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Models of long term artificial selection in finite population
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Summary

The effects of population size and selection intensity, which are in the breeder’s control, are
investigated for ranges of values of quantities outside his control, namely the number, initial
distribution of frequencies and effects of genes influencing the trait. Two alleles are assumed to be
initially segregating at each locus, with no linkage, dominance or epistasis. The effects are assumed
to follow a gamma distribution, using a wide range of its two parameters which specify both mean
gene effect or selective value and the shape of the distribution, or the ratio of Wright’s effective
number to actual number of genes. The initial gene frequencies (g) are assumed to be either 0-5 at
all loci, uniformly distributed over the range 0-1, or to have a U-shaped distribution, proportional
to [g(1 —¢)]* such as derives from neutral mutation, with gene effect and frequency distributions
independent. The mean and variance of selection response and limits, in the absence of new

mutation, are derived.

The shape of the distribution of effects is not usually important even up to the selection limit.
With appropriate parametrization, the influence of the initial frequency distribution is small over a
wide range of parameters. For reasonable choices of parameters, the effects of changing population
size from those typically used in animal breeding programmes are likely to be small, but not
negligible. For the initial U-shaped frequency distribution, further increases in population size are
always expected to give a greater limit, regardless of present value, but not for the other

distributions.

1. Introduction

Predictions of response to artificial selection for a few
generations can be made using estimates of heritabil-
ities, correlations and variances which are readily ob-
tained (albeit often with large sampling errors) from
straightforward analyses of covariance among rela-
tives. Long term responses depend on many variables,
however, that can not usually be estimated in the base
population, namely: the number, frequency and effect
of each gene influencing each trait of interest, to-
gether with the interactions introduced by epistasis,
the correlations induced by linkage disequilibrium, the
strength of natural selection opposing directional selec-
tion and the rate of occurrence and distribution of new
mutations. The task of predicting long term responses
has therefore either to be given up as impossible, or
simple models constructed and the predictions made
from them compared with data from selection experi-
ments and breeding programmes. The concern of the
breeder is to predict how the way he manages his
population now influences its responses in the future,
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for example, what is the effect of increasing the size of
the population on the total response? Even some
simple models may make the process of decision
making more reliable. Factors which influence this
decision are, on the one hand, the costs of maintaining
the population and controlling its management, which
argue for small populations and, on the other hand, the
possible inbreeding depression and loss of variation
leading to reduced long term responses and limits,
which argue for large populations. There is a further
conflict in that high selection intensity, i.e. picking only
few extreme individuals, increases short term but
reduces long term response. These arguments and
much of the basic theory were explained and de-
veloped by Robertson (1960).

In this paper, models of the quantitative trait are
analysed in more detail, with the specific intention of
reducing the number of relevant but generally un-
known parameters to a minimum, either by repara-
meterization or by showing that others are not likely to
be important. The main formulae are in terms of prob-
ability distributions of gene effects and frequencies
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Table 1. Definition of symbols

t generation number

N effective population size

i selection intensity

h?® heritability

o ‘phenotypic standard deviation

a gene effect, measured as difference between
hommozygotes

q frequency of favourable allele

s = ia/o, selective value

#(a,q) joint distribution of gene frequency and effects

fla) distribution of gene effects

g(q) distribution of gene frequencies

o ff parameters of the gamma distribution of gene
effects

o* = awo /(Ni), parameter of gamma distribution of Ns
values

n number of segregating genes influencing the trait

n, = nf/(f+ 1), effective number of genes

n, totalnumber of genes (segregating or fixed) influenc-
ing the trait

M effective population size prior to selection

u mutation rate per locus

R, response at generation ¢

R, response limit

u(Ns, q) fixation probability of gene

A* =Nih/+/n,

rather than by specifying any particular values. Even
so, for many tastes, the models will be too simplistic.
In this paper we deal with variability existing in the
population at the outset; subsequently we shall incor-
porate the effects of mutation.

2. Model
(1) Basic assumptions

Artificial selection is assumed to be practised by trunc-
ation selection with intensity i on a trait with pheno-
typic standard deviation o, so the selection
differential is io, and the effective population size is N.
These and other symbols are summarized in Table 1.
In this study we shall make the basic assumptions that
at all loci gene action is additive with no epistasis, there
are two alleles, the allele conferring higher value on the
trait having frequency g, there is a difference of a in
value between the homozygotes, and there are n un-
linked loci segregating that influence the trait. The case
of multiple alleles will not be considered here: two
situations in which the two-allele model is appro-
priate are where the population derives from a cross of
two inbred lines or where population size (M) and
mutation rate (x) have been sufficiently low pre-
viously (4 Mu < 1). The selective value of the gene is
given by s = ia/o, approximately (Falconer, 1981).
Genes are assumed to start and remain in linkage
equilibrium.

Let ¢(a,q) define the joint distribution of gene
frequency and effects in the base population. The herit-
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ability of the trait is given by

w=n/@o) [ [ sai-0deodds )

the expected total response to selection at generation
tis

[e o] 1
R=n[" [ cElg-daaba@adeds; @

a=0Jg=0
and the variance of response among replicate lines
selected from the same base population is

o0 1

Ry =n" [ aeVa-deosaadds, o
, assuming linkage disequilibrium can be ignored. This
variance is thus conditional on the distribution of
effects and frequencies in the base population. The
variance would be subtantially higher if it were meas-
ured among lines selected from different populations
having, for example, the same heritability but a
different origin. The latter case of unconditioral
variance is not completely defined because it depends
on distributions of effects and frequencies among
populations, so we do not consider it here.

(ii) Distribution of effects and frequencies

The joint distribution of gene effects and frequency is
generally unknown. Under some assumptions, not-
ably that of genes neutral with respect to fitness before
selection starts, the two distributions can be assumed
to be independent. Thus we shall assume
#(a, q) = fla) g(9).

The choice of distribution, f{a), of gene effects is
arbitrary, but one with a suitable range of properties
is the gamma distribution (previously used by
Kumura, 1979, except to describe the distribution of
effects of deleterious genes). The density function is

flay=ofeaf~1/I(B) (0<a< ©), (C))

where () is the gamma function. Its moments are:
E(a) = B/a, E(a®) = p(f+1)/02, and V(a) = f/a? The
parameter f can be regarded as a measure of the
equality of effects at different loci. Consider Wright’s
measure of effective number of loci (n,) which com-
pares the range (K) to the vanance (V), i.e.
n, = K2/(8V) from a line cross with all genes at fre-
quency 0-5. As K=nE(@) and V = (n/8) E(a®), so
n,/n = B/(f+1). Regardless of the actual gene fre-
quencies the ratio 8/(f+ 1) will be defined as equal to
the ratio of the effective to actual numbers of loci. With
reference to distributions used previously in similar
studies (Hill, 1982), the exponential distribution is
given by # = 1, the gamma (half) distribution by = 4,
the case of equal gene effects by § — o0, and the geo-
metric distribution by f— 0. Examples are given in
Fig. 1. Thus the gamma spans a wide range of possibil-
ities and, in particular, when £ is small implies that
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2:40 1 If n, denotes the total number of loci affecting the
trait in the genome (as opposed to n, used previously,

] to denote the number segregating), the expected herit-

200 ability of the trait is then, from (1),
= h? = Mun_ E(a%)/o*. 6)
1-60 — although the actual value of heritability in any single
line will depend on the frequency and effects of the

" genes segregating in it.
(c) Uniform distribution. A limiting case of ana-

i 1207 lytical convenience and some interest is the uniform
7 distribution of frequencies, g(¢q) = 1, 0 < ¢ < 1. This
distribution would apply if all genes derived from
080 1 mutation, crosses among populations or other sources
N very many generations ago, and subsequently the
population had been maintained at a small effective
0-40 B = 4-00 size without appreciable selection and further muta-
| g:%:gg tion, the uniform being the asymptotic distribution
/5 =0-50 for neutral genes (Kimura, 1955). For this case,
0:00 ——— #7023 E[g(1-g)]=}.
0-00 0-50 1-00 1-50
af[E@)]**
Fig. 1. Examples of the gamma distribution, 3. Analysis
fla) = aPe~22af—1/1(p), for a range of B, with values . . o
expressed as a/[E(a®)]}, where E(a?) = B(f+1)/o2. The (i) Consequences of diffusion approximation

parameter & describes scale rather than shape. Under the assumptions of the diffusion approxima-

tion (see, for example, Crow & Kimura, 1970) the

genes of small effect are much more common than  distribution of gene frequency ¢, at generation ¢ is a
those of large effect. The normal distribution of  function of the initial gene frequency g, the products
effects with mean zero and variance V(a) has of effective population size and selective value, Ns, and
K =0798 nv/V(a) and n,/n = 0-637, equivalent to  generation number in units of population size, ¢/N, a
B =1-75. As will be demonstrated later, the gamma  property used by Robertson (1960). Therefore it fol-
with this parameter or, more simply f = 2, provides  lows that, if the gene frequencies are distributed inde-
a sufficient approximation. pendently of the gene effects and thus selective values,
The distribution of gene frequencies depends onthe  quantities such as the distribution of gene frequencies,
population history and we shall consider three special  mean gene frequencies and responses to selection are

cases. functions of the joint distributions of g and Ns and of

(a) All genes at initial frequency 0-5. Such a distri-  ¢/N. In the case we consider where effects of initial
bution would occur in a cross between two com-  frequencies are independent, expected responses, for
pletely homozygous lines. example, are a function of g(g), /*(Ns) and ¢/ N, where

(b) U-shaped distribution. The distribution of gene  f* denotes the density of Ns. We have assumed the gene
frequencies describes that in a population maintained  effects, a, have a gamma distribution (4) with para-
previously without selection for the metric trait, and  meters a and §, and therefore Ns = Nia/o also has a
with all genes neutral with respect to fitness. The distri-  gamma distribution with parameters a* = ag(Ni) and
bution will then reflect the generation of new allelesby ~ f. Therefore E(Ns) = /a* and, because there is a
mutation and their loss by drift. We assume the linear relation between Ns and a, the ‘shape’ of the
product My of previous effective population size (M)  distribution (Fig. 1) is unchanged. Thus, in summary,
and per-locus mutation rate (y) is sufficiently small  quantities such as expected responses are functions of
that not more than two alleles are segregating at each  g(q), a*, f and ¢/N.

locus. The frequency spectrum is then After this reparametrization, (2) becomes
g(q) = 4Mu(1 —q)*Mr=—1g7! % N e

R, n = (na/Ni) Ns E[g,n—qlINs, q)
(Kimura & Crow, 1964), and for small My, Ns=0Jg=0

S*(N. d(Ns)dq (7)
g(g) oc 1/[g(1—q)] x f*(Ns)g(q) d(Ns)dg (
and E[g(1 —q)] - 2Mpu (one half of the heterozygo-

sity). Note that, in our model, the frequency distri- (R, /) = (no?/ N*i2) J‘ © 1 (Ns) V[g,n —4qINs, q]
bution of genes influencing the trait is symmetric about Ng=0Jg~0

0-5. xf*(Ns)g(q)d(Ns)dg. (8)

and (3) becomes
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We shall consider ways of making these expressions
more tangible in terms of observed parameters later.
It follows that the coefficient of variation of response,
SE(R,/n)/R, N is a function of a*, B and g(g), and
inversely proportional to v/n.

(ii) Evaluation at selection limits

When all the variation initially present is lost a selec-
tion limit is reached in the absence of new mutation.
The fixation probability, the mean gene frequency over
replicate populations at the limit, is given from the
diffusion approximation by

u(Ns,q) = [1 —exp (—2Nsq))/[1 —exp (—2Ns)]  (9)

Kimura (1957). It has been shown previously that this
approximation holds well for truncation selection even
in very small populations (Hill, 1969). The expected
change and variance of change in gene frequency are

tlim E[q,—4qINs,q] = u(Ns,q)—q

- Q0

and

tlim Vg, —4qlINs, q] = u(Ns, q)[1 —u(Ns, q)]
—

which can be inserted into (7) and (8), respectively.
We first integrate over the distribution of Ns and, to

simplify the formulae, let x = Ns, and w(g) be the

function of ¢ in (7) after integrating out Ns. Thus

v@ = [1—e0)/(1—em0) g d

Following Kimura (1979) in expanding (1-e~%*)"'in a
series and inserting the gamma distribution for f*(x),
o0
v@ = [~ rem st )g
Z=0
x [a*f e=2*z xB | [(B)] dx.
Noting that

f“’ Be-ezdx = [(f+1)/P+,
0

T=

v@ = B/a){1-g+ £ [1+20+1)/at) 5

—(1+2u+q)/a*)-ﬂ—1]}. (10)

A similar formula can be obtained for the equivalent
quantity for the variance of response for insertion into
(8), namely

n(@) = [B(B+1)/a*] gol—j(l +2j/ar) A
+ @+ 1) (1 +2(+g)/o®) P~
—(j+l)(l+2(j+2q)/¢x"‘)‘ﬂ‘2]. (11)

Because, as Ns—0, u(Ns,q)—q approaches
Ns q(1 —q) (Robertson, 1960), it follows that

Am (@) =q( —q) [x*f*(x) dx = q(1—9q)
x B(B+1)/a*? = q(1 —q) E[(Ns)?].
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For small Ns, u(Ns, q)[1—u(Ns, q)] approaches
4(1—q), so n(q) is proportional to y(g). As Ns values
increase favourable genes become certain to be fixed,
so as a* = 0, w(g) approaches E[Ns](1 —¢) and »n(q)
approaches 0.

(a) g = 0-5. For the case where ¢ = 0-5 at al loci, it
follows immediately from (7), (8), (10) and (11) that

Re = (n0/N) (/o) 1+ g(— /147ty
' (12)

and
V(Ro) = (n0%/ N¥%) [B(B+1) o™
x [ﬁ (— i) )

(b) q uniform. For the case of a uniform distri-
bution of initial frequency, integration of (10) and (11)
over g(g) = 1 in (7) and (8) leads to

Ry, = (na/Ni)(B/a*)
X{%*a*/(ZﬂHE [1+2(j+1)/a*]"’“} (14)
and

V(Ry) = (na®/N*®) [B(B+1)/a*]

x {ﬁ J+2i/a*1P=2 1o /(B4 1)

x [g+j§_51 1 +2j/a"‘]‘ﬂ‘1]}. (15)

(¢) g with U distribution. Numerical integration was
required to evaluate (7) and (8), using Patterson’s
(1968) method. In order to speed convergence, eq. (10),
for example, was evaluated with terms in the summa-
tion paired as shown for ¢ > 4, which cancel when
evaluated at ¢ = 1, while for g < } they were paired so
as tocancel when evaluated at ¢ = 0. Because the prior
gene frequency spectrum (5) rather than distribution
was used, all results were scaled relative to other quan-
tities, such as initial heterozygosity, using the formula
g(q) oc 1 /[g(1 —¢)] in each case.

(iii) Evaluation at intermediate generations

Numerical methods using transition probability
matrices were used to evaluate the expressions at inter-
mediate generations. Let P(N, Ns) denote the square
matrix with elements p;, defining the Wright-Fisher
stochastic process (Ewens, 1979, Chapter 3).

2
o= (%)) @+ gy (1 — g~ Agyn-s
0 <j,k<2N)
where ¢ =j/2N and Aq = sq(1—q) is the expected

change in gene frequency, and s = ia/o as before. Let
¥(1, N, Ns) denote the vector whose elements v, are
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the expected frequencies at generation ¢ of genes with
initial frequency j/(2N). Thus

vy0) =J/2N
and

v(t, N, Ns) = P(N, Ns)v(t—1, N, Ns). (16)

Iteration was carried out each generation, and
E(g;/n—9q) is given by the elements of v(¢/N, N, Ns)—
v(0, N, Ns). For some initial gene frequency vector g’,
describing g(g), where g; = Prob (initial frequency =
j/2N), then

[ Bam-0s@dg

is approximated by
g’ [v(¢/N, N, Ns)—v(0, N, Ns)).

Since v was obtained for integral values of ¢, only the
corresponding specific values of t/N were used, €.g.
t/N=01,02, ... for N=10. Variances of response
were computed by iteration on a vector w, where
Wy = (J/2N).

Again, assuming independence, integration over the
distribution of selective values, s, was done using Simp-
son’s rule on iterated results for a range of s values,
typically s = 0, 0-046875, ...,1-5; but in some cases,
to improve precision, the range was split into two
parts. Convergence was checked by comparison of two
successive halvings of the s interval.

In more simple terms the method was to evaluate the
expected value of gene fequency for successive genera-
tions by transition matrix iteration for a range of selec-
tive values, and then to integrate these values over the
distribution of selective values. The two stages were
done separately so that the iteration results were used
for each selective value distribution. This method has
the great advantages over Monte Carlo simulation in
that the results involve no sampling error and, if
several distributions of effects are being used, involve
less computation. The inference from the diffusion
approximation that the composite parameters ¢/ N and
Ns (or the derived parameters o* and f) were
sufficient, rather than ¢, N and s, meant that results
needed to be computed only for a single value of
population size. Typically this was N = 20. Various
checks on the approximation were made. The only
problems arose when E(s) was large, such that a
significant proportion of the s values exceeded 1-5. In
such cases larger values of N were used.

(iv) Alternative parametrizations

As far as possible it is important to obtain expressions
in terms of quantities which can be estimated or
guessed at. We have used, so far, the parameters o* and
B, which are functions of the distribution of Ns, and do
not satisfy this criterion. Noting, from (1), that with
independent gene effects and frequency,
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h* = (n/20%) E(a®) E[g(1 — q)],
it follows that

E(a®) = 2h*a*/{nE[q(1 - )]} = B(B+ 1)/
and

a* = ao/Ni = [1/(Nih)] {np(B+1) E[q(1 - g)]/2}t. an

Alternatively, in terms of the effective number of genes,

n, = nf/(B+1),
o* = [(B+1)/(Nih)] {n, E[g(1 — )]/ 2}}
= (B+ D{E[g(1 —q))/2}}/ 4* (18)

where A* = Nih/+/n,. Thus results can be expressed
in terms of A* and n,/n instead of a* and B, the only
intangible being n,. The use of n, rather than n is
justified, as we shall see, by the greater robustness of
some results. If all gene frequencies are 0-5,
(B+1)/a* = A* /8 and if they are uniformly distri-
buted, (8+1)/a* = A*+/12. This reparametrization
is less meaningful for the mutation-derived U-shaped
distribution.

As a reference point, it is convenient to express
results in terms of the expected response, R,, in the first
generation of selection, further scaled by population
size. From (7), noting that R, = ih*c

R,/ n/(NR,) = n/(N?*Zh*) x function of (a*, B, g(q)).

Noting further that N*?h%/n is a function of A* and
B, it follows that

R;;/(NVR,) is a function of (4*, f and g(g)).

Similarly SE(R,;x)/(NR,) is a function of these para-
meters and is inversely proportional to n,. These terms
express response and its standard error in relation to
the initial response. A useful reparametrization which
expresses the response (or its standard error) in abso-
lute terms, is R,y /(ha/+/n,) which is seen from (7) to
be a function of the same parameters as R, y/(NR,).

4. Results

(@) g = 0-5. For simplicity and as a reference point, we
consider this case first. The asymptotic response (when
all genes are fixed) is shown in Fig. 2. At low values of
A* = Nih/+/n,, when N, (population size x selective
values) are small for all loci, the response is given by
2Nih%*e (Robertson, 1960), so when expressed as in the
graph R, /(ho+/n,) — 24*. At high values of 4*, R,/
(hov/ng) — 4/ 2 for all distributions of gene effects, as
all favourable genes become fixed. A log scale is used
for the plot of A4*, so the effects of a doubling of
population size, for example, give the same increase in
the abscissa over the whole range. Whilst increase in
population size gives a linear increase in response at
low values of 4*, for A* > 10 the effect of an increase
in population size is very small for any distribution of
gene effects. If all effects are equal (8 — o0) little
increase is achieved after 4* = 1, further gains are
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]
1-40

1-20 1

1-00

Rl(hon/n,)
o
&

01 1 10 100
A‘

Fig. 2. Response at fixation, expressed as R, /(ha+/n,), for
initial frequency 0-5 at all loci plotted against ]

A* = Nih/+/n,, for a range of § values with gamma
distribution (solid lines) and for normal distribution
(dashed lines). Values of R.,/ho+/n,) increase
monotonically for the values of § shown, namely § = 0-0,
0-25, 1-0, 40 and — 0.

made for the most extreme case (§ — 0) up to A* = 10
and a little beyond. Results for the normal distri-
bution are shown to fall between f = 1 and f§ = 4 for
the gamma distribution, and it is obvious that they do
not differ much from those for f =2 (not shown for
clarity); examples of the normal are not given subse-
quently for this reason. In general, reparametrization
leads to rather small differences according to §; for this
case of ¢ =} the differences are generally larger than
for other gene frequency distributions.

Let us consider an example to put the parameters
into focus. For a typical trait with A2 = 0-36 and
typical mass selection intensity of i=1-67,
A* = N/+/n,. Assume an exponential distribution of
gene effects, f = 1 and therefore N, = n/2, and that,
say 200 genes affect the trait to some extent. Thus
A* = N/10 and for all but experimental populations
N is typically 50 or more, giving A* > 5 with all useful
variation eventually fixed and a final limit of almost
1-4 ho+/n, ~ 8o.

The standard deviation of the asymptotic response
among conceptual replicate populations selected from
the same base is shown in Fig. 3. It is expressed in terms
of ho, and SD(R_) ranges from 1-d4ho if A* is very
small down to approaching zero as A* increases. For

*=5,8=1andn, = 100, it is seen that SD(R,,) =
0-1ho = 0-060 for h? = 0-36. Thus the coefficient of
variation of response, CV(R, ), among replicates
would be very small, of the order of 0-06/8 ~ 0-79/. It
follows that CV(R,,) can only be substantial when
both 4* and n, are small, i.e. Nih is very small,
implying in most situations a very small population
size. The parameter of the distribution of gene effects,
B, has a minor but not negligible influence on the
variance. When A* is small variability is higher when
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SD(R.)/(ha)

A*

Fig. 3. Standard deviation of response at fixation
expressed as SD(R,,)/(ho), for initial frequency 0-5 at all
loci plotted against A* = Nih/+/n, for a range of B
values. Coefficients of variation of response can be
deduced from Figs. 2 and 3 and are inversely proportional
to +v/n,. Values of SD(R,,)/(ho) increase monotonically
with f§ for low 4* for the values shown, namely f = 0-0,
0-25, 1-0, 4-0 and — oo and decrease monotonically

with g for high A*.

1-40 A B8=400 A*=4-00
| 8 =100 A*=4-00
B =025 A% = 4-00
1-20 A
B =4004* =1-00
1-00 A
_ ] =100 4% = 1-00
= =0-254* =1-00
~> 0-80 A B
[~
5 N
& 060 1
0-40 - g=4004*=0125
J B=1004*=025
B=025A4*%=0725
0-20 A
0-00 —————
0-00 0-50 1-00 1-50 2-:00 2-50
t/N

Fig. 4. Response, expressed as R;/(ho+/n,) for initial
frequency 0-5 at all loci, plotted against generations,
expressed as ¢/ N, for a range of values of A* and 8.

B is small, suggesting consequences of non-certain
fixation of genes of large effect. When A4* is large the
reverse is true, suggesting the residual source of
variation is due to non-certain fixation of genes of
small effect.

The expectation and standard deviation of re-
sponse prior to fixation are shown in Figs. 4 and 5
respectively for three widely different A* values and,
although a narrower range of f§ values than given in the
previous figures, probably wide enough to include the
situation in nature. In both cases the value of 8 (i.e. the
relation between n, and n) is seen not to be very
critical, whereas that of A* affects the limit, the
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1-40 -
1-20 1 B =400 A*=0-25
1 8 =100A4%=025
1-00 4 B=025A4*=025
2 080-
= 1 B = 4-00 4* = 1-00
< 060 | B =100 A4*=1-00
] B =025 A4%*=100
0-40 -
020 - =025 A*=4-00
B =100 A*=4-00
1 B =4-00.4%=4-00
0-00 ——
000 050 100 150 200 250

t/N

Fig. 5. Standard deviation of response, expressed as
SD(R,)/(ho), for initial fequency 0-5 at all loci, plotted
against /N for a range of A* and f as in Fig. 4. Further
explanation in caption to Fig. 3.

rate of approach to the limit and the variation of
response. The exception is in the early generations,
when V(R,) ~ th*¢?/N.and SD(R,/ha) ~ /(t/N) for
all values of parameters. The half-lives of the re-
sponse, for § = 1, are approximately 0-2N, 0-75N and
approaching 1-1N for A* =4, 1 and 0-25, respect-
ively, the latter value being that for the case of very
small N, values when pure drift predominates (Robert-
son, 1960). In this case of initial frequencies of 0-5, the
variation among lines increases and then decreases
over generations if A* is large, as useful genes
approach fixation in all replicates; this is not a phe-
nomenon found for the other distributions of gene
effects considered. The simple, pure drift, formula of
V(R,) = th*a®/ N applies for only about 0-1N genera-
tions at 4* = 4, i.e. only 5 generations or so for our
previous example with N = 50.

(b) Other distributions. No problems arise in para-
metrising the initial uniform distribution in terms of
A* in the same way as for the case of a gene fre-
quency of 0-5 at all loci, but when we consider the
U-shaped case this is not possible because of the prob-
lems of defining the actual or effective number of
genes. It is therefore convenient to use an alternative
scaling, in terms of (8+ 1)/a*, which is a measure of
the distribution of Ns (population size x selective
values), and the response to selection in the first genera-
tion, which equals R, = ih%c and is not dependent on
the gene frequency and effect distributions. The para-
metrization (f+ 1)/a* rather than E(Ns) = f/a* or
[E(Ns)*lt = [B(B+ 1)}t/o* was used as it appears to
remove most differences among the models.

Plots of the expected response at fixation are given
in Fig. 6. For small values of (f+1)/a* the limit
approaches 2NR,. The graphs differ very little among
the distributions for values of (f+1)/a* less than
about 0-5 and the slopes of the curves are very similar
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Fig. 6. Response at fixation, expressed in terms of the
response in the first generation as R, /(NR,), plotted
against (f+ 1)/a* for alternative values of 8 (0.25, 1-0,
4-0) and initial frequency distributions, 0-5 at all loci (---),
uniform (—) and U-shaped (—-). In each case values of
R, /(NR,) are highest for f§ = 4-0, intermediate for

B = 1-0 and lowest for § = 0-25.

R_/NR,

01 1 10 100
@B+ 1)/a*

Fig. 6a. As Fig. 6, but using a logarithmic plot for both

axes. Lines of slope —1 are also drawn.

over the whole range. The magnitude of #is unimport-
ant in all cases. Consider now the consequences of a
doubling of population size from N = 50 to 100 with
B =1:for (B+1)/a* =5, the values of R,/(R, N) are
0-8, 0-95 and 1-1 for g = 0-5, uniform and U-shaped
respectively, and for (f+1)/a* = 10 they are 0-4, 0-5
and 0-65 respectively, which when doubled to allow for
the change in N are 0-8, 1-0 and 1-3 implying, respect-
ively, no further increase, a small increase and a dis-
tinct increase in res—~onse, respectively. This is seen
more clearly in Fi . 6a using a log-log plot. A
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Fig. 7. Standard deviation of response at fixation,
expressed as SD(R,)/(ha), for gene frequency either 0-5
at all loci or uniformly distributed, plotted against
(f+1)/a* for a range of B values (0, 0-25, 1-0, 4-0 and
— o). For both gene frequency distributions

SD(R )/ (ho) increases monotonically with f when
(B+1)/a* is small.
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Fig. 8. Standard deviation of response at fixation,
expressed as SD(R,)/(ho), for U-shaped gene frequency
distribution with f = 1 plotted against (f+ 1)/a* for a
range of N values.

doubling of population size (or strictly Ni) leads to an
increase in response providing the slope of the line is
less negative than —1. This graph shows that, in
theory, an increase in population size continues to
increase response in the U-shaped case, by roughly
10% for each doubling at high values of Ni.

The variance of response at the limit has different
properties for the U-shaped case, so we first contrast
just the g = 1 and uniform models, results being given
in Fig. 7. It is, however, in all cases most convenient
to express values in terms of ho. Whilst at low values
of (f+1)/o* the results are similar for ¢ = { and uni-
formly distributed, they diverge widely for (f+1)/a*
values in excess of unity, especially when fis large (i.e.
genes of equal effect). For gene frequencies of 0-5,
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Fig. 9. Response in terms of that in the first generation,
expressed as R;/(NR,), plotted against generations,
expressed as t/N, for f = 1, alternative initial frequency
distributions (as Fig. 6) and values of (8+1)/a*.

1-4 4 -—-~—g=05
q uniform

B+ Da*=1

SD(RI)/hO

B+1Dar=4

1 T @+ Dia* =16

0-0 05 1-0 15 20 2:5
t/IN
Fig. 10. Standard deviation of response, expressed as
SD(R;)/(ho), plotted against generations, expressed as
t/N, for gene frequency 0-5 at all loci and uniformly
distributed, § = 1 and a range of values of (f+1)/a*.

fixation of all the favourable genes is occurring in all
lines, whereas it is not in the uniform case. Contrast
also the expected responses and their standard devia-
tion for the two distributions: as seen in Fig. 6, for
(B+1)/a* =10 there is only a 209, or so greater
expected response in the uniform case, but a three or
fourfold greater standard deviation of this response.
These differences are exaggerated for the U-shaped
distribution (Fig. 8). The first problem is that the
values are population size dependent in contrast to the
other distributions and in apparent conflict with the
diffusion approximation. The reason is that the
maximum height of the frequency density is at extreme
gene frequencies, notably at 1/(2N), when the fixation
probability approaches 2Ns g for large Ns, and s for
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1 —=--— @+ Dfe*=1
@B+ Djo*=4

— B+ Dja*=16

SD(R )/ha

Fig. 11. Standard deviation of response, expressed as
SD(R;)/(ho), plotted against generations, expressed as
t/N, for U-shaped gene frequency distribution, f = 1 and
a range of values of (f+1)/a* and N.

g = 1/(2N). Such genes contribute almost all the
variance of response as (f-+1)/a* becomes larger.
Some of these peculiarities of the U-shaped distri-
butions are not of practical importance, however, for
at finite values of N, such as used in most breeding
programmes or experiments, the variance rapidly
declines as (f+ 1)/a* is increased.

Examples of the expected response during the
selection process are given in Fig. 9 for the three
distributions, in each case with g = 1. The pattern is
seen to be rather similar, although always ranking
U > uniform > 0-5 in terms of the response at any
generation relative to that in the first (or equivalently
in terms of ho for the same i value). Corresponding
curves for the standard deviation are shown in Figs. 10
and 11. The differences in SD between the distributions
are seen to occur quite early when (f+ 1)/a* is larger,
and the ‘ N-dependency’ in the U-shaped case is clearly
seen.

5. Discussion

The utility of these analyses and results depends on two
fundamental assumptions: that the models are rele-
vant and that reasonable assumptions about the
necessary parameter: :an be made.

The models are undoubtedly over simplistic, in that
dominance, epistasis, linkage, natural selection, muta-
tion and multiple alleles are ignored, but they are
intended to be a starting point. Infinitely many models
of epistasis can be set up but we have little knowledge
on which to construct them. In populations initially in
linkage equilibrium and pertaining to mammals or
birds, previous analyses have shown linkage effects on

4
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limits are small (Robertson, 1970); and even in the case
of a line cross very tight linkage will be required to
make much difference, although this needs to be in-
vestigated further. Natural selection has been ignored
in the analysis: if its effects are as a different trait at the
level of individual genes with selective values remain-
ing constant, this merely changes the relationships
between heritability, gene number and selective value;
if its effects are dependent on the mean level of the
populations, e.g. by stabilizing selection effects,
further analysis is required (Zeng & Hill, 1986).
Mutation has important implications on the role of
population size in long term selection, but the theory
for incorporation of mutation into the general models
of this paper will be given in a later paper. The analysis
of multiple alleles will also be deferred, as resort has
to be made to simulation because the necessary
analytical tools are not available.

The shape of the distribution of gene effects has been
assumed to be of gamma form, but since it can take a
wide range of shapes (Fig. 1) and since for most results
this shape did not have an important effect, we need
not trouble about this. The gene frequency distri-
butions can arise in well defined situations; their
deficiency is that each is symmetric about 0-5 and
imply no selection on the trait prior to the analysis
being undertaken. Itis clear that if the mean frequency
of the favourable alleles is greater than 0-5, then
changes in population size (or Ni) will have less effect
than when the mean is less than 0-5. Thus we can
assume that if there is any relevant selection history
or if there is any history of population bottlenecks,
such that the U-shaped distribution discussed here will
have lost some of the weight from the extreme fre-
quency values, our results will exaggerate the effects of
population size on long term response. The indepen-
dence of gene frequencies and effects also implies no
prior selection: if there has been such selection for the
trait there is likely to be a positive correlation between
gene effect and frequency, again reducing the effects
of population size in a subsequent selection
programme.

Some of the parameter values, namely N, i, 4% and
o cause few problems in estimation. Much attention is
given to estimating heritability, and an error of a factor
of two would be considered large, but it is nothing as
compared to the guesswork in estimating numbers or
effective numbers of genes. In view of the many path-
ways that lead to final product and of the many
different degrees of primary effect of a gene
substitution on, say, its properties as an enzyme, we
must expect a very wide range of effects of genes on any
metric trait. Further it seems reasonable to assume that
most genes have at least a little effect on most traits.
Thus we subscribe to models in which » is relatively
large, approaching the number of genes in the genome,
and n, very much smaller, i.e. nearer n,/n =}, corre-
sponding to § =1 than to n,/n = }, corresponding to
B = 1. Thus we are unlikely to have effective numbers
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of genes of more than 400 and perhaps no more than
50. Estimates of n, from line crosses and selection
experiments abound, but they can be objected to for
various reasons. Wright’s (1952) method leads to
underestimates through linkage, as does the assay
method of Jinks & Towey (1976); estimates from chro-
mosome analysis (Thoday, 1961) are highly dependent
on the work put into them; and analyses of selection
experiments depend on assumptions that all useful
genes have been fixed (Falconer, 1981). In contrast,
estimates of numbers in segregating populations from
selection experiments (Dudley, 1977) may be biased by
subsequent mutation, likely in the Illinois corn experi-
ment analysed by Dudley (Hill, 1982).

Fortunately, number of loci enter the formula as
\v/n,, so we are unlikely to have to consider values
outside the range 4+/n, < 20, only a fivefold range!
On this basis, typical values of 4A* = N;h/+/n, are
around 0-1N. Our results suggest that for A* values in
excess of 5, further increases in population size do not
have large effect. This of course applies to the ¢ =  and
uniform cases; that of the U-shaped distribution has to
be considered rather differently.

Finally, it should be re-emphasised that we are
dealing here with use of the existing variation. As has
been shown earlier (Hill, 1982), with increasing genera-
tion number, mutation becomes of increasing
importance.

This work was supported by a grant from the Agricultural
and Food Research Council.
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