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1. Introduction. If £ and £ ' are classes of finite abelian groups, we write 
£ + £' for the smallest class containing the groups of £ and of £'. For any 
positive number r, £ < r is the smallest class of abelian groups which contains 
the groups Zv for all primes p less than r. 

Our aim in this paper is to prove the following theorem. 

THEOREM. / / £ is a class of finite abelian groups and 
(i) Xi(F) £ £ fori < n, 

(ii) H*(X\ Z) is finitely generated, 
(iii) H*(X;Z) G &fori> n + k, 

then 

{X, Y) « £ Hn+i(X; Hn+i(Y; Z)) mod(£ + £ < ${k + 4)). 

This statement contains many of the classical results of homotopy theory: 
the Hurewicz and Hopf theorems, Serre's (mod £) version of these theorems, 
and Eilenberg's classification theorem. In fact, these are all contained in the 
case k = 0. Perhaps the most interesting case is when £ is the trivial class. 
Then in a way which will be made precise, the result is "best possible". 
Vaguely speaking, the Theorem solves the problem of computing {X, Y\ up to 
a certain "indeterminacy", the "indeterminacy" being ^-primary components 
corresponding to small primes. I t will be shown that if the answer is to be 
given as a "function" of only the homology of X and Y (as graded groups), 
then no theorem of smaller "indeterminacy" can be true. 

Two definitions are introduced: those of maps being homotopic modulo a 
class and of spaces being weakly equivalent modulo a class; and the relation
ship between these ideas is studied. The proof of Theorem A then relies on 
(4, Theorem 6) and on some results of Cartan and Serre. 

2. On weak homotopy equivalence (mod £) . 

Definition. A map / : X —> Y will be called a weak homotopy equivalence 
(mod £) if the induced homomorphism/*: Hi{X) —*Hi(Y) is an isomorphism 
(mod £) for all i. (Integer coefficients are suppressed.) 
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Definition. Two spaces, X and F, are of the same weak homotopy type 
(mod S) if there exists a third space Z and weak homotopy equivalences 
(mod 6) di: Z -> X, d2: Z -> F. This will be written X ~ g F. 

The first problem is to show that ^ g is an equivalence relation (for simply 
connected spaces). This will be proved in a series of lemmas. This proof is 
analogous to the proof that (mod £) isomorphism is an equivalence relation 
in the category of abelian groups. 

LEMMA 1. Given abelian groups and homomorphisms 

if any two of f, g, gf are isomorphisms (mod (£), then so is the third. 

Proof. The sequence 

0 —•» kerf —» ker gf —» ker g —•> coker/ —» coker gf —» coker g —> 0 

is exact. 

LEMMA 2. Gitœ» spaces and maps 

Xl> Y-^Z, 

if any two off, g, gf are weak homotopy equivalences (mod Ê), /Aew $0 is /As third. 

Proof. Apply Lemma 1 to the induced homology homomorphisms. 

LEMMA 3. If Xi ^ g X2, then there exists a space W and maps wt: Xt —» IF 
(i = 1, 2) which are weak homotopy equivalences whe(s) (mod S). 

Proof. We are given a space Z and maps d*: Z —» Xz- (i = 1, 2) which are 
whes (mod 6) . Let IF be the disjoint union of Xi and X2, where x± G Xi and 
x2 G X2 are identified if x± = ^i(s) and x2 = d2(s) for some z G Z. That is, 

IF = Xi \J X2. 

Let w*: Xi —» TF be the natural projections. Then widi = w2d2, and Cw^d* = 
Cdi V Cd2. Now 

f f^Ci i V Cd2) = HjiCdi) + Hj(Cd2) G 6. 

Therefore, the Widt are whes (mod Ê), and consequently, by Lemma 2 the 
maps wt: Xi-^W are whes (mod (S). 

LEMMA 4. Suppose that Xi, X2, and W are simply connected and the maps 
mti Xi—*W(i = 1, 2) are whes (mod 6) . Then X\ ~^X2. 

Proof. We can construct spaces Xi} fibrings pt: Xt —» W (with fibres Ff) 
and homotopy equivalences ht: Xi—*Xi such that mjhn = £ f . Then the pt 

must be whes (mod E) (Lemma 2). 
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Let p: Z —> W be the Whitney sum of the fibrings p\\ X\ —> W and 
p2: X2 —» W. The fibre of £ is Fx X F2. Since 

ir,(Fi X F2) = TT,(^I) 0 ^ (Fg) G S, 

we have Hj(Fi X F2) € S for all j . Therefore, the (mod (5) Serre sequence is 
infinitely long and p*\ Hj(Z) —> HS{W) is a (mod 6) isomorphism for all j . 

Since Z is the Whitney sum of fibrings, we have the commutative diagram 

where p, pi, and pi are whes (mod Ê). Consequently, so are/ i and/ 2 (Lemma 2) 
and also w ^ : Z —• X* —> X* (i = 1,2). That is, Xi ~$ X2. 

THEOREM 1. ^ g is an equivalence relation for simply connected spaces. 

Proof. Only transitivity presents a problem. Suppose that Xi ~^ X2 ~ e X3. 
By definition, there exist spaces Zi and Z2 and maps 

Z, 

which are whes (mod 6) . Consider 

Zx 

X2 

x3 

x2 

By Lemma 4, there exists a space Z and maps w*: Z —> Zt (i = 1, 2) which are 
whes (mod (S). Therefore, rm\\ Z —» Xi and um2: Z—> X 3 are whes (mod Ê) 
(Lemma 2). That is, Xi ~ 6 X3. 

For the remainder of this paper we will restrict the discussion to path-
connected simply connected spaces. In (4, Theorem 6) it is implied that if 
X ~g Y, then the groups Hi( ), 7r*( ), and [L, Î22 ] (for a finite complex L) 
[ , 122P] (when w*(P) is finitely generated) are isomorphic to one another 
(mod G). 

https://doi.org/10.4153/CJM-1969-079-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-079-4


3. On a decomposition (mod (S). 

705 

Definition. Suppose that [X, Y] is a group. T h e n / ^ ç g if ([f] — [g]) Ç fë, 
that is, if the cyclic group generated by ([f] — [g]) is in &. 

Let 0?: 12X —» ŒX be the composition 

ttX-^LtiXX .? . X^X-^>OZ, 

where d is the diagonal map and m is the (homotopy associative) loop multi
plication. 

LEMMA 5. If Zq € S, /Ae# 0ff w a whe (mod S). 

Proof. (f)a*: TTi(QX)—*"iri(QX) has kernel Tor(7r*(12X), Zff) and cokernel 
TTi(QX) 0 Zff. Therefore, it is a (mod S) isomorphism for all i. 

Let p: E —> 122I3 be the acyclic fibring over Q2B. L e t / : F —» Î22B be a map. 
Then we have a commutative diagram 

£ / 
./' 

-» £ 

/ 
S22£ 

where p: Ef-+ F is the induced fibring with fibre 1215. Ef may also be thought 
of as the fibre when we change/: F—> WB into a fibre map. We will write Ef 

without explicit reference to the acyclic fibring p; E —> Q2£. 

LEMMA 6. If Zq € Ê awd/: F —» Œ2£ is a map, then Ef ~ g Eqf. 

Proof. Let <£ff: tt2B —> 122J5 be the multiplication by g defined above. Then 
the diagram 

/ 
» S22£ 

is i a homotopy commutative. Change qf (without changing notation (or altering 
homotopy class)) to make the diagram commutative. Then we will have a 
commutative diagram 

Eqf 

-> Y 

id 

-> F 

-» WB 

qf l 

— > Q 2 £ 
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and a commutative diagram of induced homomorphisms 

7 r m (F ) A x m ( 0 2 5 ) -y * , (£ , ) -> T < (F) A x4(025) 

x i + 1(F) - M > 7ri+l(fi
25) - T , ( E „ ) - ^ ( 7 ) - ^ H Tt(Q

2B) 

Here the two rows are exact and the four outside vertical homomorphisms are 
(mod (S) isomorphisms. Therefore, 

K: Ti(Ef) -+Ti(Eqf) 

is a (mod S) isomorphism for all i. That is, ?n: Ef—> Eqf is a whe (mod S). 

LEMMA 7. Suppose thatf^^ g: Y —> Œ2!?, /fee» E / ~ g E^. 

Proof, f ~ç g. Therefore, q(f — g) ~ 0 for some g such that Zç Ç Ë. That is, 
S / ~ Qg- Using standard homotopy theory, we obtain that Eaf and Eqg are of 
the same homotopy type. Lemma 2 implies that Egf ~^ Ef and EQg ^ ^ E^. 
Therefore, £ / ~ g E^. 

LEMMA 8. Suppose that Yi ~& F2, [Yu Q2B] G S, and TT*(JB) W finitely 
generated; then for any map f: F2 —> ti2B, we have 

E / ~ c F2 X QIB. 

Proof. Since Fi ^ g F2 and since 7T*(JB) is finitely generated, we have 

[Fi, Q2B] - [F2, 1225] (mod 6) . 

Therefore, [F2, WB] 6 S and 

/ ~ c r : F2->S22J3, 

where 71 is the trivial map. Lemma 3 implies that Ef ~^ ET — F2 X &BB. 

We now recall some results due to Serre and Cartan (12; 5). If A and D 
are cyclic groups of prime power or infinite order and n > k > 1, then 

Hn+«(K(A,n);D) £ <£ < \{k + 3). 
Furthermore, 

Hn+i(K(A,n);Z) = 0. 

LEMMA 9. L^^ G and H be finitely generated abelian groups. Suppose that 
n > k > 1, then 

Hn+«(K(G, n);H) e S < %(k + 3). 

Proof. Write G as a direct sum A ® B, where A is cyclic of prime power or 
infinite order (and B may be trivial). Then 

K(G,n) = K(A,n) XK(B,n) 
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and 

Hn+k(K(G, n);H) = Hn+k(K(A, n) X K(B, n);H) 

= Y, H\K{A,n);H1{K{B,n);H)). 

For each j , Hj(K(B, n) ; H) is finitely generated and we may write 

H1{K(B,n);H)=Y,Dd, 
d 

where Dd is a cyclic group of infinite or prime power order. Then 

Hi(K(Afn)]H
j(K(B,n);H)) = Jl !?(£&, n);Da) 

d 

and by the remark above, each summand is in 6 < %(k + 3). Therefore, 

H\K(A, n) ; H'(K(B, n) ; i J ) ) ^ E < J(* + 3) 

for each pair i, j . This proves our lemma. 

THEOREM 2. Suppose that n > k + 1 and that 7rz(F) G fëjfor i < n and for 
i > n + k. Then 

r ~,nx(T,H.,(r), » + *), 

Proof. Let £: F —> Fw_1 be a projection of F onto the space Yn~l made up of 
the first n — 1 homotopy groups of F. Let .F be the fibre. Then i: F —>• F is a 
whe (mod E). Let p'': i 7 -^ .P+* be the projection of F onto the space Fn+A: 

made up of its first n + k homotopy groups. Then p' is a whe (mod S) ; that is, 

F ~ s F1^ and 7^(7^+*) = 0 if i < n or i > n + k. 

Take a Postnikov system for 7W-*.-

Fn+k-> Fn+k-l->... -> r * ' - * r ^ - 1 - » . . . -> js:(ir»(F), n) 

X(7Tw+,(F),^+i+l) 
where -P+:/ = E^.. The proof is by induction on j . 

Suppose that F71^"1 and I lf lJ i^(xw + i(F), n + i) are equivalent 
(mod 6 < J(* + 4)). Then 

H"*»1^*-1; 7fn+j(Y)) 

- Hn+j+\ f [ X(TTW+,(F), * + i); Tn+j(Y)) (mod (£<*(* + 4)) 

= Y Hn+'+1(K(Tn+i(Y), » + *); xB+y(F)) 
t=0 
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(since j + 1 < k + 1 < n). Now, since n + j + 1 — (n + i) < k + 1. 
Lemma 9 implies that each summand is in ® < | ( ( f e + l ) + 3). That is, 
jju+M^pn+j-i. Tn+j(Y)) is in (5 < \{k + 4). Therefore, by Lemma 8, 

/ ^ = Efj ~ r + i " 1 X K(Tn+j(Y), n + j) (mod S < i(Jfe + 4)) 

~ n ^(^<(F), » + *) (mod <£<£(* + 4))-

This completes the induction and we have 

Fn+k~fl KiTn+tiY), n + i) (mod ( £ < * ( * + 4)). 

Since F ^ e 7^+*, this proves our theorem. 

Lemma 5 and the remark preceding it imply that when n > k > 0, we have 

Hn+k(K(G,n);Z) <E 6 < J(fc + 3) 

for any finitely generated abelian group G. Using the Kiinneth formulas we see 
that 

Hn+\ I I K{GU n + i);z) - G, (mod <£ < \Qz + 3)) 

provided that n > k > j . We can now prove the following lemma. 

LEMMA 10. If 7r*(F) Ç S /or i < n and for i > n + k, n > k > j , then 
Hn+j(Y; Z) « c , Tn+j(Y)} where <£' = 6 + S < *(* + 4). 

Proof. Y ~^> n ^ = 0 i^(7rw+i(F), n + i), and hence 

In fact, the Hurewicz homomorphism induces a (mod (§/) isomorphism; 
however, this fact will not be proved or used here. 

LEMMA 11. If d « g G2, /Aw i ^ ( X ; d ) ^^Hn(X; G2) for any n. 

Proof. There exists a group G and (mod (S) isomorphisms 

jy. G^Gj 0 ' = 1.2). 

Now take the Eilenberg-MacLane spaces i£(G, «) , K(Gi, n), and K(G-i, «) , 
and the induced maps /^: i£(G, w) —> K(GS, n). These are clearly whes 
(mod 6 ) . Therefore, 

K(GU n) ~ g i£(G2, n) and [X, i ^ d , »)] = g [X, i£(G2, »)]. 

Thus, # B ( X ; GO = s # n ( X ; G2). 

THEOREM. Suppose that 
(i) x,(F) € <&fori<n, 
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(ii) H'(X) e &fori> n + k, 
(iii) H„{X) is finitely generated. 

Then 

{X,Y\ ~.itHn+\X;Hn+i(Y;Z)), 
* i=0 

where 

e' = e + g < H* + 4). 
Proo/. Take d large. Then {X, F} = [SdX, 5*7]. i ^ + z ( W ) = #<(10 6 S 

for 0 < i <n. Furthermore, SdYis simply connected. Therefore, wd+i(SdY) £ (£ 
for 0 < i < ». Clearly, 7r,(SdF) = 0 whenj < d. 

Let Bn+k+d be the space in the Postnikov system for SdY made up of the first 
n + k + d homotopy groups of SdY. Then we have a fibring p: SdY —» £>*+*+* 
with fibre F and ^ ( F ) = 0 for j < n + k + d. The sequence 

[S<X F] -> [S'X, F] —> [S'X, £»+*"] -> [S* -1*, /?] 
P* 

is exact and by (4, Lemma 14), the two outside groups are in (£. Therefore, p* 
is a (mod (S) isomorphism. This yields 

TT ,(£*+*+<*) G g when i < n + d 
and 

7T,(J3w+A;+d) = 0 when j > n + k + d. 
By Theorem 2, 

5«+*M _ fi K(Tn+d+i(B
n+k+a), n + d + i) (mod S < \{k + 4)) 

1=0 

= f\K{7rn+t+i{S1Y),n + d + i). 

Therefore, [S-*X, 5"+*+"*] is isomorphic (mod (6 + S < i(k + 4))) to 

\SdX,U X(T»+ H .4(5*F), » + d + *)] = E Hn+d+\SdX; xre+tf+i(^F)) 

= t,IT+tQ[;T^.t(S
tY)) 

1=0 

i=-0 

(mod(S < i ( * + 4)) 
= X ; i r + i ( X ; H B + i ( F ; Z ) ) ; 

cf. Lemmas 10 and 11. Combining these results, we obtain our assertion. 

4. Some remarks. Let F be a rule which assigns an abelian group to an 
ordered pair of graded abelian groups in such a way that the isomorphism 
class of F(A, B) depends only on the isomorphism classes of A and B (as 
graded groups). Suppose that the following statement is true: 
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"For any pair of spaces X and F such that 
(i) H*(X) is finitely generated, 

(ii) H*(X\ Z) = 0 for i > n + k, and 
(iii) Ti(Y) = 0 for i < n, 

we have {X, Y] =Œ F(H*(X), H*{Y)), where F and (S are fixed (though 
they may depend on J ) . " 

Then, for any prime p < §(& + 4), the group Zp must be contained in S. 

Proof. We may suppose that n > k + 1 so that we are already in the stable 
range. Let / : Sn—>K(Z1 n) represent a generator of Trn(K(Z, n)). Let Y = 
K(Z, n) and Y = Cf V Sw, as graded groups Hm(Y) « ff*(F), and ir,(7) = 
TT,(F) = 0 for i < n. For a prime £ < H& + 4) take X = 5w+2p-3. Then 
H^X) = 0 for i > w + &. Hence, if the statement is true, we have 

[X, Y] = e F(.H.(X),H,(Y)) = F(H.(X),H.(Y)) = 6 [X, ? ] . 

However, 
[X, F] = Hn(Sn+2p-3;Z) = 0 

and 
[X ,F] = [5w+22?-3,5w] 0 [5*+**-», Cfl 

[Sn+2p~3
r S

n] contains a Zv summand, and therefore Zv ~ 0 (mod S). 

One can prove the following result similarly to Theorem 2. 

Let n > k and Hi (X) G g /or i < n and for i > n + k. Then 

X~. V M(iJn+,(X),7z + i), 

w**™ e7 = e < i(* + 4) + e. 
The proof is similar to that of Theorem 2. One uses Eckmann-Hilton 

decompositions instead of Postnikov systems and mapping cones instead of 
induced fibrations. The key statement is that 

when 0<j<k<n — 1; see (11). This statement is equivalent to the one 
about the cohomology of Eilenberg-MacLane spaces used in Theorem 2. 

This approach will lead to an alternative proof of the Theorem. The key 
new notion in both proofs is the study of maps that are homotopic modulo a 
class of abelian groups. 

The phrase "weak homotopy equivalence" was used since it may be of some 
interest to study the following relation: if [X, Y] and [F, X] are both groups, 
then X is of the same (mod 6) homotopy type as F if there exist maps 
f:X—*Y,g: Y —> X such that fg ^ g IY and gf ^^ Ix. f and g will then be 
whes (mod 6) . On the other hand, neither of the following statements is true: 

(i) a whe (mod S) lias a (mod Ê) inverse; 
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(ii) if X ^ e Y (and [X, F], [F, X] are groups), then X is of the same 
(mod E) homotopy type as F. 

However, this notion is not relevant to the work done here. 
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