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1. Introduction

The concept of twisted cohomology was first introduced in 1986 by Rohm and Witten
in the appendix of [12]. It has played a significant role in physics, in particular in string
theory, since the Ramond–Ramond fields and their charges in type-II theories lie in the
twisted cohomology of space-time [6].

From the mathematics point of view, twisted de Rham cohomology, or simply dH

cohomology, has been studied in the context of both K-theory and Poisson geometry.
The link with K-theory was first considered by Atiyah in [2]. The precise definition is
given by Bouwknegt et al . in [5].

From a different approach, dH cohomology has been present in Poisson geometry since
Severa and Weinstein’s introduction of Courant algebroids in [14]. Roytenberg connected
this Courant bracket with a homological vector field in his doctoral thesis [13] and
Kosmann-Schwartzbach spelled this out in differential geometric terms in [9].

Further, basic properties of dH cohomology and its relation to formality were obtained
by Cavalcanti in his doctoral thesis [7], where it was shown that the different differentials
in the spectral sequence correspond to Massey products, a result obtained independently
by Atiyah and Segal in [3].

Twisted de Rham cohomology continues to be a topic of research interest. In a very
recent paper [11], Mathai and Wu have considered the notion analytic torsion for twisted
complexes; they generalize the classical construction of the Ray–Singer torsion to the
twisted de Rham complex with an odd-degree differential form and with coefficients in a
flat vector bundle.

In this paper, we present a crossover between Riemannian geometry and differential
topology. We show how to use connections with skew torsion to identify the operator
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(dH) + (dH)∗, where H is a 3-form, with a cubic Dirac operator. In the compact case, if
H is closed, we prove a vanishing theorem for twisted de Rham cohomology by means of
a Lichnerowicz formula. As an application, we prove that for a compact non-abelian Lie
group the cohomology of the complex defined by d + H, where H is the 3-form defined
by the Lie bracket, vanishes. This is a similar result to that of Cavalcanti [7], which is
reobtained here by purely Riemannian geometric methods.

2. The Dirac operator

Let (M, g) be a Riemannian manifold. Suppose that ∇ is a connection on the tangent
bundle of M and let T be its (1,2) torsion tensor. If we contract T with the metric we
get a (0, 3) tensor, which we will still call the torsion of ∇. If T is a 3-form, then we say
that ∇ is a connection with skew-symmetric torsion. Given any 3-form H on M , there
exists a unique metric connection with skew torsion H defined explicitly by

g(∇XY, Z) = g(∇g
XY, Z) + 1

2H(X, Y, Z),

where ∇g is the Levi-Civita connection.
Fix a 3-form H and consider the one-parameter family of affine connections

∇s := ∇g + 2sH.

(Notice that if s = 1
4 , we recover the connection with torsion H.) If M is spin, these

connections lift to the spin bundle /S of M as

∇s
X(ϕ) := ∇g

X(ϕ) + s(iXH)ϕ,

where X is a vector field, ϕ is a spinor field and iXH is acting by Clifford multiplication.
We may define the Dirac operator /D on /S with respect to ∇ by means of the following

composition:

Γ (M, /S) → Γ (M, T ∗M ⊗ /S) → Γ (M, TM ⊗ /S) → Γ (M, /S),

where the first arrow is given by the connection, the second by the metric and the third
by the Clifford action. Suppose now that we have a complex vector bundle W; we can
form the tensor product /S ⊗ W, which is usually called a twisted spinor bundle or a
spinor bundle with values in W. If W is equipped with a Hermitian connection ∇W , we
can consider the tensor product connection ∇ ⊗ 1 + 1 ⊗ ∇W , again denoted by ∇, on
/S ⊗W. We can define a Dirac operator on this twisted spinor bundle associated with the
connection ∇ by the same formula, where the action of the tangent bundle by Clifford
multiplication is only on the left factor.

We will need to make use of a Lichnerowicz-type formula for the square of the Dirac
operator. Such a formula first appeared in the literature in [4] (for the case s = 1) and
was subsequently proved in full generality in [1].
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Theorem 2.1 (Bismut [4]; Agricola-Friedrich [1]). The rough Laplacian ∆s =
∇s∗∇s and the square of the Dirac operator Ds/3 are related by

(Ds/3)2 = ∆s + FW + 1
4κ + s dH − 2s2‖H‖2,

where κ is the Riemannian scalar curvature and F is the curvature of the twisting bundle
acting as

∑
i<j FW(ei, ej)eiej on /S ⊗ W.

Notice that this formula relates the square of the Dirac operator Ds/3 and the Laplacian
∆s. The Dirac operator D1/3 is usually referred to as the cubic Dirac operator.

3. Twisted cohomology

Consider the spinor bundle with values in itself, that is, /S ⊗ /S. Recall that for this we
do not need a global spin structure. We have, in even dimensions, the following chain of
isomorphisms

/S ⊗ /S � /S∗⊗ /S � End(/S) � Cl � Λ,

where Cl denotes the Clifford bundle and Λ denotes the bundle of exterior forms.
If we take the induced Levi-Civita connection ∇g on both factors of /S⊗ /S and consider

the tensor product connection ∇g ⊗ 1 + 1 ⊗ ∇g, we obtain the induced Levi-Civita
connection, again denoted by ∇g, on Λ. If we consider the associated Dirac operator Dg

on /S ⊗ /S, we get a familiar operator on Λ. In fact,

Dg = d + d∗,

where d is the exterior differential and d∗ is its formal adjoint [10].
The same fact can be claimed for an odd-dimensional manifold. Consider the inclusion

M ↪→ R × M , and the half spinor bundles /S+ and /S−, of R × M . The Clifford action by
e0, where e0 is a unit vector field of R, gives an isomorphism between /S+ and /S−, and
thus we can regard /S+ � /S− as the spinor bundle of M . Under this identification, the
Dirac operator associated to the Levi-Civita connection becomes

/S+ Dg

−−→ /S− e0−→ /S+

where ‘e0’ denotes multiplication by e0. Consider also the Levi-Civita connection on /S
and the twisted Dirac operator

/S+⊗ /S Dg

−−→ /S−⊗ /S e0−→ /S+⊗ /S.

Notice that the exterior bundle of M is Λ � Cl � /S+ ⊗ /S, and so the twisted Dirac
operator above is, in terms of differential forms, the restriction of the operator d + d∗ on
R ×M to forms that are independent of the coordinate t of R, and can therefore be seen
as d + d∗ on M .

We may now ask ourselves what happens if we introduce connections with skew torsion
in this setting.
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Theorem 3.1. Let H be a 3-form, and suppose that the left and right spinor factors
are, respectively, equipped with the connections ∇g + 1

12H and ∇g − 1
4H. Consider the

tensor product of these two connections on /S ⊗ /S. The corresponding Dirac operator on
Λ is given by

D = (d + H) + (d + H)∗,

where H is acting by exterior multiplication and (d + H)∗ is the formal adjoint of d + H

with respect to the metric, namely, d∗ + (−1)n(p+1) ∗ H∗ on Λp.

Proof. Let us consider first an even-dimensional manifold. Take a p-form θ and iden-
tify it with

ϕ =
∑

r

ϕ+
r ⊗ ϕ−

r ∈ Γ (M, /S ⊗ /S).

Then the Clifford left and right actions of a vector field e are given, respectively, by

eϕ =
∑

r

eϕ+
r ⊗ ϕ−

r = e ∧ θ − e� θ,

ϕe =
∑

r

ϕ+
r ⊗ eϕ−

r = (−1)p(e ∧ θ + e� θ).

Using the summation convention, we have

D(ϕ) = ei∇g
ei

ϕ+
r ⊗ ϕ−

r + eiϕ1 ⊗ ∇g
ei

ϕ2

+ 1
12ei(ei �H)ϕ+

r ⊗ ϕ−
r − 1

4eiϕ
+
r ⊗ (ei �H)ϕ−

r

= ei∇g
ei

(ϕ) + 1
12ei(ei �H)ϕ + 1

4eiϕ(ei �H).

Since Dg(ϕ) = ei∇g
ei

(ϕ) corresponds to (d+d∗)θ, it remains to see that 1
12ei(ei �H)ϕ+

1
4eiϕ(ei �ϕ) can be identified with (H + H∗)θ.

Write H = Habcea ∧ eb ∧ ec and observe that

Habcea ∧ eb ∧ ec ∧ θ + Habcec �(eb �(ea � θ))

is the same as (H + H∗)θ, since the formal adjoint of exterior multiplication is interior
multiplication. It is simple to see that ei(ei �H)ϕ = 3Hϕ and that the action of H is
given by

Habc(ea ∧ eb ∧ ec ∧ θ + ea ∧ eb ∧ (ec � θ) + ea ∧ (eb �(ec � θ) + · · · ))

and that eiϕ(ei �H) is such that when we add

1
12ei(ei �H)θ = 1

4Hθ and 1
4eiθ(ei �H),

the mixed terms cancel and it amounts to

1
4Habc[ea ∧ eb ∧ ec ∧ θ + ec �(eb �(ea � θ))]
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plus
3
4Habc[ea ∧ eb ∧ ec ∧ θ + ec �(eb �(ea � θ))]

which is then (H+H∗)θ. The proof in the odd-dimensional case is perfectly analogous. �

Remark 3.2. Notice that these are lifts of the metric connections on the tangent
bundle with torsion 1

3H and −H. It is interesting to observe that these weights 1
3 and

−1 also appear in Bismut’s proof of the local index theorem for non-Kähler manifolds [4].

Suppose now that H is a closed 3-form. On the de Rham complex of differential forms
Ω we can define the operator dH = d + H. Note that

(d + H)2 = d2 + dH + Hd + H2 = 0

since H is closed and of odd degree. The operator dH does not preserve form degrees but
preserves the Z2-grading. We then have a two-step chain complex, and the cohomology
of this complex is then the twisted de Rham cohomology.

The twisted de Rham complex is an elliptic complex so, on a compact manifold, Hodge
theory applies. If H+ and H− are the cohomology groups, then

H± � {θ ∈ Ω± : (d + H)θ = 0 and (d + H)∗θ = 0},

or, in other words, each cohomology class has a unique representative in the kernel of
D2, where

D = (d + H) + (d + H)∗.

4. A vanishing theorem

We can use the Lichnerowicz formula of Theorem 2.1 and also Theorem 3.1 to prove the
following.

Theorem 4.1. Let M be a compact spin manifold and let H be a closed 3-form.
Consider the Dirac operator D1/12 on /S ⊗ /S associated with the connection

∇ = ∇1/12 ⊗ 1 + 1 ⊗ ∇−1/4,

let F−1/4 be the curvature of ∇−1/4 on /S and let κ be the Riemannian scalar curvature
of M . If

F−1/4 + 1
4κ − 1

8‖H‖2

acts as a positive endomorphism, then the twisted de Rham cohomology for d + H

vanishes.

Proof. We start by observing that we need only to prove that the kernel of the
operator D1/12 is zero. Consider ψ, a smooth section of /S ⊗ /S. Since dH = 0, the
Lichnerowicz formula gives

(D1/12)2ψ = ∆1/4ψ + F−1/4ψ + 1
4κψ − 1

8‖H‖2ψ.
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Now take the inner product of this with ψ. Since the Dirac operator is self-adjoint and
the Laplacian ∆ is given by ∇∗∇, we get

∫
M

‖D1/12ψ‖2 dVol =
∫

M

‖∇1/4ψ‖2 + (F−1/4ψ, ψ) + 1
4κ‖ψ‖2 − 1

8‖H‖2‖ψ‖2 dVol.

Using the hypothesis that
F−1/4 + 1

4κ − 1
8‖H‖2

is a positive endomorphism, we conclude that D1/12ψ = 0 if and only if ψ = 0. �

5. An example

Let G be a compact, non-abelian Lie group equipped with a bi-invariant metric. Consider
the one-parameter family of connections ∇t

X(Y ) = t[X, Y ]. Given t, the torsion of ∇t is
(2t−1)[X, Y ]. Notice that since the metric is ad-invariant, it means that these are metric
connections and also that their torsion is skew symmetric. Note also that if t = 1

2 , we get
the Levi-Civita connection, since the torsion vanishes. The curvature of ∇t is given by

R∇t

(X, Y )Z = t2[X, [Y, Z]] − t2[Y, [X, Z]] − t[[X, Y ], Z] = (t2 − t)[[X, Y ], Z],

by means of the Jacobi identity. For t = 0 and t = 1, we get two flat connections. These
correspond, respectively, to the left and right invariant trivializations of the tangent
bundle [8].

Let us write the above one-parameter family of connections as

∇2s
X (Y ) = ∇g

X(Y ) + 2s[X, Y ].

Notice that the Levi-Civita connection now corresponds to the parameters s = 0, while
the two flat connections correspond to s = ± 1

4 .
Consider the lift of these connections to the spinor bundle /S of G. Take the connection

∇1/12 ⊗ 1 + 1 ⊗ ∇−1/4 on Γ (M, /S ⊗ /S). We know from Theorem 3.1 that the Dirac
operator D1/12 then corresponds to (d + H) + (d + H)∗ on ΛG, where H is given by
H(X, Y, Z) = ([X, Y ], Z). Note that H, being a bi-invariant form, is closed.

We need the following auxiliary lemma, which can be proved by direct computation.

Lemma 5.1. Let G be a non-abelian Lie group equipped with a bi-invariant metric.
Then the scalar curvature κ of G is given by

κ = 1
4

∑
ij

‖[ei, ej ]‖2,

where {ei} is an orthonormal basis of the Lie algebra of G.

Theorem 5.2. Let G be a compact, non-abelian Lie group equipped with a bi-
invariant metric and let H(X, Y, Z) = ([X, Y ], Z) be the associated bi-invariant 3-form.
Then the twisted de Rham cohomology of d + H vanishes.
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Proof. Since F−1/4 = 0, by means of Theorem 4.1 we only need to show that the
constant ρ = 1

4κ − 1
8‖H‖2 is positive. We have already computed κ in Lemma 5.1, so if

we take the same orthonormal basis we get that

‖H‖2 = 1
6

∑
ijk

|([ei, ej ], ek)|2,

and, using the Cauchy–Schwarz inequality,

‖H‖2 � 1
6

∑
ijk

‖[ei, ej ]‖2‖ek‖2 = 1
6

∑
ij

‖[ei, ej ]‖2.

So ρ > ( 1
16 − 1

48 )
∑

ij ‖[ei, ej ]‖2 > 0. �

Remark 5.3. To see this result for connected, compact, simple groups in a differ-
ent way (see also [7, Example 1.2]), note that it is well known that by averaging, each
cohomology class of G can be represented by a bi-invariant form. The de Rham cohom-
ology ring H∗(G) is an exterior algebra (more precisely H∗(G) is an exterior algebra
on generators in degree 2di − 1, where each di is the degree of generators of invariant
polynomials on the Lie algebra of G). The Killing form gives H3(G) = R. Consider now
the twisted de Rham operator d + H. Since H is bi-invariant, the twisted cohomology
classes can also be represented by bi-invariant forms. Since bi-invariant forms are closed,
(d + H)α = H ∧ α. So if H ∧ α = 0, since H is a generator, then H ∧ α = 0 implies that
α = H ∧ β for some β. Therefore, the twisted cohomology vanishes.
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