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Shallow granular avalanches on slopes close to repose exhibit hysteretic behaviour.
For instance, when a steady-uniform granular flow is brought to rest it leaves a
deposit of thickness hstop(ζ ) on a rough slope inclined at an angle ζ to the horizontal.
However, this layer will not spontaneously start to flow again until it is inclined to
a higher angle ζstart, or the thickness is increased to hstart(ζ ) > hstop(ζ ). This simple
phenomenology leads to a rich variety of flows with co-existing regions of solid-like
and fluid-like granular behaviour that evolve in space and time. In particular, frictional
hysteresis is directly responsible for the spontaneous formation of self-channelized
flows with static levees, retrogressive failures as well as erosion–deposition waves that
travel through the material. This paper is motivated by the experimental observation
that a travelling-wave develops, when a steady uniform flow of carborundum particles
on a bed of larger glass beads, runs out to leave a deposit that is approximately equal
to hstop. Numerical simulations using the friction law originally proposed by Edwards
et al. (J. Fluid Mech., vol. 823, 2017, pp. 278–315) and modified here, demonstrate
that there are in fact two travelling waves. One that marks the trailing edge of the
steady-uniform flow and another that rapidly deposits the particles, directly connecting
the point of minimum dynamic friction (at thickness h∗) with the deposited layer.
The first wave moves slightly faster than the second wave, and so there is a slowly
expanding region between them in which the flow thins and the particles slow down.
An exact inviscid solution for the second travelling wave is derived and it is shown
that for a steady-uniform flow of thickness h∗ it produces a deposit close to hstop

for all inclination angles. Numerical simulations show that the two-wave structure
deposits layers that are approximately equal to hstop for all initial thicknesses. This
insensitivity to the initial conditions implies that hstop is a universal quantity, at least
for carborundum particles on a bed of larger glass beads. Numerical simulations are
therefore able to capture the complete experimental staircase procedure, which is
commonly used to determine the hstop and hstart curves by progressively increasing the
inclination of the chute. In general, however, the deposit thickness may depend on
the depth of the flowing layer that generated it, so the most robust way to determine
hstop is to measure the deposit thickness from a flow that was moving at the minimum
steady-uniform velocity. Finally, some of the pathologies in earlier non-monotonic
friction laws are discussed and it is explicitly shown that with these models either
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steadily travelling deposition waves do not form or they do not leave the correct
deposit depth hstop.

Key words: granular media, shallow water flows, rheology

1. Introduction
Many phenomena that are observed in shallow dry granular flows, such as phase

transitions between fluid-like and solid-like regions (Daerr & Douady 1999; Pouliquen
& Forterre 2002), self-channelization and levee formation (Félix & Thomas 2004;
Mangeney et al. 2007; Rocha, Johnson & Gray 2019) as well as erosion–deposition
waves (Daerr & Douady 1999; Clément et al. 2007; Börzsönyi, Halsey & Ecke 2008;
Takagi, McElwaine & Huppert 2011; Edwards & Gray 2015; McArdell 2016; Edwards
et al. 2017; Russell et al. 2019) arise due to frictional hysteresis. At the heart of
this is the empirical observation (Daerr & Douady 1999; Pouliquen 1999a) that on a
rough bed, inclined at an angle ζ to the horizontal, a steady uniform flow of grains
will leave behind a deposit of thickness h = hstop(ζ ) when the inflow is closed off,
but a uniform layer of thickness h will not start to flow again until the angle of the
chute is increased to ζstart(h). The inverse of ζstart(h) defines the maximum thickness
hstart(ζ ) that a deposit can reach before it will spontaneously flow on a slope inclined
at an angle ζ . A similar inverse function ζstop(h) also exists for hstop(ζ ).

The thickness hstop can be measured by slowly closing off a steady supply of
particles and measuring the deposit depth at a given inclination angle. This gives a
point on the hstop(ζ ) curve as shown in figure 1(a). For this value of the thickness
h the starting angle ζstart(h) can be determined by gently increasing the angle of the
slope and noting the point of failure. The grains then flow for a short period before
coming to rest again and determining a new point on the hstop(ζ ) curve. By repeating
this process several times the functional form of the curves can be identified. Both
Daerr & Douady (1999) and Pouliquen (1999a) proposed that that the tangent of
the inverse function ζstop(h) was an exponentially decaying function of thickness h.
However, Pouliquen & Forterre (2002) suggested a reciprocal fit, which has now been
widely adopted.

As well as making measurements of the hstop curve, Pouliquen (1999a) found a
remarkable linear scaling law between the Froude number Fr and the ratio of the
flow thickness h to the deposit thickness hstop, i.e. Fr= βh/hstop. This empirical flow
rule collapsed the experimental data for a wide range of inclination angles and flow
depths and allowed Pouliquen (1999a) to infer an effective basal friction law for the
flowing grains. The dynamic friction is an increasing function of Fr/h and allows the
steady-uniform flow velocity to be calculated for any inclination angle and flow depth.
This insight proved to be critical to the development of the µ(I)-rheology (GDR-MiDi
2004; Jop, Forterre & Pouliquen 2005, 2006), which has dramatically advanced our
understanding of granular flows.

Pouliquen & Forterre (2002) combined Pouliquen’s (1999a) dynamic friction law
for the flowing grains with a friction law for static grains. The two regimes are shown
in figure 1(b). When the Froude number is equal to zero there are a range of static
states, and the maximum static friction µstart can be derived from a knowledge of
the hstart(ζ ) curve (Daerr & Douady 1999; Pouliquen & Forterre 2002). The dynamic
friction can only be measured above a threshold Froude number β∗ at which the
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FIGURE 1. (a) Diagram showing that the slope inclination ζ must be increased (right
arrows) before a granular layer of thickness hstart (green line) spontaneously collapses
(down arrows) to leave a thinner layer hstop (red line) at the steeper angle. The minimum
thickness h∗ (orange line) for which a steady-uniform flow is possible lies between hstart
and hstop. (b) The variation of the friction coefficient µ (black line) with the Froude
number Fr for constant flow thickness h in the dynamic (Fr > β∗), multivalued static
(Fr = 0) and intermediate (0 < Fr 6 β∗) flow regimes. The vertical dashed line shows
the transition between the monotonically increasing dynamic and monotonically decreasing
intermediate regimes at Fr= β∗.

minimum dynamic friction occurs. Pouliquen & Forterre (2002) took the Froude
number β∗ of the minimum steady-uniform flow to be equal to the constant β in the
linear flow rule scaling, but that is not necessarily the case. The minimum dynamic
friction is typically lower than the maximum static friction at Fr = 0 and very little
is known about the friction in the intermediate regime for Fr ∈ [0, β∗]. In the absence
of experimental data, Pouliquen & Forterre (2002) suggested that one might simply
interpolate between the static and dynamic curves with a decreasing function of
the Froude number. Rather than using the linear interpolation shown in figure 1(b),
Pouliquen & Forterre (2002) used a power law with a very small exponent, which is
highly sensitive to the numerical implementation, as will be discussed in § 6.1.

For flows of angular particles, Forterre & Pouliquen (2003) found a similar relation
to spherical particles between the steady uniform Froude number and the ratio of
the flow thickness h to hstop except that there was a constant negative offset Γ . This
offset can be problematic when trying to implement non-monotonic friction laws with
static, dynamic and intermediate regimes. For instance, a simple generalization in
the manner of Pouliquen & Forterre (2002) for angular particles can lead to flows
being constrained entirely to the dynamic regime. This motivated Edwards et al.
(2017) to introduce a transition between the dynamic and intermediate flow regimes
at a Froude number β∗ > β − Γ and at a corresponding thickness h∗ ∈ [hstop, hstart],
for steady uniform flows. This is consistent with the steady-uniform flow data of
Pouliquen (1999a), where the minimum observed thickness of a steady uniform
flow is somewhat greater than hstop itself. A key distinguishing feature of Edwards
et al.’s (2017) friction law is therefore that there are three important thicknesses,
namely hstop, hstart and the thickness h∗ at which the friction law switches between
the monotonically decreasing intermediate and monotonically increasing dynamic
regimes, and below which steady uniform flows are not possible.

Edwards et al. (2017) showed that their non-monotonic friction law was capable of
quantitatively modelling the release of a finite mass of grains on an erodible layer of
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ζ1 (deg.) ζ2 (deg.) ζ3 (deg.) L (mm) κ β Γ β∗

31.1 47.5 32.7 0.44 1 0.63 0.40 0.466

TABLE 1. Material properties for the flows of carborundum on a bed of glass beads,
measured by Edwards et al. (2017).

the same grains. In order to do this, the friction law was incorporated into a depth-
averaged avalanche model that included viscous terms (Gray & Edwards 2014; Baker,
Barker & Gray 2016a) that were derived from the µ(I)-rheology (Jop et al. 2006).
In particular, Edwards et al. (2017) were able to capture key morphological features
such as levees, troughs and elevated channels, during the growth, decay and steady
propagation of erosion–deposition waves. Edwards et al. (2017) chose to transition
between intermediate and dynamic friction regimes at a thickness h∗ = (1− a)hstop +

ahstart that lay in between hstop and hstart (where the constant parameter a∈ [0, 1]). This
implies that β∗ is a function of the inclination angle and is therefore only defined for
ζ ∈[ζ3, ζ2], where hstart is defined. Here, instead, it is proposed that β∗ is a constant for
all inclination angles, which implies that the transition thickness is a constant multiple
Λ> 1 of hstop, i.e. h∗=Λhstop < hstart. This has the major advantage that the modified
friction law proposed here is well defined for all angles.

As well as proposing an important modification to the friction law, this paper
considers in detail how the friction brings grains to rest to leave a deposit of
thickness hstop. The same experimental set-up as Edwards et al. (2017) is used here. It
consists of a rough inclined plane, which has a monolayer of 750–1000 µm diameter
spherical glass beads attached to it with double-sided sticky tape (to produce no-slip
at the base), and 280–350 µm diameter carborundum particles, whose depth-averaged
effective frictional properties are summarized in table 1. Firstly, a steady-uniform
flow of thickness h(x= 0, t)≈ hstart(36.3◦)+ 0.5 mm= 2.4 mm is formed by allowing
carborundum particles to flow at constant rate out of a hopper at the top of the
plane inclined at an angle of ζ = 36.3◦ to the horizontal. Once the hopper has
emptied, the steady-uniform flow comes to rest and leaves a thinner deposit of near
constant thickness hstop. A high-speed camera (Teledyne DALSA Genie Nano M1940)
is used to capture still images of the flow from above in a region between 50
and 86 cm downslope from the hopper. The space–time plot, shown in figure 2, is
constructed by extracting the middle row from each successive image and laying them
out horizontally to give increasing time t moving down the ordinate. Vertical lines
indicate stationary grains, since there is no movement downslope with changing time,
and non-vertical lines represent moving particles. The surface velocity of the moving
particles in the steady uniform flow region is measured to be 0.23 m s−1 and adjacent
particle trajectories all have a very similar shape. It is evident that the boundary
between moving and stationary grains at the rear of the flow propagates downslope
at a slightly faster constant speed of 0.24 m s−1. These observations indicate that the
newly deposited hstop layer is formed by a steadily travelling deposition wave. This
is an important physical observation, which helps to constrain the functional form of
the friction law, and suggests that the theory should admit travelling-wave solutions.

In addition, a Micro-Epsilon scanCONTROL 2950-100 laser profile sensor is used
to acquire thickness data at 1200 points between 53 cm and 65 cm downslope of the
gate and at the cross-slope centre of the plane. The laser line measures the distance of
the bulk flow particles away from the sensor at a frequency of 100 Hz for 10 s and to
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FIGURE 2. Space–time (x, t) plot showing the trajectories of 280–350 µm diameter
carborundum particles as they are deposited by a steady-uniform flow of thickness h(x=
0, t)≈ hstart(36.3◦)+ 0.5 mm= 2.4 mm on a rough slope made of 750–1000 µm diameter
spherical glass beads and inclined at ζ = 36.3◦. The depth-averaged frictional properties
of the bed and the particles are summarized in table 1. A high-speed camera is used
to capture still images of the flow from above in a region between x = 50 and 86 cm
downslope and the middle column of successive images are laid out horizontally to create
the plot. All the trajectories have a distinctive curved shape as they decelerate from
steady-uniform flow and stop, whereas the static material produces a series of vertical
parallel lines. The point at which particles begin to rapidly decelerate (dotted white line)
and the transition between static and moving grains (dashed white line) have the same
constant slope. This together with the similarity of the particle trajectories implies that a
steadily travelling deposition wave brings the grains to rest.

an accuracy of ±0.2 mm (approximately a grain diameter) by laser triangulation. Also
measuring the distance between the sensor and the bed before it is coated with the
static layer of carborundum particles allows the thickness profile h of the avalanche
in the z-direction to be calculated along the laser line. Adjacent measurements are
shifted in downslope position according to the wavespeed measured from the space–
time plot to give an average thickness profile in time passing through the midpoint of
the laser line. This is then converted back to a downslope profile with the appropriate
transformation. The data are plotted in figure 3 and are compared to a numerical
simulation, which will be described in greater detail in § 4.2. The deposit depths in
the experiment and the simulation are in good agreement with one another and with
hstop, whilst the general shapes of the flow thickness profiles are also qualitatively
comparable. Furthermore, the measured downslope length of the varying thickness
region between the uniform and deposit layers is approximately equal to that of the
numerics. This implies that the wavespeed obtained from the space–time plot, which
is used to transform the time-dependent laser data into a downslope thickness profile,
is in good agreement with the theoretical value.
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FIGURE 3. Measured downslope thickness profile for 280–350 µm diameter carborundum
particles on a rough slope made of 750–1000 µm diameter spherical glass beads inclined
at ζ = 36.3◦. The frictional properties of the bed and the particles are summarized in
table 1. A steady-uniform flow of thickness ' 2.4 mm, which is 0.5 mm greater than
the theoretical value of hstart (solid green line), is brought to rest by closing the supply
of particles. This produces a steadily travelling deposition wave that moves downstream.
A laser profile sensor is used to record the data at a frequency of 100 Hz for 10 s
between 53 cm and 65 cm downslope. Under the assumption that the deposition occurs
as a travelling wave, the profiles are translated by the known wavespeed to produce
downslope thickness data (grey markers). This is then averaged in time to produce a
mean downslope profile (solid black line). For comparison the dashed black line shows
a numerical simulation of the same problem, which is described in § 4.2. The deposit
depths of the simulation and the data are in good agreement with the theoretical value of
hstop (solid red line). The amplitude and length of the wave are also in good quantitative
agreement, although there are some qualitative differences in its overall shape. The orange
line represents the minimum thickness h∗ of a steady-uniform flow.

The paper is arranged as follows. The depth-averaged model is introduced in § 2
and the modifications to the friction law (which ensure that it is valid at all angles)
are described in detail in §§ 3.2 and 3.3. Numerical simulations of the deposition
process for a wide range of angles and initial flow thicknesses are performed in § 4.
These simulations confirm the experimental observations of § 1, which show that a
travelling wave forms as the particles are deposited. An exact inviscid solution for
this wave is derived in § 5, which explicitly shows that a steady-uniform flow of
thickness h∗ produces a deposit that is close to hstop for all inclination angles. Finally
the pathologies of earlier formulations of the friction law are discussed in § 6 before
concluding in § 7.
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2. Depth-averaged avalanche model with viscous dissipation
The avalanches are assumed to take place on a plane that is inclined at an angle ζ

to the horizontal and a coordinate system Oxz is defined with the x-axis pointing down
the chute and the z-axis being the upward pointing normal. The granular material is
treated as either being moving, or static, through its entire depth, which is consistent
with the measurements of hstop and hstart that were used to determine the effective
basal friction law (Pouliquen & Forterre 2002; Edwards & Gray 2015). The problem
is modelled using a system of one-dimensional viscous avalanche equations for the
thickness h(x, t) and the depth-averaged downslope velocity ū(x, t), which result from
Gray & Edwards’ (2014) depth-averaged µ(I)–rheology. The depth-averaged mass and
momentum balance equations in this representation are

∂h
∂t
+
∂

∂x
(hū)= 0, (2.1)

∂

∂t
(hū)+

∂

∂x

(
χhū2

)
+
∂

∂x

(
1
2

h2g cos ζ
)
= hgS cos ζ +

∂

∂x

(
νh3/2 ∂ ū

∂x

)
, (2.2)

where g is the constant of gravitational acceleration and χ = u2/ū2 is the shape factor.
The µ(I)-rheology implies that for steady-uniform flow a Bagnold velocity profile
develops (see e.g. GDR-MiDi 2004; Gray & Edwards 2014) and the resulting shape
factor χ = 5/4. For thin flows close to hstop weakly exponential profiles develop
(Kamrin & Henann 2015) and surface velocity measurements in § 4.2 suggest that
χ ≈ 1.16 for the experiments performed here. Non-unity values of the shape factor
(Lagrée et al. 2017) change the characteristic structure of the inviscid equations,
and cause problems when handling grain-free regions (Hogg & Pritchard 2004), so
virtually all avalanche models (e.g. Grigorian, Eglit & Iakimov 1967; Savage &
Hutter 1989; Gray, Wieland & Hutter 1999; Pouliquen 1999b; Pouliquen & Forterre
2002; Gray, Tai & Noelle 2003) assume, as in this paper, that χ = 1. The slow
flows studied here are insensitive to this approximation, since the magnitude of the
momentum transport term in (2.2) is small compared to the pressure gradient and
source terms (see equations (5.10)–(5.12) of Viroulet et al. 2017).

In the source terms on the right-hand side of (2.2) the non-dimensional net
acceleration

S= tan ζ −µ
ū
|ū|
, (2.3)

consists of the downslope component of gravity and the effective basal friction µ
that opposes the direction of motion. For all problems in this paper ū > 0 and hence
ū/|ū| = 1.

Gray & Edwards (2014) showed that to leading order the inviscid avalanche
equations emerge naturally from depth averaging the µ(I)-rheology (GDR-MiDi
2004; Jop et al. 2006) with the basal friction given by the dynamic basal friction law
of Pouliquen & Forterre (2002). The depth-averaged µ(I)-rheology (Gray & Edwards
2014; Baker et al. 2016a), used here, differs from the standard inviscid equations by
the inclusion of an in-plane deviatoric stress, which gives rise to a depth-averaged
viscous-like term in the momentum balance (2.2). The coefficient ν in the effective
viscosity νh1/2/2 is explicitly derived in the depth-integration process and is given
by

ν(ζ )=
2
9

L
√

g
β

sin ζ
√

cos ζ

(
tan ζ2 − tan ζ
tan ζ − tan ζ1

)
, (2.4)
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ζ (deg.) hstop(ζ ) (mm) h∗(ζ ) (mm) hstart(ζ ) (mm) ν(ζ ) (m3/2 s−1)

31.9 10.7 14.8 Undefined 6.8× 10−3

33.0 4.2 5.8 28.5 2.8× 10−3

34.1 2.5 3.4 5.7 1.7× 10−3

35.2 1.7 2.3 2.9 1.2× 10−3

36.3 1.2 1.6 1.9 0.9× 10−3

37.4 0.9 1.2 1.3 0.7× 10−3

38.5 0.7 0.9 1.0 0.5× 10−3

39.6 0.5 0.7 0.7 0.4× 10−3

40.7 0.4 0.5 0.5 0.3× 10−3

41.8 0.3 0.4 0.4 0.3× 10−3

TABLE 2. Critical layer thicknesses and coefficients ν(ζ ) in the depth-averaged viscosity
νh1/2/2 for various different slope angles with the material properties for carborundum in
table 1.

where the parameters L , β, ζ1 and ζ2 are determined by Pouliquen & Forterre’s
(2002) basal friction law described below. Values of these parameters measured by
Edwards et al. (2017) are summarized in table 1 and the associated values of ν(ζ )
are given in table 2 for various slope angles. Although small in magnitude, strong
evidence for these viscous terms is provided by the fact that, unlike the inviscid
avalanche model, they (i) predict a downslope velocity profile that varies across a
channel with rough sidewalls (Baker et al. 2016a), (ii) allow the experimental cutoff
frequency of roll waves to be matched without fitting parameters (Forterre 2006;
Gray & Edwards 2014), (iii) determine the width and height of self-channelized
monodisperse flows (Rocha et al. 2019) and (iv) regularize depth-averaged models
of segregation-induced fingering (Pouliquen, Delour & Savage 1997; Pouliquen &
Vallance 1999; Woodhouse et al. 2012; Baker, Johnson & Gray 2016b). It should
be noted, however, that the viscous theory is only well posed for slope inclinations
in the range where the friction law, from which it is derived, is defined i.e. for
ζ ∈ (ζ1, ζ2). Outside of this range some form of regularization is required, i.e. the
negative viscosity for ζ /∈ (ζ1, ζ2) must be prevented (see Gray & Edwards 2014). Also
note that Gray & Edwards’ (2014) derivation of the viscous term in (2.2) implicitly
assumes that the friction coefficient is always given by Pouliquen’s (1999a) dynamic
law. In principle, the form of the viscous term should change when the friction law
is in the intermediate regime. However, it is not obvious how to achieve this, since
there is no longer a stable steady-uniform flow solution to determine the velocity
and pressure profiles in the depth-integration process. For simplicity, it is therefore
assumed, as in Edwards et al. (2017), that the simple viscous-term in (2.2) applies
over all regimes.

3. A non-monotonic friction law for hysteresis
3.1. Basic definitions of hstop, hstart and the empirical flow rule

Pouliquen (1999a) performed experiments with spherical glass beads on rough beds
and measured the deposit thickness hstop(ζ ) left by a steady-uniform flow as a function
of the inclination angle ζ . The inverse function of this deposit thickness ζstop(h) was
found to have the following empirical fit, given here in Pouliquen & Forterre’s (2002)
reciprocal form,

tan ζstop = tan ζ1 +
tan ζ2 − tan ζ1

1+ h/L
, (3.1)
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where ζ1 is the slope inclination below which a layer of any thickness comes to rest
and ζ2 is the angle above which it is not possible for a uniform layer of grains to
remain static on the slope. The parameter L (having the dimensions of a length) is
the characteristic flow depth over which a transition between the angles ζ1 and ζ2
occurs and, as such, it is dependent on the properties of the grains and on the bed
roughness. It follows that for ζ ∈ (ζ1, ζ2) the deposit layer thickness may be written
as

hstop(ζ )=L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ1
− 1
)
. (3.2)

Experimental measurements of the flow thickness h and the depth-averaged velocity
ū have been found to collapse (Pouliquen 1999a; Forterre & Pouliquen 2003; Edwards
et al. 2017) for an empirical flow rule of the form

Fr=
βh

hstop(ζ )
− Γ , (3.3)

which relates the Froude number,

Fr=
|ū|

√
gh cos ζ

, (3.4)

to the flow height and the deposit depth hstop. The constant of proportionality β
and the offset Γ have been measured as β = 0.136/

√
cos ζ with Γ = 0 for flows

of spherical glass beads on a rough bed of the same material (Pouliquen 1999a),
β = 0.65/

√
cos ζ with Γ = 0.77/

√
cos ζ for flows of sand on a rough bed of the

same material (Forterre & Pouliquen 2003) and β = 0.63 with Γ = 0.40 for flows
of carborundum on a rough bed of spherical glass beads (Edwards et al. 2017).
Note that the alternative definition of the Froude number F̂r= |ū|/

√
gh by Pouliquen

(1999a) and Forterre & Pouliquen (2003) gives rise to the apparent angle dependence
in β and Γ , but this is a small correction and they should be thought of as constants.
Using (3.3) to substitute for hstop(ζ ) in (3.2) and the fact that µ = tan ζ for steady
uniform flows, Pouliquen (1999a) determined an empirical dynamic friction law for
flows on rough beds provided that the Froude number Fr>β, which is the value that
they assumed was the minimum steady uniform Froude number, i.e. β∗ = β.

Pouliquen & Forterre (2002) combined this dynamic rough bed friction law with
Daerr & Douady’s (1999) concept that once the grains were stopped (i.e. Fr= 0) flow
could not spontaneously start again until the inclination angle was increased past a
critical value, ζstart(h). This was similarly found to have an empirical fit of the form

tan ζstart = tan ζ3 +
tan ζ2 − tan ζ1

1+ h/L
, (3.5)

where the third critical angle, ζ3, is the minimum angle at which it is possible for a
layer of any thickness to accelerate from stationary and is the asymptote for large h
of the curve ζstart(h). The inverse function of this curve gives the thickness of a flow
that is initiated at the critical slope angle as

hstart(ζ )=L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ3
− 1
)
. (3.6)
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This slope angle-dependent critical flow thickness is infinite at ζ = ζ3 and is undefined
for ζ < ζ3. For angles ζ 6 ζ3 a static uniform layer of any thickness will therefore
remain stationary unless it is disturbed.

In the intermediate regime Fr∈ [0, β] there was no further experimental information
and Pouliquen & Forterre (2002) suggested a Froude number dependent power law
interpolation between the minimum dynamic and maximum static friction. Since
the maximum static friction was higher than the minimum dynamic friction, the
intermediate friction was a monotonically decreasing function of Fr. Pouliquen &
Forterre’s (2002) definition of a multivalued static friction, monotonically decreasing
intermediate friction and monotonically increasing dynamic friction, as shown in
figure 1(b), provide the essential ingredients for frictional hysteresis.

3.2. The transition thickness h∗ and Edwards et al.’s (2017) friction law
One assumption underlying Pouliquen & Forterre’s (2002) friction law is that the
slowest steady-uniform flow, with Froude number β, has the same thickness as the
resulting deposit hstop. However, as shown in the erosion–deposition wave simulations
of Edwards & Gray (2015) (see their figure 15) in which β∗ = β, the resulting flow
actually comes to rest to form a deposit that is thinner than hstop. As a consequence
of this, and other deficiencies that are described in greater detail in § 6, Edwards
et al. (2017) introduced the idea that the minimum thickness for a steady-uniform
flow h∗ was greater than hstop and that it occurred at Froude number β∗ > β − Γ .
This is consistent with Pouliquen’s (1999a) empirical flow rule, since all the steady-
uniform flows are measured for h>hstop and Fr>β. Both Forterre & Pouliquen (2003)
and Edwards et al. (2017) also only observed steady-uniform flows that had Froude
numbers significantly greater than β − Γ in their experiments with angular sand and
carborundum particles.

Edwards et al. (2017) assumed that h∗(ζ ) occurred at a linear combination of
hstop(ζ ) and hstart(ζ ) and, hence, by the flow rule (3.3) the transition Froude number
β∗ varied with the inclination angle. This approach allowed Edwards et al. (2017)
to model the formation of eroded troughs, lateral levees and elevated channels
for mono-disperse flows of carborundum on an erodible bed. While this was a
reasonable first approximation, one consequence of this definition, which was not
immediately apparent at the time, was that if ζ < ζ3 then hstart was undefined
and hence the transition thickness h∗ and β∗ were also undefined. Furthermore,
variation in β∗ with inclination leads to deposit layers that are significantly thicker
than hstop being produced for shallow slope angles, as will be shown in § 6.
Predictions of deposit layer depth are, however, still in good agreement with hstop
on steeper inclinations, which explains why Edwards et al. (2017) were able to
qualitatively match simulations with experiments in the small range of slope angles
34.0◦ 6 ζ 6 35.2◦ that they investigated. This paper therefore introduces a relatively
minor, but important, modification that the transition is instead assumed to occur at
a fixed Froude number β∗ for all slope angles, which means that the friction law
is now valid for all inclinations. The flow rule (3.3) then implies that the minimum
steady-uniform flow thickness h∗(ζ ) is a constant multiple of hstop(ζ )

h∗(ζ )=
(
β∗ + Γ

β

)
hstop(ζ ), (3.7)

which has the advantage that it is defined for all slope angles in the range ζ ∈ [ζ1, ζ2].
The variation of h∗(ζ ) with the inclination is shown in figure 1(a). To ensure that
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h∗(ζ ) > hstop(ζ ), the transition Froude number β∗ > max (β − Γ , 0). This condition
ensures that β∗ is strictly positive, and hence that the frictional transitions are well
defined, even if β−Γ <0 as in the case of sand. A further constraint on the transition
thickness is that h∗(ζ ) < hstart(ζ ) for all inclinations, which using (3.7) implies that

β∗ <β
hstart(ζ )

hstop(ζ )
− Γ . (3.8)

The right-hand side of (3.8) has a minimum at ζ = tan−1((µ2 + µ3)/2), where µi =

tan ζi for i = 1, 2, 3. It follows that the transition thickness h∗ < hstart for all angles
provided

β∗ 6 β
max
∗
= β

(
µ2 +µ3 − 2µ1

µ2 −µ3

)2

− Γ . (3.9)

This has a value of βmax
∗
= 0.47 for the material properties in table 1, which is

equal (to two decimal places) to the value of β∗ that was chosen by Edwards et al.
(2017) to match deposit layer depths hdeposit(35.2◦) ≈ hstop(35.2◦) for carborundum
particles on a rough bed of glass beads. In fact, in § 4 it is explicitly shown, by
performing direct numerical computations, that a single value of β∗ = 0.466 gives
the correct experimental deposit layer depth hstop(ζ ) for all inclination angles. It
is also in approximate agreement with the minimum observed Froude number for
steady-uniform flows in Edwards et al.’s (2017) flow rule experiments. However, for
other materials and slope roughnesses β∗ may not be equal to βmax

∗
and should rather

be inferred directly from the flow rule experiments. As such, β∗ may be considered
as another intrinsic rheological property, whereas hstop (and therefore h∗ too) is an
emerging property.

3.3. The modified friction law
The modified friction coefficient in the dynamic (Fr > β∗), intermediate (0<Fr 6 β∗)
and static (Fr= 0) regimes with a constant β∗ is therefore

µ =



µ1 +
µ2 −µ1

1+ hβ/(L (Fr+ Γ ))
, Fr > β∗,(

Fr
β∗

)κ (
µ1 +

µ2 −µ1

1+ hβ/(L (β∗ + Γ ))
−µ3 −

µ2 −µ1

1+ h/L

)
+µ3 +

µ2 −µ1

1+ h/L
, 0< Fr 6 β∗,

min
(
µ3 +

µ2 −µ1

1+ h/L
, |tan ζ i−∇h|

)
, Fr= 0,

(3.10)

(3.11)

(3.12)

where κ is the interpolation power in the intermediate regime. Values of the friction
angles ζi = tan−1 µi, i = 1, 2, 3 and the flow rule parameters β and L measured
by Edwards et al. (2017) together with κ are given in table 1. This law reduces to
the Pouliquen & Forterre (2002) friction coefficient for glass beads when β∗ = β and
Γ = 0. The key difference to Edwards et al.’s (2017) law is that β∗ is now constant,
rather than being a function of the slope angle, i.e. β∗(ζ ) = βh∗(ζ )/hstop(ζ ) − Γ ,
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where h∗(ζ )= (1− a)hstop(ζ )+ ahstart(ζ ) and a is a constant. This immediately implies
that the friction law (3.10)–(3.12) is valid for all inclinations, not just where both
hstop and hstart exist, i.e. the range [ζ3, ζ2]. This small change therefore represents a
significant extension of the range of validity of the theory.

It is important to note that in the static regime (3.12) the friction can take a
maximum value of µstart = µ3 + (µ2 − µ1)/(1 + h/L ), but any state in which
the grains can be held static by a lesser friction is also permissible, as shown in
figure 1(b). A general two-dimensional static momentum balance implies that the
friction must precisely match the gravitational force pulling the grains downslope as
well as any pressure gradients that may be driving them in other directions. As a
result µ = |tan ζ i − ∇h|, where i is the unit vector in the downslope direction and
∇h is the gradient of the thickness. This force also needs to be oriented to oppose
the net forces in the static momentum balance.

3.4. Motion of a uniform depth layer
The properties of the friction law (3.10)–(3.12) can be neatly summarized by
considering its effect in the case of a uniform flow of constant thickness h. For
this situation the momentum balance (2.2) reduces to

dū
dt
= gS cos ζ , (3.13)

where the non-dimensional net acceleration S= tan ζ −µ determines whether the flow
accelerates (S > 0), decelerates (S < 0) or moves at constant speed S = 0. This can
be visualized by plotting the zero contour of the non-dimensional net acceleration S
as a function of the Froude number Fr and the thickness h as shown in figure 4. In
the blue shaded region S is positive and the flow is accelerated, which is indicated
by arrows pointing to the right, while in the white region the flow is decelerated
and the arrows point to the left. On the thick black line between the two domains
S is equal to zero and the flow will move at constant speed. It follows that all flows
whose thickness is below h∗ are decelerated towards the static state, while flows whose
thickness is above hstart are either accelerated, or decelerated, towards steady-uniform
flow. In the hysteretic regime between h∗ and hstart initially static layers of grains are
stable to small perturbations, because of the decelerative region immediately adjacent
to the h axis. The interpolation parameter κ , between the static and dynamic friction
regimes, controls the necessary magnitude of finite sized disturbances (represented by
an instantaneous Froude number) that are needed to destabilize a static layer of grains.
Pouliquen & Forterre (2002) chose a value of κ=10−3, which led to unphysically high
sensitivity and under-resolution of the friction law (discussed in § 6.1). The stability
of static layers to finite perturbations is better described by order-unity values of κ
that give a roughly linearly decreasing zero contour in figure 4 between Fr = 0 and
Fr = β∗, which forms an upper boundary to an approximately triangular decelerating
region between h∗ and hstart. Since this region is much wider at the bottom than at the
top it is much easier to destabilize material whose thickness is closer to hstart than h∗.
Once material in this region has been mobilized, however, it will accelerate/decelerate
towards steady-uniform flow. A contour plot of the non-dimensional net acceleration
S, such as in figure 4, therefore provides a useful way of visualizing the hysteretic
behaviour of the friction law.

Note that the qualitative picture in figure 4 is the same for Edwards et al.’s (2017)
friction coefficient, in the reduced region of parameter space ζ ∈ (ζ3, ζ2) for which
their law is valid, although it will be shown in § 6 to produce deposit layers that are
much thicker than hstop on shallow inclinations.
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0

h

hstart(Ω)

h*(Ω)

hstop(Ω)

ı*

Fr

FIGURE 4. The zero contour of the non-dimensional net acceleration S= tan ζ −µ (solid
black line) as a function of the Froude number and the flow thickness for the material
properties of carborundum. Flows accelerate when S>0 (blue region and right arrows) and
decelerate for S< 0 (white region and left arrows). The solid vertical black line at Fr= 0
shows the multivaluedness of the friction coefficient for stationary material. The region of
positive net acceleration reaches h = h∗(ζ ) (solid orange line) at Fr = β∗ (dashed black
line), where h∗(ζ ) is a constant multiple (3.7) of hstop(ζ ) (solid red line), and approaches
h= hstart(ζ ) (solid green line) for small Froude numbers. Note the interpolation parameter
κ = 1 produces an approximately linearly decreasing S = 0 contour between Fr = 0 and
β∗. The material properties are given in table 1 and the slope angle-dependent properties
in table 2.

4. Numerical simulations of the deposition process
The governing equations (2.1)–(2.4) together with the modified friction law (3.10)–

(3.12) are now solved numerically to investigate how particles are deposited to form
a layer of thickness hstop.

4.1. Numerical method
High-resolution shock capturing numerical methods (e.g. Nessyahu & Tadmor 1990)
are required to solve the standard depth-averaged avalanche equations (e.g. Gray
et al. 2003), which are a system of hyperbolic equations. The inclusion of the
depth-averaged µ(I)-rheology (Gray & Edwards 2014; Baker et al. 2016a) changes
this system into a set of (advection dominated) convection–diffusion equations.
Therefore the closely related semi-discrete high-resolution non-oscillatory central
schemes of Kurganov & Tadmor (2000) are used to solve the equations here. The
time stepping is handled with a second-order Runge–Kutta method limited by upper
bounds of both a Courant–Friedrichs–Lewy (CFL) number of 0.125 and a maximum
step size of 10−4 s (as used by Edwards & Gray 2015; Edwards et al. 2017), which
helps with the extra constraints on the stable time step beyond the CFL condition due
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to the source and, in particular, viscous terms. The one-dimensional numerical domain
spans x ∈ [0, 2] m and is discretized linearly over 2000 grid points. At the upstream
boundary, x = 0, there is no advective or diffusive flux, which is implemented by
setting m= 0 and dm/dx= 0 there. There is free outflow at the downstream boundary
x=2 m, which is imposed via a linear extrapolation of the values of h and m from the
final two columns of interior cells. In order to solve the system, the depth-averaged
equations (2.1)–(2.3) are written in conservative vector form as

∂w
∂t
+
∂f (w)
∂x
= S(w)+

∂

∂x

(
Q
(

w,
∂w
∂x

))
, (4.1)

where w= (h, m)T is the vector of conserved variables h and m= hū. The resulting
convection flux function f , source term vector S and diffusive flux function Q are

f =

 m
m2

h
+

h2

2
g cos ζ

 , S= hg cos ζ
(

0
tan ζ −µ

)
, Q= νh1/2

(
0

∂m
∂x
−

m
h
∂h
∂x

)
,

(4.2a−c)

respectively. The friction µ in the source term vector S is given by (3.10)–(3.12) with
the material parameter values given in table 1.

4.2. Simulating the formation of an hstop layer
A numerical simulation of the formation of an hstop layer on a slope of 36.3◦
and with a static initial layer thickness h(x, 0) = hstart(36.3◦) + 0.5 mm = 2.4 mm,
which matches the experiment of § 1, is shown in figure 5. When the simulation
commences this layer accelerates towards steady-uniform flow and at its trailing
edge a non-uniform flow develops. The two-dimensional downslope velocity field is
reconstructed from the depth-averaged velocity ū(x, t) by assuming an exponential
velocity profile (Wiederseiner et al. 2011; Kamrin & Henann 2015),

u(x, z, t)=
λū(x, t)

exp (λ)− 1
exp

(
λ

z
h

)
, (4.3)

where the constant λ = 1.4 is chosen to match surface velocities. As the flow
accelerates, a small pile of material is formed near the inflow due to frictional
hysteresis, but by 40–50 cm downstream a uniform deposit is left behind, whose
thickness hdeposit(36.3◦) ≈ hstop(36.3◦). Indeed, Edwards et al. (2017) chose the
transition Froude number β∗= 0.466 precisely because it produced the correct deposit
layer thickness in the range of inclinations that they studied.

The thick steady-uniform flow and the thinner static deposit are connected by two
travelling waves, as shown by the diagonal lines in figure 5. The first travelling
wave marks the rear of the region of steady-uniform flow and moves slightly quicker
than the second wave, which rapidly deposits material and connects the minimum
steady-uniform flow thickness h∗ with the final deposit. In between the two waves
is a slowly expanding region, within which the grains slow down and the flow thins
from the steady-uniform value to h∗. The speed of the second wave is calculated to
be 0.22 m s−1, which is in good agreement with the experimentally measured value
of 0.24 m s−1 in § 1, for the same steady-uniform flow thickness and slope angle.
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1.0 0 0.4 0.8 1.2 1.6 2.0
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t = 3 s

t = 4 s

t = 5 s

t = 6 s

FIGURE 5. The flow thickness h and downslope velocity u(x, z, t) at a sequence of time
steps (a–d) for a slope inclined at ζ = 36.3◦ and with an initially uniform static layer
of initial thickness h(x, 0) = 2.4 mm, which is 0.5 mm greater than hstart(36.3◦) (solid
green line). The filled region shows the thickness and the contour scale within it denotes
the velocity, which is reconstructed from the depth-averaged downslope velocity ū(x, t)
by assuming an exponential profile (4.3) through the avalanche depth. There is no further
inflow at x= 0, but there is free outflow at the downstream boundary. A travelling wave
at the rear of the steady-uniform flow region (dash-dotted black line) passes through the
material at a constant wavespeed that is greater than the surface velocity. This is followed
by a slightly slower travelling deposition wave (between the dashed black line and the
dotted black line) that connects the static deposit and the transition thickness h∗ (solid
orange line). These waves catch up with surface particles, which are shown with light
blue circular markers, and they are deposited on the surface of the final deposit layer that
has a thickness of approximately hstop (solid red line). The material properties are given
in table 1 and there is a movie of the simulation in the online supplementary material
(movie 1).
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FIGURE 6. Space–time (x, t) plot showing the surface velocity u(x, h, t) for a flow
at ζ = 36.3◦ and with an initial stationary layer of thickness h(x, 0) = hstart(36.3◦) +
0.5 mm= 2.4 mm. Individual surface particles are tracked (light blue lines) to visualize
the particle trajectories through the travelling wave at the back of the steady-uniform
region (dash-dotted black line), the slowly expanding region and the subsequent travelling
deposition wave (between the black dotted and dashed lines). The vertical lines indicate
stationary material and diagonal lines represent moving grains. The first travelling wave
moves slightly faster than the second travelling wave, which rapidly deposits the grains
once they have been slowed down in the expanding region (between the dotted and
dash-dotted black lines). The material properties are given in table 1.

Both travelling waves actually move faster than any of the grains, so a typical surface
particle (shown in figure 5 by light blue markers) will initially accelerate and then
travel downslope at constant speed, until it is caught up first by the steady-uniform
flow wave and then by the rapid deposition wave. As the first wave passes by, the flow
thins and the particles slow down, before the second travelling wave quickly brings
the grains to rest on the surface of the hstop deposit. An animation of the process is
available in the online supplementary material (https://doi.org/10.1017/jfm.2019.517).

The downslope surface velocity can also be visualized as a space–time plot as
shown in figure 6. Since the surface velocity contours are separated at the friction
transition thickness into regions of two slightly different gradients, this gives further
support to the observation that the deposition process occurs by way of two travelling
waves that move downslope at slightly different constant speeds and are connected
by a slowly expanding region. A series of surface particle trajectories are also plotted
on top of the contours in figure 6 and these all have the same shape. In the region
of steady-uniform flow they propagate downslope with a constant surface velocity
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of 0.22 m s−1, but as the deposition wave approaches with a slightly faster speed
they slow down and stop to form vertical parallel lines. This agrees well with the
experimental observations from the space–time plot in figure 2.

Setting χ = 1 in the momentum balance (2.2), which is equivalent to an exponential
velocity profile (4.3) with λ→ 0, results in a surface velocity of 0.12 m s−1 that is
equal to the depth-averaged steady-uniform flow velocity. Choosing χ ≈ 1.16 produces
a velocity reconstruction that is in better agreement with the experimentally measured
surface velocity.

4.3. Deposit layer depths at different inclination angles
The friction law (3.10)–(3.12) does not just produce the correct deposit depth at one
inclination angle and static layer thickness, but it does so for various initial conditions
in the entire range of angles at which hstop layers form with carborundum particles.
Figure 7 shows a series of simulations at inclinations ranging from 31.9◦ to 40.7◦
that start with a static layer of thickness h(x, 0)= h∗(ζ ). Since the initial thicknesses
are less than hstart, an initial momentum m(x, 0)= h(x, 0)ū(x, 0) must be imposed to
initiate a flow. The initial velocity is set to ū(x, 0)= ū∞, where in general, for a flow
of uniform thickness h(x, 0)= h∞, the dynamic friction regime (3.10) implies that the
steady uniform velocity is

ū∞ =
(
βh∞
hstop
− Γ

)√
gh∞ cos ζ . (4.4)

Each plot in figure 7 shows a time sequence of the free surface at one second intervals,
so the complete evolution of the formation of the deposit can be visualized by a
shading that increases in intensity with increasing time. All the simulations show the
rapid development of a travelling wave that directly connects the friction transition at
h= h∗ to a deposit depth that is very close to hstop, as shown in figure 7.

Figure 8 shows a series of simulations at inclinations ranging from 33.0 to
41.8◦ that start with a static layer h(x, 0) = hstart(ζ ) + 0.1 mm, which therefore
flows spontaneously. All of these flows leave a uniform thickness deposit by about
30–50 cm downstream that is very close to the correct experimental hstop value, as
shown in figure 9. Indeed, the mean deviation of hdeposit from hstop for all simulations
is less than 3 %, whilst the maximum is less than 5 %. At low inclination angles
(figure 8b) there are clearly two travelling waves that are separated by an expanding
region, but as the inclination increases (figure 8c–e) the first and second waves move
at almost the same speed, so the deposition wave as a whole looks like the back of
the erosion–deposition waves observed by Edwards & Gray (2015). It is also evident
from figure 8 that the time taken to reach a steady travelling wave state, as well
as the speed of the wave, both decrease with increasing slope angle. The travelling
waves will be studied in more detail in § 5.

An investigation into how the deposit depth is affected by changing the thickness of
the initial layers is also crucial to our understanding of the deposition process. It has
already been shown that the numerical deposits closely agree with the experimental
value of hstop for both h(x, 0)= h∗(ζ ) and h(x, 0)= hstart(ζ )+ 0.1 mm for the whole
range of valid inclinations. Figure 9 also shows the results of a series of simulations
with different initial layer thicknesses on a fixed slope inclination of ζ = 36.3◦. All
of these simulations, of which figure 5 is one example, produce a deposit depth
that is within 3 % of the correct experimental value for hstop(36.3◦). This strongly
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(a)

(b)

(c)

(d)

(e)

0 0.4 0.8 1.2 1.6 2.0
x (m)

h(x, 0) = h*(31.9°) = 14.8 mm

h(x, 0) = h*(34.1°) = 3.4 mm

h(x, 0) = h*(36.3°) = 1.6 mm

h(x, 0) = h*(38.5°) = 0.9 mm

h(x, 0) = h*(40.7°) = 0.5 mm

FIGURE 7. A series of numerical simulations showing the evolving flow thickness starting
from h(x, 0) = h∗(ζ ) (dashed black line) at slope angles (a) ζ = 31.9◦, (b) ζ = 34.1◦,
(c) ζ = 36.3◦, (d) ζ = 38.5◦ and (e) ζ = 40.7◦. In each panel the flow thickness is shown
at one second intervals by light blue lines and the blue shading increases in intensity
with increasing time. The initial layer depths are equal to the thickness of the friction
law transition h∗ (solid orange lines), which are less than hstart(ζ ) (solid green lines). An
initial momentum m(x, 0) = h∗ū∗ is therefore imposed in order to start the flow, where
ū∗ = ū∞ is given by the steady-uniform flow velocity relation (4.4). As the deposition
wave travels through the system all the flows eventually leave a deposit that is close to
hstop(ζ ) (solid red lines). The material properties are given in table 1 and the slope angle-
dependent properties in table 2. Movies of the full simulations are available in the online
supplementary material (movies 2–6).
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x (m)

(a)

(b)

(c)

(d)

(e)

h(x, 0) = hstart(33.0°) + 0.1 mm = 28.6 mm

h(x, 0) = hstart(35.2°) + 0.1 mm = 3.0 mm

h(x, 0) = hstart(37.4°) + 0.1 mm = 1.4 mm

h(x, 0) = hstart(39.6°) + 0.1 mm = 0.8 mm

h(x, 0) = hstart(41.8°) + 0.1 mm = 0.5 mm

FIGURE 8. A series of numerical simulations showing the evolving flow thickness starting
from h(x, 0) = hstart(ζ ) + 0.1 mm (dashed black line) at slope angles (a) ζ = 33.0◦,
(b) ζ = 35.2◦, (c) ζ = 37.4◦, (d) ζ = 39.6◦ and (e) ζ = 41.8◦. In each panel the flow
thickness is shown at one second intervals by light blue lines and the blue shading
increases in intensity with increasing time. All of the initially static layers have a thickness
h > hstart(ζ ) (solid green lines) and so they gain momentum. As the deposition wave
travels through the system all the flows eventually leave a deposit that is close to hstop(ζ )
(solid red lines). The friction law has a transition thickness h∗(ζ ) (solid orange lines). The
material properties are given in table 1 and the slope angle-dependent properties in table 2.
Movies of the full simulations are available in the online supplementary material (movies
7–11).
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FIGURE 9. The deposit thickness (orange squares) left by simulations starting from initial
thickness h(x, 0) = h∗(ζ ) (solid orange line), as shown in figure 7, and the deposit
thickness (green squares) left by simulations starting from h(x, 0)= hstart(ζ ) (solid green
line), as shown in figure 8. All the deposit thicknesses are in good agreement with
hstop(ζ ) (solid red line). Simulations on a slope inclined at ζ = 36.3◦ with various initial
thicknesses (black circles) greater than hstart(36.3◦) also all collapse (downward arrow)
to leave deposits (black squares) close hstop(36.3◦) and are in good agreement with one
another. An example of one of these simulations, for h(x, 0)= hstart(36.3◦)+ 0.5 mm, is
shown in figure 5. The material properties are given in table 1 and the various slope
angle-dependent properties for the initially uniform layer simulations in table 2.

suggests that, at least for a system of carborundum particles on a bed of glass beads,
a universal hstop layer thickness develops due to the combination of two travelling
waves that move at slightly different speeds and are connected by a slowly expanding
region between them. The empirical deposit depth hstop is therefore insensitive to
the initial conditions, since thick initial layers are able to connect to the top of a
travelling deposition wave at h∗, which then leaves the correct deposit thickness.
Such solutions may not always exist for other granular materials, hence the form of
the travelling deposition waves suggest that, in general, the most robust method of
recovering the experimental deposit depth is by way of a steady-uniform flow at the
minimum possible thickness h∗.

Changing the shape factor from χ = 1, as used here, to χ = 1.16 that results from
the exponential velocity profile (4.3) with λ = 1.4, has little effect on the deposit
depth, despite changing the reconstructed surface velocity. For typical parameters, the
thickness of the layer that is deposited is still within 2 % of the experimental value
of hstop when calculated with χ = 1.16.

4.4. Simulation of the experimental procedure to measure hstop and hstart

The experimental procedure for determining the hstop(ζ ) and hstart(ζ ) functions, which
was discussed in the introduction and sketched in figure 1(a), is now simulated
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numerically to further test the modified friction law proposed here. The simulation
starts at a shallow angle ζ = 32.5◦. This is below ζ3, where hstart is undefined, and
where there is no thickness above which a static layer can spontaneously start to flow
downslope. However, with the definition of h∗ as a multiple of hstop proposed in (3.7)
it is still possible to have steady-uniform flows in the range [ζ1, ζ3] provided there
is a sufficient initial perturbation. The simulation is therefore started with a layer
of thickness h(x, 0) = h∗(32.5◦) = 8.1 mm that is given the corresponding minimum
steady-uniform flow velocity that is possible at that inclination, according to (4.4)
with h∞ = h(x, 0). It is important to note that the modified friction law (3.10)–(3.12)
with constant β∗ is crucial, since it allows h∗ to be defined for all slope angles
ζ ∈ [ζ1, ζ2]. In the case of Edwards et al.’s (2017) friction law with non-constant β∗,
the minimum steady-uniform flow thickness h∗(ζ ) is not defined for ζ ∈ [ζ1, ζ3], since
hstart is undefined, and the model therefore fails to predict the initial collapse.

Since there is no further mass supply at the inflow, a deposition wave forms at the
trailing edge of the steady-uniform flow and a deposit that is close to hstop(32.5◦) is
left on the chute. This static numerical deposit is then used as the initial condition
for the next flow. To induce it, the chute inclination is increased progressively in 0.1◦

increments until the entire layer, ignoring small movements in the thicker transient
regions, gains momentum and collapses again to leave an even thinner deposit at a
steeper slope angle. The process is repeated for the collapse of an entire static layer
at five different inclination angles to produce a staircase of numerically predicted hstop

and hstart values, shown in figure 10. The angle at which the layer collapses and the
theoretical value of hstart(ζ ) are in good agreement for each collapse. Furthermore, the
mean deposit thickness hdeposit, taken between 1 m and 2 m downslope at the end of
the simulations when all of the material has come to rest, is also shown in figure 10
to be approximately equal to hstop(ζ ) for each of the slope angles. This is the first time
that anyone has successfully been able to model this complex experimental procedure
and it is remarkable that the modified friction law, with an intermediate/dynamic
transition at a fixed value of β∗, is able to predict it so accurately. In § 6 it will
be shown that all existing non-monotonic friction laws are unable to predict this
behaviour, because either they (i) produce the incorrect deposit layer depth or (ii) are
unable to hold grains static on the chute as the inclination is increased towards ζstart.

5. Inviscid travelling deposition waves

The experiments in figure 2 and the numerical simulations in figures 5–8 strongly
suggest that two travelling waves are responsible for the deposit of an hstop layer.
The first travelling wave marks the back of the steady-uniform flow region, while the
second develops at the tail of the flow and connects the minimum steady-uniform flow
thickness h∗ to the final deposit depth. To study this wave in greater detail, the inviscid
(ν=0) depth-averaged mass and momentum equations (2.1)–(2.2) are now transformed
to a frame moving downslope with speed uw, by making the coordinate transformation
τ = t and ξ = x− uwt, to give

∂h
∂τ
+
∂

∂ξ
(h(ū− uw))= 0, (5.1)

∂

∂τ
(hū)+

∂

∂ξ
(hū(ū− uw))+

∂

∂ξ

(
1
2

h2g cos ζ
)
= hgS cos ζ , (5.2)
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FIGURE 10. Numerical simulation of the experimental procedure to determine the hstop
(black squares) and hstart (black circles) curves for the material properties of carborundum.
The first simulation requires perturbing a uniform layer of thickness h∗(ζ ) (solid orange
line), since no layer is thick enough to flow spontaneously for shallow inclinations ζ < ζ3.
Imposing a steady-uniform flow causes this entire layer to collapse and leave a thinner
deposit (leftmost downward arrow). The slope is then progressively inclined in 0.1◦
increments until this static layer spontaneously begins to flow (rightward arrows). The
inclination angle at which the collapse occurs is found to be in good agreement with
hstart(ζ ) (solid green line). Each successive flow leaves an increasingly thinner deposit
(downward arrows), whose thickness is in good agreement with hstop(ζ ) (solid red line).
The material properties are given in table 1 and the various slope angle-dependent
properties for the initially uniform layer simulations in table 2.

respectively, where S is defined in (2.3). Assuming a steady solution in the moving
frame the system reduces to a pair of ordinary differential equations (ODEs),

d
dξ
(h(ū− uw))= 0, (5.3)

(ū− uw)
dū
dξ
+ g cos ζ

dh
dξ
= gS cos ζ . (5.4)

Integrating the mass balance ODE (5.3) subject to the condition that the depth-
averaged velocity is zero in a stationary deposit of as yet unknown constant thickness
h0, implies that the depth-averaged velocity is a function of the frame speed and the
flow thickness

ū= uw

(
1−

h0

h

)
. (5.5)
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Substituting the depth-averaged velocity (5.5) into the momentum balance (5.4)
reduces the problem to a single ODE for the flow thickness

dh
dξ
=

h3gS cos ζ
h3g cos ζ − h2

0u2
w

. (5.6)

The ODE (5.6) is singular at a critical thickness hc where the denominator is zero.
This allows the unknown deposit thickness h0 to be expressed in terms of hc as

h0 =
h3/2

c

√
g cos ζ

uw
, (5.7)

and hence the ODE (5.6) may be written as

dh
dξ
=

h3S
h3 − h3

c

, (5.8)

which can be solved numerically for a given value of hc.
It is possible to construct a range of travelling-wave solutions with different

structures that connect a static deposit layer of thickness h0 to a steady-uniform
flow of thickness h∞. However, the numerical solutions in figures 5–8 suggest
that the travelling waves do not directly connect h0 to h∞, but that there is a
time-dependent expansion zone for h > h∗. This paper therefore focuses on how the
minimal steady-uniform flow of thickness h∗ connects to a deposit of thickness h0, i.e.
it is assumed that h∞ = h∗. This implies that the steady-uniform part of the solution
lies at (β∗, h∗) in figure 4, at the transition between the intermediate and dynamic
regimes and where the non-dimensional net acceleration S = tan ζ − µ = 0. If h∗ is
a regular point then the ODE (5.8) would imply that the solution had zero gradient.
However, it is anticipated from the numerical simulations in figure 7 that, in the
absence of viscosity, the solutions will have a finite gradient and hence that h∗ must
lie at a critical point.

Assuming that the critical point hc = h∗, it follows from equations (5.5) and (5.7)
that the speed of the wave

uw = ū∗ +
√

gh∗ cos ζ , (5.9)

where ū∗= ū∞(h∗) is defined by (4.4). The speed of the wave (5.9) is therefore equal
to the maximum characteristic wavespeed in the system. The wave is faster than the
speed of the surface particles, for the exponential velocity profile assumed in (4.3),
which implies that all the grains are caught up by the wave and deposited. The deposit
depth h0 can be found by substituting (4.4) and (5.9) into (5.7) to give

h0 =
h∗

1− Γ + βh∗/hstop(ζ )
. (5.10)

Since h0 is known explicitly the ODE (5.8) is solved by integrating forwards from
h= h0 at ξ = 0 until the steady uniform flow is reached. The solution for ζ = 36.3◦
and h∞ = h∗(36.3◦) = 1.6 mm is shown in figure 11. It is in very close agreement
with an inviscid solution (ν = 0) calculated with the numerical method described in
§ 4.1. The inclusion of the depth-averaged viscous terms in (2.2) acts to smooth out
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FIGURE 11. Exact travelling-wave solution (solid black line) for the flow thickness h as
a function of x= ξ + uwt with t= 4.0 s, as well as a comparison with numerical solutions
both with and without viscosity (solid and dashed blue lines respectively). The slope
angle ζ = 36.3◦ and the steady-uniform flow thickness h∞= 1.6 mm is equal to h∗(36.3◦)
(solid orange line). The travelling deposition wave connects the steady-uniform flow to
the deposit layer, which is approximately equal to hstop(36.3◦) (solid red line). Since h∗
is less than hstart(36.3◦) (solid green line) the initial layer is assumed to be moving with
the steady-uniform flow velocity (4.4) in the simulations. The viscosity slightly increases
the deposit depth, and hence the speed of the wave. The material properties are given in
table 1 and the slope angle-dependent properties in table 2.

the wave, making the deposit depth slightly thicker and therefore in better agreement
with the experimental value hstop, and as shown in figure 11.

The deposit depth h0 as a function of inclination angle (5.10) is plotted in figure 12.
For a steady-uniform flow thickness h∗ the deposit depth agrees to within 6 % of hstop
for all slope angles, where the consistent under-prediction of the deposit thickness
is accounted for by the lack of viscosity. The fact that the travelling-wave solution
produces a deposit depth that is so close to hstop, for all inclination angles, suggests
that the angle dependence of h∗(ζ ), given by (3.7), is correct. Since (3.7) is derived
from the empirical flow law (3.3) assuming that the transition Froude number β∗
is constant, this strongly suggests that the modified friction law (3.10)–(3.12) with
constant β∗ is a good approximation.

6. Comparison with existing friction laws
To understand the motivation behind the non-monotonic friction law (3.10)–(3.12) it

is useful to understand some of the pathologies that are present in earlier formulations.
These can be seen by considering plots of the non-dimensional net acceleration
S(Fr, h) as well as simple numerical simulations of (i) an initially stationary layer
with a thickness just above hstart, which should accelerate away leaving behind a
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FIGURE 12. Deposit thickness h0 (solid black line) as a function of the slope angle ζ ,
given exactly by (5.10), for a steady-uniform flow thickness h∞(ζ ) (dashed black line) that
is equal to h∗(ζ ) (solid orange line). The deposit thickness is in quantitative agreement
with hstop(ζ ) (solid red line) for all angles, although the values are slightly under-predicted
due to the lack of viscosity. The thickness above which material flows spontaneously is
hstart(ζ ) (solid green line).

deposit layer close to hstop and (ii) an initially static deposit with a thickness slightly
less than hstart, which should remain static.

6.1. Pouliquen & Forterre’s (2002) friction coefficient for glass beads
The non-monotonic friction law (3.10)–(3.12) reduces to the extended law of
Pouliquen & Forterre (2002) for flows of spherical glass beads when the constant
transition Froude number β∗ = β = 0.136/

√
cos ζ and the offset Γ = 0. This implies

that the minimum steady-uniform Froude number is equal to β, which is lower
than that observed by Pouliquen (1999a) for most systems, and results in a minimum
steady-uniform flow thickness h∗=hstop. The non-dimensional net acceleration S(Fr,h),
with the material parameters for glass beads (table 3a), is shown in figure 13
to display some notable differences to the modified friction law proposed here.
Most significantly, Pouliquen & Forterre (2002) chose the power κ = 10−3 in the
interpolation between the static and dynamic regimes. This extremely small value
of κ was chosen to give a rapid decrease of the friction coefficient concentrated
near to Fr = 0 and then an almost constant friction until the dynamic regime took
over. In practice, however, the value of κ is so small that the friction law starts at
the maximum static friction at Fr = 0, but at the nearest non-zero positive number
that can be represented by machine precision (which is around 10−324) immediately
drops down to a low value of µ as shown in figure 13(b). As a result the triangular
decelerating region that should lie adjacent to the h-axis between h ∈ [hstop, hstart]

is partially lost in finite precision calculations. This may explain why Pouliquen &
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ζ1 (deg.) ζ2 (deg.) ζ3 (deg.) L (mm) κ β Γ

(a) 21.0 30.7 22.2 0.65 10−3 0.136/
√

cos ζ 0
(b) 27.0 43.4 30.0 1.62 10−3 0.65/

√
cos ζ 0.77/

√
cos ζ

TABLE 3. Material properties for (a) glass beads on a bed of the same material, measured
by Pouliquen & Forterre (2002) and (b) sand on a bed of the same material, measured by
Forterre & Pouliquen (2003).

Forterre (2002) found that their simulations of a finite mass release on an erodible
layer ran out considerably further than in experiments.

The high sensitivity of Pouliquen & Forterre’s (2002) friction law is also unphysical,
since it is known from their own experiments that in practice the deposit layers can
be inclined up to ζstart (which may be several degrees higher than ζstop) before a
flow is triggered. Static layers are therefore relatively stable to small disturbances.
A larger value of κ may therefore be chosen to give a greater stability to layers
in the intermediate frictional regime, which is why Edwards et al. (2017) set κ = 1.
Whilst this overcomes the problem of hysteresis in stationary layers, the non-zero
offset Γ in the empirical flow rule for more angular granular materials such as sand
and carborundum causes further problems.

6.2. A friction law based on the empirical flow rule for sand
In an investigation into the long-surface-wave instability of granular materials, Forterre
& Pouliquen (2003) performed experiments using a flow of 800 µm diameter sand
on a rough bed of the same particles. They measured a constant of proportionality
β = 0.65/

√
cos ζ an offset Γ = 0.77/

√
cos ζ in the empirical flow rule. The friction

angles and flow rule parameters measured by Forterre & Pouliquen (2003) for
sand, along with an estimate ζ3 = ζ1 + 3◦ are given in table 3(b). The offset Γ in
the flow rule alters the dynamic friction coefficient and the transition point to the
intermediate regime, which now occurs at a Froude number β − Γ . This would
suggest, by following the same argument as Pouliquen & Forterre (2002), that the
friction coefficient might naively be written as

µSand =



µ1 +
µ2 −µ1

1+ hβ/(L (Fr+ Γ ))
, Fr > β − Γ ,(

Fr
β − Γ

)κ
(µ1 −µ3)+µ3 +

µ2 −µ1

1+ h/L
, 0< Fr 6 β − Γ ,

min
(
µ3 +

µ2 −µ1

1+ h/L
, |tan ζ i−∇h|

)
, Fr= 0.

(6.1)

(6.2)

(6.3)

With the parameters for sand, β − Γ < 0, and hence all flows are always in the
dynamic regime. This is shown in figure 14(a), by plotting the zero contour of the
non-dimensional net acceleration S= tan ζ − µ with the material properties for sand.
Since only the dynamic regime is active, an explicit formula for the zero contour hsteady
can be derived by equating (2.3) to zero for the dynamic friction coefficient (6.1) and
simplifying with (3.2) to give

hsteady(Fr)=
(Fr+ Γ )

β
hstop(ζ ), (6.4)
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FIGURE 13. Zero contours of the non-dimensional net acceleration S = tan ζ − µ (solid
black lines) with the material properties for glass beads (table 3a) against the Froude
number and flow thickness on (a) a linear and (b) a semi-log scale. In the blue shaded
region (with right pointing arrows) S> 0 and flows accelerate, while in the white region
(with left pointing arrows) S < 0 and flows decelerate. The solid vertical black line at
Fr = 0 in panel (a) shows the multivalued friction coefficient for stationary material.
The transition between the intermediate and dynamic friction regimes occurs at Fr = β
(dashed lines), whilst the hstop and hstart thicknesses are shown by the red and green lines,
respectively. Note that in panel (b) the range of Froude numbers extends down to the
minimum representable non-zero positive number on a typical computer.
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ı - ˝

ı > ˝

ı < ˝

0

0

hstart(Ω)

hstop(Ω)

h

(b)

hstart(Ω)

hstop(Ω)

h

(a)

Fr

FIGURE 14. Zero contours of the non-dimensional net acceleration S = tan ζ − µ (solid
black lines) against the Froude number and flow thickness with the material properties of
(a) sand (table 3b), for which β <Γ , and (b) carborundum (table 1), for which β−Γ > 0.
Flows accelerate when S> 0 (blue region and right arrows) and decelerate for S< 0 (white
region and left arrows). The solid vertical black line at Fr = 0 in panel (b) shows the
multivaluedness of the friction coefficient for stationary material. The transition between
dynamic and intermediate regimes occurs at Fr = β − Γ , which is negative for sand,
implying that all flows are dynamic and even initially static (Fr = 0) flows of thickness
h > hsteady(0) > hstop(ζ ) (solid red lines) will accelerate, including those with thickness
h< hstart(ζ ) (solid green lines). For carborundum with β >Γ the transition Froude number
Fr=β−Γ (dashed black line) is positive so the friction regimes are all well defined. The
slope angle-dependent properties for (a) sand and (b) carborundum are given in tables 4(b)
and 2 respectively.
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which is linear in the Froude number. For h> hsteady all flows are accelerative and for
h< hsteady all flows are decelerative. As a result, all constant thickness flows will either
accelerate towards steady-uniform flow or decelerate towards zero velocity. However,
the friction in the static state is not properly defined, so there is an issue here too.
All of these problems arise directly from Γ being greater than β for the parameters
for sand, which is a different problem to that of Pouliquen & Forterre’s (2002) law
with κ = 10−3.

Returning to the material properties for carborundum (given in table 1), for which
β > Γ , the dynamic, intermediate and static regimes are still properly defined in
(6.1)–(6.3) if β∗ = β − Γ . The S = 0 contour for the carborundum parameters is
plotted against Froude number and flow thickness in figure 14(b). It has many of
the desired properties for a hysteretic friction law, with (i) acceleration for h> hstart,
(ii) deceleration below hstop and (iii) a triangular region of deceleration between
[hstop, hstart] adjacent to the h-axis. As h approaches hstart from below this triangular
region becomes progressively smaller, implying that static grains are more likely to
mobilized by a disturbance. However, Edwards & Gray (2015) and Edwards et al.
(2017) found that numerical simulations of a depositional steady-uniform flow using
the material properties of carborundum and a transition Froude number β∗ = β − Γ
did not leave a deposit layer with the correct thickness, i.e. hdeposit(ζ ) 6= hstop(ζ ), as
will be demonstrated in § 6.4.

6.3. Edwards et al.’s (2017) friction law for angular materials
The non-monotonic friction law with constant β∗ presented here (3.10)–(3.12)
reverts back to Edwards et al.’s (2017) original formulation if the transition
thickness is assumed to lie between the hstop and hstart curves according to h∗(ζ ) =
(1 − a)hstop(ζ ) + ahstart(ζ ). The flow rule (3.3) then implies that the corresponding
transition Froude number varies with the inclination angle like

β∗(ζ )= β

(
1− a+ a

hstart(ζ )

hstop(ζ )

)
− Γ , (6.5)

Edwards et al. (2017) chose a = 0.5 to give β∗(35.2◦) = 0.473 in order to produce
the correct deposit layer depth at that angle. It is no surprise that this approach was
successful in the small range of angles 34.0◦6 ζ 6 35.2◦ that they investigated, since
it is close to the constant value of β∗ = 0.466 imposed here, which results in deposit
layers close to hstop for all permitted inclinations ζ ∈ (ζ1, ζ2). However, a slope angle-
dependent transition Froude number (6.5) results in deposit layers that are increasingly
thicker than hstop as the inclination is reduced towards ζ3, as will be demonstrated in
§ 6.4. Furthermore, the transition thickness h∗(ζ ) and hence β∗(ζ ) become undefined
for ζ < ζ3 in this formulation, since hstart is undefined there. Zero contours of the non-
dimensional net acceleration S do appear qualitatively the same for Edwards et al.’s
(2017) friction law as they did for the modified version, shown in figure 4. However,
that only holds if ζ ∈ (ζ3, ζ2) and not for extremely shallow slope angles ζ <ζ3, which
is a crucial flaw that was not immediately apparent.

6.4. Numerical simulations with an initial stationary layer thicker than hstart(ζ )

Numerical simulations are first carried out for an initially static layer of constant
thickness h(x,0)=hstart(ζ )+0.1 mm, with no further inflow at x=0. With these initial
and boundary conditions the constant thickness section should accelerate towards a
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ζ (deg.) hstop(ζ ) (mm) h∗(ζ ) hstart(ζ ) (mm) ν(ζ ) (m3/2 s−1)

(a) 23.0 2.7 n/a 7.7 5.4× 10−3

(b) 35.0 2.1 n/a 4.1 1.3× 10−3

TABLE 4. Slope angle-dependent critical layer thicknesses and coefficients ν(ζ ) in the
depth-averaged viscosity νh1/2/2 for flows of (a) glass beads and (b) sand on a bed of
the same material. The material properties for each are given in the respective rows of
table 3.

steady-uniform flow and a deposition wave should develop at its trailing edge to leave
a deposit of thickness hstop, as was the case in the simulations shown in figure 5 for
carborundum with the friction law (3.10)–(3.12). Five different cases are considered
here, that are shown in figure 15. In each case the constant thickness sections do
accelerate towards a steady-uniform flow and a static deposit is left on the chute.

For glass beads with κ = 10−3 (figure 15a), the flow leaves a deposit layer
hdeposit(23.0◦)≈ hstop(23.0◦), which is the physically correct thickness that the empirical
law is derived from. However, this is simply because the extremely small value of
κ means that the friction law cannot bring to rest any material that is thicker than
hstop. Setting κ = 1 (figure 15b), which is required to capture the hysteretic behaviour,
deposits a layer of physically incorrect thickness hdeposit(23.0◦) > hstop(23.0◦). In the
case of sand (figure 15c) a deposit layer hdeposit(35.0◦) ≈ hsteady(0) given by (6.4) is
produced. This is because the friction law is always in the dynamic regime. Since
hdeposit(35.0◦) 6= hstop(35.0◦) the friction law for sand is also physically incorrect and,
moreover, the deposit is not completely stationary. The simulation with the parameters
for carborundum (figure 15d) and the friction law (6.1)–(6.3) also leaves an incorrect
deposit thickness hdeposit(35.2◦) < hstop(35.2◦), which was one of the main motivations
for Edwards et al. (2017) to introduce a frictional transition at a greater Froude
number. Finally, Edwards et al.’s (2017) friction law, with a slope angle-dependent
transition Froude number β∗(33.0◦) = 2.05, is shown in figure 15(e) to produce a
deposit layer that is approximately 50 % deeper than hstop(33.0◦). In fact, simulations
with this friction law on a wide range of slope angles reveal that the deposit depths
become increasingly thicker than hstop when the slope angle is reduced, as shown in
figure 16. Furthermore, simulations are not possible at all for angles ζ 6 ζ3 since
hstart and therefore h∗ become undefined there.

It is therefore only the modified friction law (3.10)–(3.12) with constant β∗= 0.466
that is able to accurately match hstop whilst also capturing the hysteretic behaviour, as
has been demonstrated in § 4. Indeed, the modified friction law does not just produce
the correct experimental hstop deposit thickness, but it does so over the complete range
of inclinations where deposit layers are expected to form. This includes, in particular,
angles ζ1 < ζ 6 ζ3, which are not permissible for Edwards et al.’s (2017) original
formulation.

6.5. Numerical simulations with an initial stationary layer thinner than hstart(ζ )

As a final and perhaps most basic check on the friction law, an initial layer of
thickness h(x, 0) = hstart(ζ ) − 0.1 mm is now considered. Since the static layer is
thinner than hstart is should remain static. The results are plotted in figure 17. For
the case of glass beads with κ = 10−3 (in figure 17a) any disturbance will result
in the friction jumping from the static value at Fr = 0 to a much lower value at
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(a)

(b)

(c)

(d)

(e)

Glass beads (˚ = 10−3), h(x, 0) = hstart(23.0�) + 0.1 mm = 7.8 mm

Sand (ı - ˝  < 0), h(x, 0) = hstart(35.0�) + 0.1 mm = 4.2 mm

Carborundum (ı* = ı - ˝ ), h(x, 0) = hstart(35.2�) + 0.1 mm = 3.0 mm

Carborundum (ı* = 2.05), h(x, 0) = hstart(33.0�) + 0.1 mm = 28.6 mm

Glass beads (˚ = 1), h(x, 0) = hstart(23.0�) + 0.1 mm = 7.8 mm

FIGURE 15. Flow thickness h is shown at one second intervals by light blue lines and the
blue shading increases in intensity with increasing time for numerical simulations using the
material properties of (a) glass beads with κ = 10−3, (b) glass beads with κ = 1, (c) sand,
(d) carborundum with β∗=β−Γ and (e) carborundum with β∗(ζ )=2.05>β, i.e. Edwards
et al.’s (2017) friction law that has a transition thickness h∗(ζ ) = (hstop + hstart)/2 (solid
orange line). The initial conditions (dashed black lines) are stationary layers of thickness
h(x, 0) = hstart(ζ ) + 0.1 mm. All of the initial layers are of thickness h > hstart(ζ ) (solid
green lines) and should gain momentum before leaving a deposit of thickness hstop(ζ )
(solid red lines). The material properties are given in tables 1 and 3, whilst the slope
angle-dependent properties in tables 2 and 4. Movies of the full simulations are available
in the online supplementary material (movies 12–16).
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Ω (deg.)

Ω1 Ω3
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)

FIGURE 16. For the friction law of Edwards et al. (2017), the deposit thickness (orange
squares) left by simulations with h(x, t) = h∗(ζ ) (solid orange line) and the deposit
thickness (green squares) left by simulations with h(x, t)= hstart(ζ ) (solid green line), e.g.
that of figure 15(e), are shown to deviate increasingly from hstop(ζ ) (solid red line) as
the slope angle is reduced. Furthermore, for inclinations ζ 6 ζ3 (shaded area) the friction
law is undefined and simulations are not possible at all in this region, whereas they are
now permitted by the modified friction law presented in § 3.3. The material properties are
given in table 1, except for β∗(ζ ) which varies with slope angle (equation 3.9 of Edwards
et al. 2017).

the next non-zero number that can be represented on the computer as shown in
§ 6.1 and figure 13. As a result, the static layer flows down the chute and leaves a
deposit close to hstop, instead of remaining stationary. Choosing κ = 1 (figure 17b) is
sufficient to keep the material at rest. The results for sand (figure 17c), which has
an offset Γ >β, also highlights a problem. This time the layer flows down the plane
because the dynamic regime is always active, as shown in figure 14(a). When Γ <β
for carborundum, however, the intermediate and static regimes exist in the friction
law (6.1)–(6.3) and the initial layer remains static as shown in figure 17(d). Finally,
Edwards et al.’s (2017) friction law (figure 17e) also ensures that flows of thickness
h < hstart(ζ ) are not accelerated and therefore remain stationary in simulations, as
required.

In all of the cases where the friction law correctly captures the initially static
layer (figure 17b,d,e) the simulations in § 6.4 produce incorrect deposit layer depths
(figure 15b,d,e). Hence only the modified frictional law (3.10)–(3.12) is able to
capture the hysteretic behaviour and leave deposits that are approximately equal to
the experimental value of hstop for the entire range of slope angles.

7. Conclusions
Frictional hysteresis plays a crucial role in a variety of granular flows in which

static and flowing regions coexist. In its simplest form it is responsible for the
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(a)
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(c)

(d)

(e)

Glass beads (˚ = 10−3), h(x, 0) = hstart(23.0�) - 0.1 mm = 7.6 mm

Glass beads (˚ = 1), h(x, 0) = hstart(23.0�) - 0.1 mm = 7.6 mm

Sand (ı - ˝  < 0), h(x, 0) = hstart(35.0�) - 0.1 mm = 4.0 mm

Carborundum (ı* = ı - ˝ ), h(x, 0) = hstart(35.2�) - 0.1 mm = 2.8 mm

Carborundum (ı* = 2.05), h(x, 0) = hstart(33.0�) - 0.1 mm = 28.4 mm

FIGURE 17. Flow thickness h is shown at one second intervals by light blue lines and the
blue shading increases in intensity with increasing time for numerical simulations using
the material properties of (a) glass beads with κ = 10−3, (b) glass beads with κ = 1,
(c) sand, (d) carborundum with β∗=β−Γ and (e) carborundum with β∗(ζ )=2.05>β, i.e.
Edwards et al.’s (2017) friction law that has a transition thickness h∗(ζ )= (hstop+ hstart)/2
(solid orange line). The initial conditions (dashed black lines) are stationary layers of
thickness h(x, 0)= hstart(ζ )− 0.1 mm. All of the initial layers are of thickness h< hstart(ζ )
(solid green lines) and should remain static. The solid red line denotes hstop. The material
properties are given in tables 1 and 3, whilst the slope angle-dependent properties in
tables 2 and 4. Movies of the full simulations are available in the online supplementary
material (movies 17–21).
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formation of a static deposit of thickness hstop(ζ ) on a slope of angle ζ to the
horizontal, when the mass supply onto the chute is closed off. Moreover, this
layer does not spontaneously start to flow again until the thickness is increased
to hstart(ζ ) > hstop(ζ ) or the slope is increased to a higher angle ζstart > ζ . The
same physics is crucial for a wide range of phenomena from retrogressive slope
failures (Daerr & Douady 1999; Russell et al. 2019) to self-channelization and levee
formation (Félix & Thomas 2004; Mangeney et al. 2007; Rocha et al. 2019) as well
as erosion–deposition waves (Daerr & Douady 1999; Clément et al. 2007; Börzsönyi
et al. 2008; Takagi et al. 2011; Edwards & Gray 2015; McArdell 2016; Edwards
et al. 2017).

In depth-averaged theories for granular flow the hysteresis is modelled by a
non-monotonic friction law (Pouliquen & Forterre 2002; Edwards et al. 2017) that has
a monotonically increasing dynamic friction as a function of Fr/h, a multivalued static
friction at Fr = 0 and a monotonically decreasing intermediate friction connecting
them, as sketched in figure 1(b). Edwards et al. (2017) introduced the idea that the
transition between the intermediate and dynamic regimes occurred at Froude number
β∗, so that a flow at the minimum steady-uniform flow thickness h∗ ∈ [hstop, hstart]

would produce the correct deposit depth hstop in the small range of slope angles
that they investigated. In this paper, a modification to Edwards et al.’s (2017) law
is proposed, which extends its definition to all inclination angles. The key idea is to
make β∗ a constant, rather than a function of the inclination angle as in Edwards
et al. (2017). As a result the minimum steady-uniform flow thickness h∗ is a constant
multiple of hstop as shown in (3.7).

Numerical simulations of the full system of governing equations (2.1)–(2.4) and the
friction law (3.10)–(3.12) using the material parameters for carborundum particles on
a bed of glass beads (table 1 and figures 5–8) demonstrate that this model is able to
predict the correct deposit thickness for the complete range of inclination angles for
which hstop layers form. Indeed, it is even possible to accurately simulate the staircase
procedure, by which the hstop and hstart curves are determined experimentally, as shown
in figure 10.

One of the most striking features of the numerical solutions is that two travelling
waves are responsible for the deposition of a layer whose thickness lies close to hstop.
The first travelling wave marks the trailing edge of the region of steady-uniform flow,
while the second wave rapidly deposits the grains once their thickness falls below h∗.
The second wave travels slightly slower than the first wave, as shown in figures 5
and 6, so there is a slowly expanding region between the two. Both waves travel more
quickly than all the particles in the system. In particular, as the waves catch up with
the surface particles in figure 5 they slow down and then stop on the surface of the
deposited hstop layer. This can be visualized as a space–time plot as shown in figure 6,
which is in quantitative agreement with the experimental space–time plot in figure 2.

An inviscid exact solution is constructed for the case of a minimal steady-uniform
flow of thickness h∗ in § 5. In this case the steady-uniform flow connects directly to
the deposit through a travelling wave as shown in figure 11. An explicit expression
is obtained for the deposit depth (5.10) that lies very close to hstop for the complete
range of angles that deposits form (figure 12), which provides strong evidence that
choosing β∗ to be constant is the correct assumption in the friction law.

The numerical simulations and exact solutions demonstrate that the friction (3.10)–
(3.12) has all of the physical properties that one would want a hysteretic friction
law to have, namely (i) material that is thicker than hstart will accelerate/decelerate
towards steady-uniform flow, (ii) material below h∗ will decelerate and stop, (iii)
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material in the range [h∗, hstart] is metastable, in the sense that static grains will
remain static unless they are subjected to a sufficiently large perturbation and (iv)
steady-uniform flows with a thickness close to h∗ will produce a deposit thickness
that is approximately equal to hstop. The first three of these properties can be neatly
summarized in a contour plot of the non-dimensional acceleration in figure 4, which
divides the (Fr, h)-space up into accelerative and decelerative regions for a uniform
layer of granular material.

In § 6 the non-monotonic friction law (3.10)–(3.12) is compared to the original
formulation of Pouliquen & Forterre (2002) as well as the friction laws for angular
particles, of Forterre & Pouliquen (2003) and Edwards et al. (2017), to demonstrate
some of their pathologies. For instance, if the interpolation power κ is chosen to be
10−3, as in Pouliquen & Forterre (2002), the hysteretic friction law is only partially
represented in numerical computations (see figure 13) and a uniform thickness static
layer below hstart can flow down the chute, as shown in figure 17(a), when it should
remain stable. In addition, when the empirical flow rule for angular particles is
generalized to hysteretic flows in the same way as Pouliquen & Forterre (2002), it
leads to intermediate-dynamic friction transitions at Froude number β − Γ , which
is negative for sand. As a result, grains can also flow off the chute when they
should remain stationary. When the same law is applied to carborundum particles
the frictional transitions are well defined, but numerical simulations of a static layer
that is slightly thicker than hstart produce a deposit that is significantly thinner than
hstop, as shown in figure 15(d). Indeed, it is this observation that originally motivated
Edwards et al. (2017) to introduce a frictional transition at Fr = β∗ > β − Γ and
h∗ ∈ [hstop, hstart].

There is significant potential to apply the friction law (3.10)–(3.12) to geophysical
flows such as snow slab avalanches, where there is a clearly defined layer of erodible
material on top of the underlying topography. Incorporation of new snow into such
flows is a long standing problem and most models (Bouchaud et al. 1994; Douady,
Andreotti & Daerr 1999; Gray 2001; Doyle et al. 2007; Bouchut et al. 2008; Tai
& Kuo 2008; Gray & Ancey 2009; Iverson 2012; Tai & Kuo 2012; Capart, Hung
& Stark 2015) assume that this happens by basal entrainment. In our approach the
material is either static or flowing through its entire depth, and there are evolving
regions of flow and no flow, which are governed by the effective basal friction law
(3.10)–(3.12). This harks back to some of the very earliest snow avalanche models
(Briukhanov et al. 1967; Grigorian et al. 1967; Eglit & Demidov 2005), which
coupled shallow-water-like equations within the flowing avalanche to a static layer of
entrainable snow ahead of the flow using jump conditions. There is growing evidence
from field experiments (Sovilla, Sommavilla & Tomaselli 2001; Sovilla & Bartelt
2002; Sovilla, Burlando & Bartelt 2006) that incorporation by frontal ploughing is
much more significant than basal entrainment, which would support our approach.

The non-monotonic friction law also raises questions about the rheology more
generally, since the basal friction law (Pouliquen 1999a; Pouliquen & Forterre 2002)
was key to the development of the µ(I)-rheology for granular flows (GDR-MiDi
2004; Jop et al. 2005, 2006). One might therefore envisage that one could modify
the monotonically increasing dependence of the µ(I)-curve on the inertial number I,
to include a monotonically decreasing section at small I to model frictional hysteresis.
Unfortunately, Barker et al. (2015) showed that a decreasing section of the µ(I)
curve is always ill posed, in the sense that the growth rate of shortwaves tends to
infinity in the high wavenumber limit. Indeed the standard monotonically increasing
µ(I)-rheology is also ill-posed at small inertial numbers, although it is possible to cure
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ill posedness by forcing the µ(I)-curve to pass through the origin and thereby include
a creep state (Barker & Gray 2017). This is, however, diametrically opposed to the
form of the friction that seems necessary to model erosion–deposition phenomena
(Edwards & Gray 2015; Edwards et al. 2017) and one might imagine that another
form of rheology, such as the compressible I-dependent rheology (CIDR) of Barker
et al. (2017) or a non-local rheology (Bouzid et al. 2013; Kamrin & Henann 2015;
DeGiuli & Wyart 2017; Lee & Yang 2017) is needed to model slow flows close to
or below yield.
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