.
Example 3.6).

Our first aim in this section is to prove that compact asymptotic injectivity (ca-
injectivity) of a c-bounded u ∈ G[U, Rn], with det ◦ Du strictly non-zero, implies local
left invertibility of u. To this end, some preliminaries are necessary.

Let u ∈ G(U)n and assume that (uε)ε is a representative such that uε is injective with
inverse vε : uε(U) → U for every ε. If we are interested only in left inverses of u, it is
of no importance whether there is a common non-trivial open set inside of all uε(U);
rather, we need some open set containing all uε(U) to serve as a common domain for
the vε. Therefore, we somehow have to extend the functions vε (in a smooth way!) to a
larger set without losing their property of being (left) inverse to the uε on some open
subset G of U , independent of ε and possibly smaller than U . We shall do this by means
of two-member partitions of unity (pε, 1 − pε), where the plateau functions pε serve to
retain the values of vε on some Kε ⊂⊂ uε(U). The following proposition ensures the
existence of moderate nets of suitable plateau functions.

Proposition 5.2. Let Uε (for ε ∈ (0, ε0]) be an open subset of Rn and Kε compact
in Uε such that (dist(Kε, U

c
ε ))ε is strictly non-zero. Let U be another open subset of Rn

such that Uε ⊆ U for all ε. Then there exists a net (pε)ε ∈ EM (U) of plateau functions
such that pε|Kε = 1 and supp pε ⊂⊂ Uε for ε sufficiently small.

Proof. Since dist(Kε, U
c
ε ) � CεN for some N ∈ N and C > 0, we can choose ηε

with CεN+1 � ηε < dist(Kε, U
c
ε ) such that every n-dimensional cube with side length

ηε having non-empty intersection with Kε is contained in Uε for ε sufficiently small.
Construct plateau functions qε : Uε → [0, 1] as in the proof of [7, Chapter I, § 2] for Uε

and Kε using grid size ηε. Let pε ∈ D(U) be the smooth extension by 0 of qε to U . Then,
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conforming to the proof of [7, Chapter I, § 2], the plateau function pε is given by

pε =
( ∑

j∈Jε

ϕε
j

)∣∣∣∣
U

,

where, for any j = (j1, . . . , jn) ∈ Zn, ϕε
j maps from Rn to R and is given by

ϕε
j(x1, . . . , xn) =

n∏
i=1

h

(
2xi

ηε
− ji

)
,

the mapping h : R → R has support [−1, 1] and Jε := {j ∈ Zn | suppϕε
j ∩ Kε �= ∅}. The

function h has compact support and, by our choice of (ηε)ε, the net (ϕε
j)ε is in EM (Rn).

Let ϕε
0 := ϕε

(0,...,0). Since any ϕε
j can be written as the composition of the translation

x �→ x − 1
2ηεj and ϕε

0, all moderateness estimates are the same as those for (ϕε
0)ε. For

Jx
ε := {j ∈ Jε | x ∈ (suppϕε

j)
◦} for x ∈ Rn we have |Jx

ε | � 2n by the definition of the
ϕε

j . For arbitrary α ∈ Nn
0 it now follows by the above that

|∂αpε(x)| =
∣∣∣∣ ∑

j∈Jx
ε

∂αϕε
j(x)

∣∣∣∣
�

∑
j∈Jx

ε

sup
y∈supp ϕε

j

|∂αϕε
j(y)|

�
∑
j∈Jx

ε

C1ε
−N1

� 2nC1ε
−N1 = C2ε

−N1

for x ∈ U , thereby concluding the proof of the proposition. �

Now, we turn to the question of moderateness. It turns out that if (det ◦ Duε)ε is strictly
non-zero, this is already sufficient to guarantee the desired result. The next proposition
consists of two parts. Roughly speaking, the first part deals with the ‘disposition to
moderateness’ of the inverse net (vε)ε, while in the second part we take care of the
smooth and moderate extension of the vε.

We introduce the following terminology: a function f̃ : Rn → Rm is called a (K, y0)-
extension of f : U → Rm (where U ⊆ Rn open, K ⊂⊂ U and y0 ∈ Rm) if f̃ |K = f |K and
f̃(x) = y0 for all x ∈ Rn \ U .

Proposition 5.3. Let U be an open subset of Rn containing open subsets Wε for
ε ∈ (0, ε0] such that Wε ⊆ K for some K ⊂⊂ U . Let (uε)ε ∈ EM (U)n. For all ε let uε be
injective on Wε with inverse vε : Vε → Wε, where Vε := uε(Wε). Suppose that

inf
x∈Wε

|det(Duε(x))| � C1ε
N1 (5.1)

for some C1 > 0 and N1 ∈ N0 and for all ε � ε0. Then the following hold.
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(1) The inverses vε are smooth, and for all α ∈ Nn
0 there exist C > 0, N ∈ N and

ε1 ∈ (0, ε0] such that for all ε � ε1 the estimate

sup
y∈Vε

|∂αvε(y)| � Cε−N (5.2)

holds. In particular, if there exists a non-empty open subset V of Rn such that
V ⊆

⋂
ε∈(0,ε0] Vε, then (vε|V )ε is in EM (V )n and uniformly bounded (the latter

following from the inclusion Wε ⊆ K).

(2) Let Kε ⊂⊂ Vε for ε ∈ (0, ε0] and [(x̃ε)ε] ∈ R̃n
c such that x̃ε ∈ L ⊂⊂ Rn for all

ε � ε0. If there exist a constant C2 > 0 and a natural number N2 such that

dist(Kε, V
c
ε ) � C2ε

N2 (5.3)

for all ε � ε0, then there exist smooth (Kε, x̃ε)-extensions ṽε of vε such that (ṽε)ε is
in EM (Rn)n. Furthermore, the net (ṽε)ε is uniformly bounded. In particular, (ṽε)ε

is c-bounded into any open subset of Rn containing the convex hull of K ∪ L.

Proof. (1) We have only to prove (5.2). For α = 0 we have im vε = Wε ⊆ K ⊂⊂ U .
The first partial derivatives of the ith component v

(i)
ε of vε at y ∈ Vε can be written as the

product of the inverse of det(Duε(vε(y))) and a polynomial in the first derivatives of the
components of uε evaluated at vε(y). By im vε ⊆ K for all ε � ε0 and the moderateness
of (uε)ε, we see that the first partial derivatives of v

(i)
ε do not grow faster than some

inverse power of ε. By induction, we also obtain the desired estimates for higher partial
derivatives of v

(i)
ε , thus concluding the proof of the first claim of the proposition.

(2) From Proposition 5.2 it follows that there exists a net (pε)ε ∈ EM (Rn) of plateau
functions such that pε|Kε = 1 and supp pε ⊂⊂ Vε for all ε. Let ṽε : Rn → Rn be defined
by

ṽε(x) :=

{
pε(x)vε(x) + (1 − pε(x))x̃ε, x ∈ Vε,

x̃ε, otherwise.

By construction, all ṽε are smooth, ṽε|Kε = vε|Kε and ṽε(x) = x̃ε for all x ∈ Rn \ Vε. To
prove moderateness we consider ∂αṽ

(i)
ε (α ∈ Nn

0 ; ṽ
(i)
ε denotes the ith component of ṽε) on

some K ⊂⊂ Rn. On K∩Vε the derivative of ṽ
(i)
ε of order α can be written as a polynomial

in x
(i)
ε and the derivatives of pε and vi

ε. By the moderateness of (pε)ε, the boundedness
of (x̃ε)ε and inequality (5.2), it follows that ∂αṽ

(i)
ε is bounded on K ∩Vε by some inverse

power of ε. Since on K \ Vε all derivatives of ṽ
(i)
ε are zero or at least constant (where all

occurring values are contained in a compact set), corresponding estimates also hold for
all x ∈ K. The uniform boundedness of (ṽ(i)

ε )ε is a direct consequence of im vε ⊆ K and
x̃ε ∈ L. �

If in the above proposition the Wε are equal to some open W (⊆ K) for all ε and the
compact sets Kε are the images of a fixed compact subset of W under uε, condition (5.3)
in the second part is automatically satisfied.

https://doi.org/10.1017/S0013091512000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000429


486 E. Erlacher

Proposition 5.4. Let U be an open subset of Rn and let W be a (non-empty) open
subset of U with W̄ ⊂⊂ U and (uε)ε ∈ EM (U)n. For all ε ∈ (0, ε0] let uε be injective on
W with inverse vε : uε(W ) → W . Let [(x̃ε)ε] ∈ R̃n

c with x̃ε ∈ K ′ ⊂⊂ Rn for all ε � ε0,
let K be a compact subset of W and Kε := uε(K). If

inf
x∈W

|det(Duε(x))| � C1ε
N1

for some C1 > 0, N1 ∈ N0 and for all ε � ε0, then all vε are smooth and there exist
(Kε, x̃ε)-extensions ṽε of vε such that (ṽε)ε is in EM (Rn)n. Furthermore, the net (ṽε)ε

is uniformly bounded. In particular, (ṽε)ε is c-bounded into any open subset of Rn that
contains the convex hull of W̄ ∪ K ′.

Proof. Set Vε := uε(W ). All we have to do is to show that

dist(Kε, V
c
ε ) � CεN

for some C > 0, a natural number N and sufficiently small ε. Applying Proposition 5.3 (2)
then yields the desired result.

By a theorem of Brouwer (e.g. [25, Theorem 7.12]), Vε is open in Rn and uε maps
W homeomorphically to Vε. Choose y1ε ∈ ∂Kε and y2ε ∈ ∂Vε such that dist(Kε, V

c
ε ) =

dist(∂Kε, ∂Vε) = |y1ε − y2ε|. Set η := dist(K, W c) > 0 and let L := K + Bη/2(0). Then
L is a compact subset of W and Lε := uε(L) is a compact subset of Vε. Set δε :=
dist(Lε, V

c
ε ) > 0. Since, by construction, Kε ⊆ L◦

ε, we have

δε � dist(Kε, V
c
ε ) = |y1ε − y2ε|.

Choose some ỹ2ε on the open line segment between y1ε and y2ε with

|ỹ2ε − y2ε| < δε.

Since y2ε ∈ ∂Vε and dist(Lε, V
c
ε ) = δε, it follows that ỹ2ε �∈ Lε. The set y1εy2ε \ {y2ε} is

contained in Vε (y1εy2ε denoting the line segment {λy1ε + (1 − λ)y2ε | 0 � λ � 1}; for a
proof see [9, Lemma 3.33]), and hence ỹ2ε ∈ Vε \ Lε. Let x1ε ∈ K and x̃2ε ∈ W \ L such
that uε(x1ε) = y1ε and uε(x̃2ε) = ỹ2ε, respectively. Then,

dist(Kε, V
c
ε ) = |y1ε − y2ε| � |y1ε − ỹ2ε| = |uε(x1ε) − uε(x̃2ε)|. (5.4)

Since dist(K, Lc) = dist(K, (K + Bη/2(0))c) = 1
2η and x̃2ε ∈ W \ L ⊆ Lc, we have

|x̃2ε − x1ε| � dist(x̃2ε, K) � 1
2η.

By the Mean Value Theorem (note that y1εỹ2ε ⊆ Vε), we obtain

1
2η � |x1ε − x̃2ε|

= |vε(uε(x1ε)) − vε(uε(x̃2ε))|
� sup

y∈Vε

‖Dvε(y)‖|uε(x1ε) − uε(x̃2ε)|. (5.5)
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By Proposition 5.3, there exist N ∈ N and C ′ > 0, both independent of ε, and some
ε1 ∈ (0, ε0] such that

sup
y∈Vε

‖Dvε(y)‖ � C ′ε−N

for all ε � ε1. Together with (5.5), this entails

|uε(x1ε) − uε(x̃2ε)| � CεN

for C2 := η/2C ′ and ε � ε1 and we are done. �

Now, it is easy to prove the following theorem.

Theorem 5.5. Let U be an open subset of Rn and u ∈ G[U, Rn]. If u is ca-injective
and det ◦ Du is strictly non-zero, then u is left invertible on any open subset W of U

with W̄ ⊂⊂ U .

Proof. Let W and W ′ be two open subsets of U with W̄ ⊂⊂ W ′ ⊆ W ′ ⊂⊂ U . By
the ca-injectivity of u = [(uε)ε], there exists ε0 ∈ (0, 1] such that uε|W ′ is injective for all
ε � ε0. Let vε : uε(W ′) → W ′ be the inverse of uε|W ′ . Now apply Proposition 5.4 to U ,
W ′, (uε)ε, (vε)ε, 0 ∈ {0}, W̄ and Kε := uε(W̄ ). By the c-boundedness of u, there exists
a compact set K ⊆ Rn such that uε(W̄ ) ⊆ K for sufficiently small ε. We obtain that u is
left invertible on W by [W, Rn, ṽ := [(ṽε)ε], Hl], where ṽε is a smooth (Kε, 0)-extension
of vε and Hl can be any open subset of Rn that contains K. �

Note that to construct the left inverse in Theorem 5.5 we used only one representative
that is ca-injective. However, by the discussion following Proposition 4.5, we know that
for left invertible generalized functions all representatives have this property. Hence,
Theorem 5.5 immediately yields the following corollary.

Corollary 5.6. Let U be an open subset of Rn, let u ∈ G[U, Rn] and let det ◦ Du be
strictly non-zero. If one representative of u is ca-injective, then all representatives have
this property.

At this point the question arises of whether we may prove a theorem with respect
to ca-surjectivity and right invertibility corresponding to Theorem 5.5. A quick glance
at the results from which Theorem 5.5 was derived shows that matters turn out to be
more complex in the case of such a ‘dual’ statement: given ca-injectivity of (uε)ε we
have set-theoretic inverses (vε)ε on suitable open sets. These can be lifted to the level of
moderate c-bounded nets by Proposition 5.4, yielding a left inverse for [(uε)ε]. Dually,
given ca-surjectivity of (uε)ε, we fail when trying to imitate this argument since we do
not even obtain continuous right inverses, in general.

However, we can show that local invertibility follows from the combination of ca-
injectivity and ca-surjectivity and the assumption that det ◦ Du is strictly non-zero.

Theorem 5.7. Let U and H be open subsets of Rn and u ∈ G[U, Rn]. If u is ca-
injective and ca-surjective onto H and if det ◦ Du is strictly non-zero, then u is locally
invertible on U .
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More precisely, for every z ∈ U and every open subset Hr of H with Hr ⊂⊂ H

there exist an open neighbourhood G of z with Ḡ ⊂⊂ U , an open relatively compact
subset Hl of Rn containing Hr, and some v ∈ G(Rn)n such that u is invertible on G

with inversion data [G, Rn, v, Hl, Hr]. The set G can be chosen to contain any given set
M ⊂⊂ U . Furthermore, there exist representatives (uε)ε of u and (vε)ε of v such that
vε ◦ uε|G = idG and uε ◦ vε|Hr = idHr for sufficiently small ε.

Proof. Let z ∈ U , let (uε)ε be a representative of u and let Hr be an open subset of
H with Hr ⊂⊂ H. Let δ > 0 such that (Hr)δ ⊂⊂ H for (Hr)δ := Hr + Bδ(0). By the
ca-surjectivity of u onto H, there exists a compact subset K of U with (Hr)δ ⊆ uε(K)
for ε sufficiently small. Choose a compact subset L of U with K ∪ {z} ∪ M ⊂⊂ L◦ for
some given M ⊂⊂ U . Set G := L◦. Then Hr ⊆ uε(G) for small ε. Let η > 0 such that
the closure of Gη := G + Bη(0) is a compact subset of U . From the ca-injectivity of u, it
follows that uε is invertible (as a function) on Gη by, say, wε : uε(Gη) → Gη for ε small
enough. Proposition 5.4 now yields the existence of smooth (uε(Ḡ), y)-extensions vε of
wε (for y ∈ Gη fixed arbitrarily) such that (vε)ε ∈ EM (Rn)n. Thus, vε ◦ uε|G = idG and
uε ◦ vε|Hr = idHr . Since Hr ⊆ uε(K) ⊆ uε(G), we have vε(Hr) = wε(Hr) ⊆ K ⊂⊂ L◦ =
G. Hence, vε|Hr is c-bounded into G. By the c-boundedness of u, we can find a compact
subset K ′ of Rn such that uε(Ḡ) ⊆ K ′ for ε small. Finally, let Hl be an open relatively
compact subset of Rn containing K ′. Then Hr ⊆ uε(G) ⊆ Hl and, thus, u is invertible
on G with inversion data [G, Rn, v, Hl, Hr]. �

Remark 5.8.

(1) By the preceding theorem, we do not obtain an inverse of u on arbitrarily small
open subsets of U (as was the case in Theorem 5.5). On the contrary, the size of the
neighbourhood G of z ∈ U depends on Hr. This does not constitute a deficiency
of our proof, it rather originates from the necessity of proving the c-boundedness
of v|Hr into G. As was discussed earlier, G cannot be forced smaller, in general, by
shrinking Hr (cf. Example 3.6).

(2) In the proof of Theorem 5.7 we construct, given some representative of u, a net of
smooth (classically) inverse functions vε. This means we can find smooth inverse
functions for any given representative of u. However, the sets G and Hl depend on
the chosen representative.

Finally, we demonstrate to what extent for an invertible u with inverse v there exist
representatives (uε)ε of u and (vε)ε of v such that the compositions vε ◦ uε and uε ◦ vε

classically are the identity (on suitable sets).

Theorem 5.9. Let U be an open subset of Rn, G an open subset of U and u ∈ G(U)n

invertible on G with inversion data [G, V, v, Hl, Hr]. For every representative (uε)ε of u

and for every open subset W of Hr with W̄ ⊂⊂ Hr the following hold: there exist an
open subset G′ of G with G′ ⊂⊂ G and a moderate net of functions (wε)ε ∈ EM (Rn)n

such that wε ◦ uε|G′ = idG′ and uε ◦ wε|W = idW for sufficiently small ε. Moreover, u is
invertible on G′ by [G′, Rn, w := [(wε)ε], Hl, W ] and w|W = v|W in G(W )n. The set G′

can be chosen to contain any given M ⊂⊂ G.
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Proof. Let (uε)ε be a representative of u, W an open subset of Hr with W̄ ⊂⊂
Hr, M a compact subset of G and z ∈ M . Let δ > 0 such that Wδ ⊂⊂ Hr, where
Wδ := W + Bδ(0). By Propositions 4.8 and 4.12, we know that (uε)ε is ca-injective
on G and ca-surjective on G onto Hr. Furthermore, Proposition 4.13 says that det ◦ Du

is strictly non-zero on G. Then it follows from Theorem 5.7 (applied to G, Hr and W

in place of U , H and Hr) that there exist an open neighbourhood G′ of z in G with
M ⊆ G′ ⊆ G′ ⊂⊂ G and some w ∈ G(Rn)n such that u is invertible on G′ with inversion
data [G′, Rn, w, Hl, W ]. Furthermore, by Remark 5.8 (2), there exists a representative
(wε)ε of w such that wε ◦ uε|G′ = idG′ and uε ◦ wε|W = idW for ε sufficiently small. The
equality w|W = v|W in G(W )n follows from Proposition 3.5 (iii). �

6. Generalized Inverse Function Theorems

The classical Inverse Function Theorem says that, solely from the invertibility of the
derivative at a point x0 of a given function f , we may deduce that on a suitable neigh-
bourhood of x0 the function itself is C1-invertible. Conversely, by the chain rule, if f

is C1-invertible on some open set W , then its derivative is invertible at every x ∈ W .
In analogy to the latter statement we proved in § 4 that for every generalized function
u ∈ G(U)n invertible on G the determinant of the derivative is strictly non-zero at all
points of G. Contrary to the classical case, however, this latter property at only one
point is not sufficient to imply invertibility of u on some neighbourhood. Certainly, it
provides ε-wise smooth inverses of a representative, but it says nothing about the sizes of
the neighbourhoods on which those inverses are defined. In the following series of exam-
ples, we consider generalized functions defined on open subsets of R and examine their
derivative at 0 and their (non-)invertibility behaviour on certain neighbourhoods of 0.

Example 6.1. Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 be defined by
uε(x) := ε sin x. The derivative at 0 is Duε(0) = ε, i.e. det ◦ Du(0) is strictly non-zero.
Nevertheless, u is not invertible on any neighbourhood of 0 since it is not ca-surjective
on (−α, α) onto any open subset of R.

Even if we demand that Duε(x0) grows as 1/ε, or at least is bounded away from 0, the
situation does not get better.

Example 6.2. Consider u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 given by
uε(x) := ε sin(x/ε). The derivative at 0 is Duε(0) = 1 for all ε. Again, u is not invertible
on any neighbourhood of 0 since it is not ca-surjective on (−α, α) onto any open subset
of R.

Example 6.3. Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 be given by
uε(x) := ε sin(x/ε2). This time the derivative at 0 is Duε(0) = 1/ε, i.e. growing as ε → 0.
But still u is not invertible on any neighbourhood of 0, for the same reasons as before.

To stabilize the sizes of the sets on which the functions uε and their inverses are defined,
it seems inevitable that we must impose conditions on u and/or its derivative even on
some neighbourhood of x0.
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A crucial tool in the theory of inversion of generalized functions is the following the-
orem, which can be considered as a refined version of the classical Inverse Function
Theorem. It allows precise control over numerical constants and, in particular, over the
minimum size of the domain of the inverse function (see [1] for a similar result).

Theorem 6.4 (Inverse Function Theorem). Let X and Y be Banach spaces and
U an open subset of X. Let f ∈ Ck(U, Y ) for k ∈ N ∪ {∞} and x0 ∈ U . If Df(x0) is
invertible in the space of bounded linear operators from X to Y , then there exist open
neighbourhoods W of x0 in U and V of y0 := f(x0) and a function g ∈ Ck(V, W ) such
that g is the inverse of f |W .

More precisely, let a := ‖Df(x0)−1‖. Let b > 0 with ab < 1 and r > 0 with Br(x0) ⊆ U

such that
‖Df(x0) − Df(x)‖ � b (6.1)

for all x ∈ Br(x0). Setting c := a/(1 − ab), the following hold:

(1) |x1 − x2| � c|f(x1) − f(x2)| for all x1, x2 ∈ Br(x0);

(2) Df(x) is invertible and ‖Df(x)−1‖ � c for all x ∈ Br(x0);

(3) V := f(Br(x0)) is open;

(4) f |W : W → V is a Ck-diffeomorphism for W := Br(x0);

(5) Br/c(y0) ⊆ f(Br(x0)) and Br/c(y0) ⊆ f(Br(x0)).

The proof of Theorem 6.4 follows the classical pattern. It is based on applying Banach’s
Fixed Point Theorem to the function gy : Br(x0) → Y defined by

gy(x) := x + Df(x0)−1(y − f(x))

= Df(x0)−1(y) + Df(x0)−1(Df(x0)(x) − f(x)).

For y ∈ Br/c(y0) the function gy maps Br(x0) into Br(x0). For a detailed proof, we refer
the reader to [9, Theorem 1.3].

Remark 6.5. Given U , f , k, x0, a and b as in Theorem 6.4 then, by continuity of
Df , there always exists r > 0 satisfying (6.1). Furthermore, note that all statements in
Theorem 6.4 remain true if only ‖Df(x0)−1‖ � a is assumed to hold, and b and r are
chosen accordingly.

A by-product of the proof of the preceding version of the Inverse Function Theorem
(see [9, Theorem 1.3]) is stated as the following proposition. We shall use it in the proof
of a generalized inverse function theorem.

Proposition 6.6. In the situation of Theorem 6.4 the following also holds: let 0 <

β < 1 and y1 ∈ Rn be such that

|y0 − y1| � (1 − β)
r

c
.

Then gy maps Br(x0) into Br(x0) for all y ∈ Bβr/c(y1), and Bβr/c(y1) ⊆ f(Br(x0)).
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The quickest way to obtain an Inverse Function Theorem for generalized functions
u (with representative (uε)ε) consists of assuming that the estimates of Theorem 6.4
hold uniformly in ε for all uε. This generalization, however, is not capable of handling
situations such as jumps (cf. Example 3.3), which definitely have to be included within the
scope of any generalized inverse function theorem due to their appearance in applications
(see [10,14,21]). In order to obtain a more flexible result we allow the constants a and
b from Theorem 6.4 to depend on ε.

Generalizing [14, Definition 1.2.69] to Rn, we shall write x̃ ≈ y (x̃ ∈ R̃n, y ∈ Rn) to
express that y is the shadow of x̃, i.e. that for one (hence any) representative (x̃ε)ε of x̃

the net (x̃ε)ε converges to y as ε → 0.

Theorem 6.7. Let U be an open subset of Rn, u ∈ G[U, Rn] and x0 ∈ U . Let y0 ∈ Rn,
r > 0, aε, bε > 0, d > 0, N ∈ N0 and ε1 ∈ (0, 1] satisfy the following conditions:

(i) u(x0) ≈ y0;

(ii) Br(x0) ⊆ U ;

(iii) aεbε + dεN � 1 for all ε � ε1;

(iv) s := sup{aε|0 < ε � ε1} is finite.

If there exists a representative (uε)ε of u such that for all ε � ε1,

(1) det(Duε(x0)) �= 0,

(2) ‖Duε(x0)−1‖ � aεε
N ,

(3) ‖Duε(x0) − Duε(x)‖ � bεε
−N for all x ∈ Br(x0),

then u is invertible on Bαr(x0) with inversion data

[Bαr(x0), Rn, v, Hl, Bβ(d/s)γr(y0)],

where α and β are arbitrary in (0, 1), γ is arbitrary in (0, α) and Hl ⊆ Rn is an arbitrary
open set containing

⋃
ε�ε2

uε(Bαr(x0)) for some suitable ε2 � ε1.
Furthermore, v(y0) ≈ x0 and and Bβ(d/s)γr(y0) ⊆ uε(Bγr(x0)) for all ε � ε2. Also,

there exists a representative (vε)ε of v such that

vε|uε(Bαr(x0)) = uε|Bαr(x0)
−1

for all ε � ε2.

Proof. Without loss of generality we assume x0 = 0 (otherwise, replace U by U − x0

and uε(x) by uε(x + x0)) and y0 = 0 (otherwise consider uε(x) − y0); therefore, we have
uε(0) ≈ 0.

Let ε � ε1. Substituting a by aεε
N and b by bεε

−N in Theorem 6.4 shows that (by
Remark 6.5) uε is smoothly invertible on Br(0). Let wε : Vε → Br(0) denote the smooth
inverse of uε|Br(0), where Vε := uε(Br(0)) is open in Rn. By (iii),

aεε
N

1 − aεbε
� aεε

N

dεN
� s

d
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holds. Therefore, aεε
N/(1− aεbε) being the value corresponding to c in Theorem 6.4, we

obtain
‖Duε(x)−1‖ � s

d

for all x ∈ Br(0). By Hadamard’s Inequality, it follows that

|det(Duε(x))| =
∣∣∣∣ 1
det(Duε(x)−1)

∣∣∣∣ � dn

Csn
(6.2)

for some constant C > 0 and for all x ∈ Br(0). Now let α ∈ (0, 1) and Kε := uε(Bαr(0)).
From (6.2), it immediately follows by Proposition 5.4 that there exist (Kε, 0)-extensions
vε of wε such that (vε)ε is in EM (Rn)n. In particular, vε ◦ uε|Bαr(0) = idBαr(0). Now let
β ∈ (0, 1) and γ ∈ (0, α). Since uε(0) converges to 0 for ε → 0, there exists ε2 � ε1 such
that

|uε(0)| � (1 − β)
d

s
γr

for all ε � ε2. Thus, by Proposition 6.6, Bβ(d/s)γr(0) ⊆ uε(Bγr(0)) for all ε � ε2. From
now on, we always let ε � ε2. Since uε(Bγr(0)) ⊆ Kε, we have

uε ◦ vε|Bβ(d/s)γr(0) = idBβ(d/s)γr(0) .

Moreover, (vε|Bβ(d/s)γr(0))ε is c-bounded into Bαr(0), since

vε(Bβ(d/s)γr(0)) ⊆ Bγr(0) ⊆ Bαr(0).

Furthermore, (uε|Bαr(0))ε is c-bounded into any open set Hl ⊆ Rn that contains⋃
ε�ε2

uε(Bαr(0)),

since u is c-bounded into Rn.
Finally, applying Theorem 6.4 (1) and due to the fact that

vε|Bβ(d/s)γr(0) = wε|Bβ(d/s)γr(0),

we get
|vε(0)| = |vε(0) − vε(uε(0))| � s

d
|0 − uε(0)|.

Since uε(0) → 0, this also shows that vε(0) → 0 as ε → 0. �

Note that Theorem 6.7 (2) implies that (det(Duε(x0)))ε is strictly non-zero. Theo-
rem 6.7 (iii) guarantees that Banach’s Fixed Point Theorem can be applied (implicitly
via Theorem 6.4).

The convergence of (uε(x0))ε to some y0 in Theorem 6.7 ensures that the images of
the open ball Br(x0) under the uε are not scattered wildly all over Rn but stay centred
around y0. One may suspect that this condition is stronger than necessary. As a matter
of fact, the theorem still holds true if uε(x0) stays close enough to y0 in the following
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sense: in the proof, convergence of (uε(x0))ε is needed in one place only, namely to obtain
ε2 such that

|uε(x0) − y0| � (1 − β)
d

s
γr (6.3)

holds for all ε � ε2. Hence, u is invertible even if the convergence condition is weakened
to (6.3).

The next proposition shows that the conditions of Theorem 6.7 are, in fact, independent
of the choice of the representative.

Proposition 6.8. If one representative of u ∈ G[U, Rn] satisfies the conditions of
Theorem 6.7, then every representative does.

Proof. The demonstration consists of a series of rather technical estimates. Essen-
tially, the proof establishes that if (uε)ε satisfies the conditions of the theorem with x0,
y0, r, aε, bε, d, N , ε1 and s, then another given representative (ūε)ε of u satisfies them
with x0, y0, r, āε, b̄ε, d̄, N , ε̄1 and s̄, where āε, b̄ε, d̄, ε̄1 and s̄ can be chosen to satisfy
āε � aε and b̄ε � bε (for all ε � ε̄1), d̄ � d, ε̄1 � ε1 and s̄ � s. Then |aε − āε| → 0 and
|bε − b̄ε| → 0 for ε → 0, and d̄ ↗ d and s̄ ↘ s hold for ε̄1 → 0. For full details of the
proof we refer the reader to [9, Proposition 3.47]. �

The following example shows that the inversion issue of the jump function of Exam-
ple 3.3 is settled affirmatively by Theorem 6.7.

Example 6.9. Let u ∈ G((−α, α)) (for α > 0) be the generalized function modelling
a jump with uε(x) = x + arctan(x/ε) as a representative. We found in Example 3.3 that
u is invertible on an open neighbourhood of 0. Indeed, (uε)ε satisfies all conditions of
Theorem 6.7 with x0 = 0, y0 = 0, r ∈ (0, α), aε = 1/(ε + 1) (then s = 1), bε = 1,
d ∈ (0, 1

2 ], N = 1 and ε1 = 1.

The next example emphasizes the role of Theorem 6.7 (iii): if this condition is violated,
we cannot expect u to be invertible.

Example 6.10. Recall u from Example 4.4: a representative of u was given by
uε : (−α, α) → R, uε(x) = sin(x/ε). Let x0 = 0. Then y0 = 0. No matter how small
we choose r or ε1, we always end up with aε = 1, bε = 2 and N = 1. Since the product
of aε and bε is already greater than 1, no d > 0 can be found that is consistent with
condition Theorem 6.7 (iii). This is not surprising since we have already noted that (uε)ε

is not ca-injective on any neighbourhood of 0 and, thus, u cannot be left invertible.

Despite the lack of left invertibility there is still hope for u from Example 6.10 to
be right invertible since (uε)ε at least is ca-surjective onto (−1, 1). Therefore, a theo-
rem yielding right invertibility of generalized functions similar to u from Example 6.10,
assuming properties of u similar to those of Theorem 6.7, might be desirable.
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Theorem 6.11. Let U be an open subset of Rn, u ∈ G(U)n and x0 ∈ U . Let y0 ∈ Rn,
r > 0, aε, bε > 0, d > 0 and ε1 ∈ (0, 1] satisfy

(i) u(x0) ≈ y0,

(ii) Br(x0) ⊆ U ,

(iii) aε(bε + d) � 1 for all ε � ε1,

and N ∈ N. If there exists a representative (uε)ε of u such that, for all ε � ε1,

(1) det(Duε(x0)) �= 0,

(2) ‖Duε(x0)−1‖ � aεε
N ,

(3) ‖Duε(x0) − Duε(x)‖ � bεε
−N for all x ∈ BrεN (x0),

then u is right invertible on BαrεN
2

(x0) with right inversion data

[BαrεN
2

(x0), Rn, v, Bβdγr(y0)],

where α and β are arbitrary in (0, 1), and γ is arbitrary in (0, α) for some suitable ε2 � ε1.
Furthermore, v(y0) ≈ x0 and Bβdγr(y0) ⊆ uε(BγrεN (x0)) for all ε � ε2. Also, there

exists a representative (vε)ε of v such that

vε|uε(BαrεN (x0)) = uε|BαrεN (x0)
−1

for all ε � ε2.

Proof. The main difference from Theorem 6.7 is the fact that the size of the ball
where uε is injective is shrinking with ε. Consequently, no left inverse can be found
without further conditions (cf. Example 6.10). To prove the theorem just use (iii) instead
of Theorem 6.7 (iii) to obtain an estimate for aεε

N/(1 − aεbε) and replace s/d by εN/d

and r by rεN in the proof of Theorem 6.7, while omitting the part concerning the left
inverse. �

Note that we do not require u to be c-bounded into Rn. This is due to the fact that
the c-boundedness of u is only necessary when composing with a left inverse, whereas
the aim of the theorem is to produce a right inverse. Moreover, Theorem 6.11 (iii) has a
shape different from its equivalent in Theorem 6.7, corresponding to the difference in the
estimates due to the replacement of r by rεN . Note that Theorem 6.11 (3) is weaker than
Theorem 6.7 (3) and that Theorem 6.11 (iii) implies Theorem 6.7 (iv). The actual shape
of Theorem 6.11 (iii) seems to be incomparable to the corresponding Theorem 6.7 (iii); it
reflects the necessity of the proof to employ Theorem 6.11 (3). Finally, the convergence
condition can again be exchanged for

|uε(x0) − y0| � (1 − β)dγr

for all ε � ε1.
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Example 6.12. Checking uε(x) := sin(x/ε) for the conditions of Theorem 6.11, we
easily see that (uε)ε satisfies all the requirements with respect to x0 = 0, y0 = 0, r ∈
(0, 1

2π), aε = 1, bε = 1−cos r, d ∈ (0, 1−cos r), N = 1 and ε1 = 1. Therefore, u = [(uε)ε]
is right invertible on a suitable neighbourhood of 0.

Again, the conditions of Theorem 6.11 hold true independently of the choice of the
representative.

Proposition 6.13. If one representative of u ∈ G(U)n satisfies all the conditions of
Theorem 6.11, then every representative does.

Proof. As before, we refer the reader to [9] for the demonstration in full detail (see [9,
Proposition 3.53]). The proof establishes that if (uε)ε satisfies the conditions of the
theorem with x0, y0, r, aε, bε, d, N and ε1, then another given representative (ūε)ε of u

satisfies them with x0, y0, r, āε, b̄ε, d̄, N and ε̄1, where āε, b̄ε, d̄ and ε̄1 can be chosen to
satisfy āε � aε and b̄ε � bε (for all ε � ε̄1), d̄ � d and ε̄1 � ε1. Then |aε − āε| → 0 and
|bε − b̄ε| → 0 hold for ε → 0, and d̄ ↗ d holds for ε̄1 → 0. �

Now that we have been successful in proving a ‘right inverse function theorem’ the
question arises whether a modification with respect to ‘only left invertible’ is also possible.
Typically, the generalized functions being only left invertible are ca-injective on a fixed
set but the interior of the intersection of the images of this set under uε is empty. In
addition, we know that the inverse of any right invertible function is left invertible (see
Proposition 3.5 (i)). So let us examine the following example.

Example 6.14. Consider v ∈ G((−1, 1)), which has vε(x) := ε arcsin x as a represen-
tative. This v is a right inverse to the function u we studied in Examples 6.10 and 6.12.
Since Dvε(0) is the reciprocal value of Duε(0), it is not surprising to discover that (vε)ε

satisfies estimates similar to conditions (2) and (3) of Theorem 6.11 with the sign of N

reversed.

Indeed, reversing the sign of N in conditions (2) and (3) of Theorem 6.7 leads to
sufficient conditions for left invertibility.

Theorem 6.15. Let U be an open subset of Rn, let u ∈ G[U, Rn] and let x0 ∈ U . Let
r > 0, aε, bε > 0, d > 0, N ∈ N0 and ε1 ∈ (0, 1] satisfy the following conditions:

(i) Br(x0) ⊆ U ;

(ii) aεbε + dεN � 1 for all ε � ε1;

(iii) s := sup{aε|0 < ε � ε1} is finite.

If there exists a representative (uε)ε of u such that, for all ε � ε1,

(1) det(Duε(x0)) �= 0,

(2) ‖Duε(x0)−1‖ � aεε
−N ,

(3) ‖Duε(x0) − Duε(x)‖ � bεε
N for all x ∈ Br(x0),
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then u is left invertible on Bαr(x0) with left inversion data

[Bαr(x0), Rn, v, Hl],

where α is arbitrary in (0, 1) and Hl ⊆ Rn is an arbitrary open set containing⋃
ε�ε1

uε(Bαr(x0)).

Furthermore, there exists a representative (vε)ε of v such that

vε|uε(Bαr(x0)) = uε|Bαr(x0)
−1

for all ε � ε2 for some suitable ε2 � ε1.

Proof. To prove the theorem we just use (ii), as Theorem 6.7 (iii) is used to obtain
an estimate for aεε

−N/(1 − aεbε), and replace aεε
N by aεε

−N , bεε
−N by bεε

N and d by
ε2N in the proof of Theorem 6.7, while omitting the part introducing the constant β and
the part concerning the convergence of vε(0) to 0. �

The preceding theorem lacks the convergence condition on (uε(x0))ε corresponding
to Theorem 6.7 (i), since for the construction of a left inverse we do not care if the
intersection of the images under uε still contains a non-empty open set.

Example 6.16. Let v be the generalized function from Example 6.14. Then (vε)ε

satisfies the conditions of Theorem 6.15 with respect to x0 = 0, r ∈ (0,
√

3
2 ), aε = 1,

bε = 1/(
√

1 − r2) − 1 < 1, d ∈ (0, 2 − 1/
√

1 − r2], N = 1 and ε1 = 1.

Once more we have independence of the choice of the representative in Theorem 6.15.

Proposition 6.17. If one representative of u ∈ G[U, Rn] satisfies the conditions of
Theorem 6.15, then every representative does.

Proof. Again, we refer the reader to [9] for the demonstration in full detail (see [9,
Proposition 3.57]). The proof establishes that if (uε)ε satisfies the conditions of the
theorem with x0, r, aε, bε, d, N , ε1 and s, then another given representative (ūε)ε of u

satisfies them with x0, r, āε, b̄ε, d̄, N , ε̄1 and s̄, where āε, b̄ε, d̄, ε̄1 and s̄ can be chosen to
satisfy āε � aε and b̄ε � bε (for all ε � ε̄1), d̄ � d, ε̄1 � ε1 and s̄ � s. Then |aε − āε| → 0
and |bε − b̄ε| → 0 hold for ε → 0 and d̄ ↗ d, and s̄ ↘ s hold for ε̄1 → 0. �

Finally, we take a look at the relation between the classical Inverse Function Theorem
(Theorem 6.4) and the generalized inverse function theorem (Theorem 6.7). On the
C∞-level we saw in Remark 3.2 (iii) that if a smooth function f : U → V (with U and
V open subsets of Rn) is classically C∞-invertible on a neighbourhood W of some point
x0 ∈ U with smooth inverse g, then, obviously, σ(f) = ι(f) is strictly invertible on W

with inversion data [W, f(W ), σ(g), f(W )]. But what is the situation if f is not C∞, i.e. if
we cannot use the trivial embedding σ? In the following, we shall show that our notion of
invertibility and Theorem 6.7 are consistent with the classical Inverse Function Theorem
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(Theorem 6.4), the latter taken for the special case X = Y = Rn and f a C1-function.
In the proof we shall use the following proposition (for the proof of the proposition itself
refer to [9, Proposition 3.60]).

Proposition 6.18. Let U be an open subset of Rn, V an open subset of Rm, f ∈
C(U, V ) and fε ∈ C(U, Rm) for ε ∈ (0, ε0]. Assume that (fε)ε converges to f uniformly
on compact subsets of U as ε → 0. If g is a continuous function on V , then (g ◦ fε|K)ε

converges uniformly to g ◦ f |K for all compact sets K in U .

We now establish the relation between the classical (local) inverse of a continuously
differentiable function f and the (generalized) inverse of ι(f). In doing so, we first present
the essential statement in a rather concise, yet sloppy, way, followed by more elaborate
and precise versions displaying more of the technical details.

Theorem 6.19. Let U be an open subset of Rn, let x0 ∈ U and let f ∈ C1(U, Rn) with
det(Df(x0)) �= 0. Then the following hold.

(1) ι(f) ∈ G(U)n satisfies the conditions of Theorem 6.7 around x0, and therefore is
invertible on some neighbourhood of x0.

(2) Let g be the classical inverse of f around f(x0) and let v ∈ G(Rn)n be the inverse
of ι(f) obtained by Theorem 6.7. Then, for every representative (vε)ε of v, the nets
(vε)ε and (Dvε)ε converge to g and Dg, respectively, uniformly on compact subsets
of some suitable open neighbourhood of f(x0).

More precisely, we have the following.

(i) If f is (classically) invertible around x0 with constants y0 := f(x0), r, a, b, W :=
Br(x0) and V := f(Br(x0)) as given in Theorem 6.4, then any representative of
ι(f) satisfies the conditions of Theorem 6.7 with x0, y0, r, aε := a + δ, bε := b + δ

(where δ > 0 is chosen such that (a+ δ)(b+ δ) < 1), d := 1− (a+ δ)(b+ δ), N := 0
and some suitable ε1.

(ii) Let g ∈ C1(V, W ) be the inverse of f |W around f(x0) ∈ V given by the (classical)
Inverse Function Theorem 6.4 and let v ∈ G(Rn)n be the inverse of ι(f) obtained
by Theorem 6.7 with inversion data [G, Rn, v, Hl, Hr]. Assume that for both g and
v the relevant constants are given as in (i).

Then G � W , Hr � V and, for every representative (vε)ε of v, the nets (vε)ε

and (Dvε)ε converge to g and Dg, respectively, uniformly on compact subsets of
Hr ∩ V = Hr.

Proof. (i) We check the conditions of Theorem 6.7 for a representative (fε)ε of ι(f).
Obviously, conditions (ii)–(iv) of Theorem 6.7 (with s := a + δ) hold for all ε ∈ (0, 1].
By Proposition 2.7, ι(f) is C1-associated with f . Therefore, fε(x0) → f(x0) = y0 and
det(Dfε(x0)) → det(Df(x0)) �= 0, showing that conditions (i) and (1) of Theorem 6.7 (for
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sufficiently small ε, say ε � ε0) are satisfied. Since Dfε(x) → Df(x) for all x ∈ Br(x0),
we can find ε1 � ε0 such that ‖Dfε(x0)‖ � a + δ and

‖Dfε(x0) − Dfε(x)‖ � ‖Dfε(x0) − Df(x0)‖ + ‖Df(x0) − Df(x)‖ + ‖Df(x) − Dfε(x)‖
� 1

2δ + b + 1
2δ

= b + δ

for all x ∈ Br(x0) and ε � ε1, yielding conditions (2) and (3) of Theorem 6.7, as required.

(ii) Since G = Bαr(x0) with α ∈ (0, 1), the inclusion W = Br(x0) � Bαr(x0) = G

holds. According to Theorem 6.4, Br/c(y0) ⊆ f(Br(x0)) = V with c = a/(1 − ab).
Theorem 6.7 yields that Hr = Bβ(d/s)γr(y0) with s = a + δ, β ∈ (0, 1) and γ ∈ (0, α) ⊆
(0, 1). From

r

c
=

1 − ab

a
r > β

1 − (a + δ)(b + δ)
a + δ

γr = β
d

s
γr

it follows that Hr = Bβ(d/s)γr(y0) � Br/c(y0) ⊆ f(Br(x0)) = V .
Next, we prove the uniform convergence of (vε)ε to g on compact subsets of Hr. By

Theorem 6.7, there exists a representative (vε)ε of v such that fε ◦ vε|Hr = idHr . Observ-
ing that vε(Hr) ⊆ Ḡ, we obtain

sup
x∈Hr

|f ◦ vε(x) − x| = sup
x∈Hr

|f(vε(x)) − fε(vε(x))|

� sup
y∈Ḡ

|f(y) − fε(y)|.

By Proposition 2.7, the right-hand side converges uniformly to 0 for ε → 0 and, hence,
so does the left-hand side. Applying Proposition 6.18 to idHr , (f ◦ vε)ε and g yields that
(vε)ε converges to g uniformly on compact subsets of Hr.

Finally, we prove the uniform convergence of the derivatives on compact sets. By
vε(Hr) ⊆ Ḡ,

sup
x∈Hr

‖Df(vε(x)) ◦ Dvε(x) − I‖ = sup
x∈Hr

‖Df(vε(x)) ◦ Dvε(x) − Duε(vε(x)) ◦ Dvε(x)‖

� sup
z∈Ḡ

‖Df(z) − Duε(z)‖‖Duε(z)−1‖

holds. As shown in the proof of Theorem 6.7, (Duε(·)−1)ε is uniformly bounded on Ḡ

with respect to ε. By Proposition 2.7, (Duε)ε converges to Df uniformly on the compact
set Ḡ for ε → 0. Hence,

sup
x∈Hr

‖Df(vε(x)) ◦ Dvε(x) − I‖ → 0 uniformly as ε → 0. (6.4)

Applying Proposition 6.18 to g, (vε)ε and Df , we obtain that

sup
x∈L

‖Df(g(x)) − Df(vε(x))‖ → 0 uniformly as ε → 0 (6.5)
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for all compact subsets L of Hr. Let K ⊂⊂ Hr and x ∈ K. Then

‖Dvε(x) − Dg(x)‖
= ‖Df(vε(x))−1 ◦ Df(vε(x)) ◦ Dvε(x) − Df(vε(x))−1 ◦ Df(vε(x)) ◦ Dg(x)‖
� ‖Df(vε(x))−1 ◦ Df(vε(x)) ◦ Dvε(x) − Df(vε(x))−1 ◦ Df(g(x)) ◦ Dg(x)‖

+ ‖Df(vε(x))−1 ◦ Df(g(x)) ◦ Dg(x) − Df(vε(x))−1 ◦ Df(vε(x)) ◦ Dg(x)‖
� ‖Df(vε(x))−1‖(‖Df(vε(x)) ◦ Dvε(x) − I‖ + ‖Df(g(x)) − Df(vε(x))‖‖Dg(x)‖)

holds. Df(vε(·))−1 (by vε(K) ⊆ Ḡ) and Dg are bounded on K, independently of ε. By
(6.4) and (6.5), the two expressions in the parentheses converge to 0 uniformly on K as
ε → 0, thereby concluding the proof. �
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