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Abstract

In this paper we develop a new technique for showing that a nonlinear algebraic dif-
ferential equation is strongly minimal based on the recently developed notion of the
degree of non-minimality of Freitag and Moosa. Our techniques are sufficient to show
that generic order h differential equations with non-constant coefficients are strongly
minimal, answering a question of Poizat (1980).

1. Introduction

Let f(x) = 0 be an algebraic differential equation in a single indeterminate x with coefficients
in a differential field (K, δ) of characteristic zero. In this paper we are particularly interested
in the case that f(x) is nonlinear and of order at least two. The central property we study is
the strong minimality of the solution set of f(x) = 0. The notion of strong minimality comes
from model theory; in general, a definable set X is strongly minimal if every definable subset is
finite or cofinite, uniformly in parameters. In our setting, we are interested in the situation in
which X = {x ∈ U | f(x) = 0} is the set of solutions to an algebraic differential equation where
U is a differentially closed field. Let h be the order of f , that is, the highest derivative of x
appearing in f . In this context, X is strongly minimal if and only if the multivariate polynomial
f is irreducible over Kalg, and given any a ∈ U with f(a) = 0, and any differential field K1 ≤ U
with K ≤ K1, the transcendence degree of K1〈a〉 over K1 is either zero or h.

Strong minimality is an intensively studied property of definable sets, and has been at the
center of many important number-theoretic applications of model theory and differential algebra
[CFN20, FS17, Hru96, NP17]. Despite this, there are relatively few (classes of) equations which
have been shown to satisfy the property – so few, that we are in fact able to give below what we
believe to be (at the moment) a comprehensive list of those equations which have been shown
to be strongly minimal. Showing the strong minimality of a given equation is itself sometimes
a motivational goal, but often it is an important piece of a more elaborate application, since
it allows one to use powerful tools from geometric stability theory. The existing strategies to
prove strong minimality are widely disparate but apply only to very special cases. In roughly
chronological order:

(1) Poizat established that the set of non-constant solutions of x · x′′ = x′ is strongly
minimal (see [MMP05] for an explanation). Poizat’s arguments were generalized by
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Brestovski [Bre89] to a class of very specifically chosen differential equations of order two
with constant coefficients.

(2) Hrushovski’s work [Hru96] around the Mordell–Lang conjecture proved the strong mini-
mality of Manin kernels of non-isotrivial simple abelian varieties. It uses specific properties
of abelian varieties as well as model-theoretic techniques around modularity of strongly
minimal sets.

(3) Nagloo and Pillay [NP17] show that results of the Japanese school of differential alge-
bra [Mur95, OKSO06, Oka86, Oka87a, Oka87b, UW97, UW98, Wat95, Wat98] imply that
Painlevé equations with generic coefficients are strongly minimal. The techniques employed
are differential-algebraic and valuation-theoretic, relying on very specific properties of the
equations.

(4) Work of Freitag and Scanlon [FS17] shows that the differential equation satisfied by
the j-function is strongly minimal. This result ultimately relies on point-counting and
o-minimality via the Pila–Wilkie theorem as applied in [Pil11, Pil13]; the argument there
is very specific to the third order nonlinear differential equation satisfied by the j-function.
Later, Aslanyan [Asl20] produced another proof, ultimately relying on similar (stronger)
inputs of [PT16].

(5) Casale et al. [CFN20] show that equations satisfied by Γ-automorphic functions on the upper
half-plane for Γ a Fuchsian group of the first kind are strongly minimal. The arguments use
differential Galois theory with some additional analytic geometry, and the techniques again
are very specific to the third order equations of this specific form.

(6) Jaoui shows that generic planar vector fields over the constants give rise to strongly minimal
order two differential varieties [Jao22]. The arguments rely on various sophisticated analytic
techniques and results from foliation theory, some of which are particular to the specific class
of equations considered.

(7) Blázquez-Sanz et al. [BCFN20] prove the strong minimality of certain general Schwarzian
differential equations.

(8) Freitag et al. [FJMN22] show that various equations of Liénard-type are strongly minimal,
using techniques from valuation theory.

We should also mention that strong minimality in this context was perhaps first studied by
Painlevé using different language in [Pai97]. Painlevé conjectured the strong minimality of various
classes of differential equations, where the notion is equivalent to Umemura’s condition (J).
See [NP17] for a discussion of these connections. We believe that the above list, together with
a specific example of [Fre12], constitutes the entire list of differential equations (of order at
least two) which have been proven to be strongly minimal. Most of the techniques in the above
listed results apply only to specific equations or narrow classes of equations and rely on specific
properties of those classes in proving strong minimality. Our goal in this article is to develop a
rather more general approach which applies widely to equations with at least one differentially
transcendental coefficient.

1.1 Our approach and results
Let f ∈ k{x}. Generally speaking, when attempting to prove strong minimality1 of some
differential variety

V = Z(f) = {a ∈ U | f(a) = 0},
there are two phenomena which make the task difficult.

1 Equivalently, there are no infinite differential subvarieties.
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(1) There is no a priori upper bound on the degree of the differential polynomials which define
a differential subvariety of V .

(2) The differential polynomials used to define a differential subvariety might (necessarily) have
coefficients from a differential field extension of the field of k.

There are structure theorems related to (1), but only in special cases. See, for instance, [FM17]
when the subvarieties are co-order one in V . Controlling the field extension in (2) is a key step in
various recent works [FS17, Jao22, NP17]. This is most often accomplished by noting that stable
embeddedness of the generic type of V implies that the generators of the field of definition of a
forking extension can be assumed to themselves realize the generic type of V – see explanations
in [CFN20, FS17]. In recent work, Freitag and Moosa [FM21] introduce a new invariant of a
type, which more closely controls the structure over which the forking extension of a type is
defined:

Definition 1.1. Suppose p ∈ S(A) is a stationary type of U -rank greater than one. By the
degree of non-minimality of p, denoted by nmdeg(p), we mean the least positive integer k such
that for a Morley sequence of p of length k, say (a1, . . . , ak), p has a non-algebraic forking
extension over A, a1, . . . , ak. If RU(p) ≤ 1 then we set nmdeg(p) = 0.

In the theory of differentially closed fields of characteristic zero, Freitag and Moosa [FM21]
give an upper bound for the degree of non-minimality in terms of Lascar rank.

Theorem 1.2. Let p ∈ S(k) have finite rank. Then nmdeg(p) ≤ RU(p) + 1.

Let a |= p. We will call the transcendence degree of the differential field k〈a〉/k the order
of p. When p is the generic type of a differential variety V , we also call this the order2

of V . The order of p is an upper bound for the Morley rank of p. The Morley rank of p
is a bound for the Lascar rank of p. For proofs of these facts, see [MMP05]. It follows that
if the type p of a generic solution of an order n differential equation over k has a non-
algebraic forking extension over some differential field extension, then already p has such a
forking extension over k〈a1, . . . , an+1〉 where the ai are from a Morley sequence in the type of p
over k. This consequence of Theorem 1.2 will be essential to our approach to handling issue (2)
above.

Our approach to issue (1) follows a familiar general strategy of reducing certain prob-
lems for nonlinear differential equations to related problems for associated linear differential
equations. For instance, [PZ03] applies a strategy of this nature to establish results around
the Zilber trichotomy, while [CFN20, Nag19] use this strategy to establish irreducibility of
solutions to automorphic and Painlevé equations using certain associated Riccati equations.
Our technique fits into this general framework and relies on Kolchin’s differential tangent
space, which will provide the linear equations associated with the original nonlinear differ-
ential variety V . Our approach to the associated linear equations has been under develop-
ment in the thesis of Wolf [Wol19] and the forthcoming thesis of DeVilbiss which gives an
approach to calculating the Lascar rank of underdetermined systems of linear differential
equations.

We call a differential polynomial f(x) generic of order h and degree d, if f is a linear
combination of all monomials of degree no more than d on the variables x, x′, . . . , x(h) with
independent differentially transcendental coefficients.

We now state our main theorem.

2 These notions of order agree with the previously mentioned definition of order for differential polynomials.
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Theorem 1.3. Let f(x) be a generic differential polynomial of order h > 1 and degree d. Let
p be the type of a generic solution to Z(f). If d ≥ 2 · (nmdeg(p) + 1), then Z(f) is strongly
minimal.

Since nmdeg(p) ≤ RU(p) + 1 ≤ ord(f) + 1, the following corollary is immediate.

Corollary 1.4. Let f(x) be a generic differential polynomial of order h > 1 and degree d. If
d ≥ 2 · (h + 2), then Z(f) is strongly minimal.

This answers Question 7 of [Poi80] for sufficiently large degree, any order, and non-constant
coefficients. As described above, Jaoui [Jao22] has recently answered the order two case of
Question 7 of [Poi80] for constant coefficients. We conjecture a more general form of Theorem 1.3.

Conjecture 1.5. Generic differential equations of fixed order and degree greater than one are
strongly minimal.

To the non-model theorist, it does not seem obvious why strong minimality plays a central
role in the theory of algebraic differential equations, but there seem to be two important factors
behind this.

• Once strong minimality of an equation is established, powerful results having their origins in
geometric stability theory can be employed (e.g. the Zilber trichotomy, discussed next).

• Among nonlinear equations, the results of this paper and those of [Jao22] show that strong
minimality holds ubiquitously.

Even when an equation is not strongly minimal, it is often true that questions about the
solutions can be reduced to questions about solutions of certain associated minimal equations
coming from a notion called semi-minimal analysis; for instance, see [FJM22b]. We now state
the Zilber trichotomy for strongly minimal sets adapted to the setting of differentially closed
fields:

Fact 1.6 [HS94, PZ03]. Let X be a strongly minimal set. Then exactly one of the following
assertions holds.

(1) (non-locally modular) X is non-orthogonal to C.
(2) (locally modular, non-trivial) X is non-orthogonal to the (unique) smallest Zariski-dense

definable subgroup of a simple abelian variety A which does not descend to C.
(3) (trivial) X is geometrically trivial.

Nonorthogonality is a natural equivalence relation on strongly minimal sets. For strongly
minimal sets X and Y , X is non-orthogonal to Y if and only if there is a generic finite-to-finite
definable correspondence between X and Y . A strongly minimal set is geometrically trivial if
whenever a1, . . . , an ∈ X are dependent in the sense of forking, there is a pair of distinct ai, aj

which is dependent. In terms of algebraic relations in our setting, whenever a1, . . . , an ∈ X are
generic solutions of the differential equation X, if

trdegK(K〈a1, . . . an〉) < n ord(X),

then there is a distinct pair ai, aj such that

trdegK(K〈ai, aj〉) < 2 ord(X).

By strong minimality, the previous inequality implies that

trdegK(K〈ai, aj〉) = 0 or ord(X).
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While Fact 1.6 gives a rather complete classification of strongly minimal sets in the non-trivial
cases of the Zilber trichotomy, there is no general classification of the geometrically trivial
strongly minimal sets in differentially closed fields.

We conjecture that generic differential equations are geometrically trivial in a strong form.

Conjecture 1.7. Any two solutions of a generic differential equation of fixed order and degree
greater than one are (differentially) algebraically independent.

In this paper our techniques are applied to equations with differentially transcendental coef-
ficients, but this is not an inherent restriction of the methods. For instance, in forthcoming work
using these techniques joint with Casale and Nagloo, we give a fundamentally new proof of the
main theorem of [FS17], proving that the equation satisfied by the j-function is strongly minimal.
See § 5 for additional discussion.

1.2 Organization
In § 2 we set up the notation and background results we require. Section 3 gives a new sufficient
condition for the strong minimality of a differential variety. Section 4 applies this condition
to show that generic differential equations are strongly minimal. Section 5 shows how one can
establish a weaker condition than strong minimality in a more computationally straightforward
manner and gives some open problems.

2. Notation

Let U be a countably saturated differentially closed field of characteristic zero and let C be the
field of constants of U . All of the fields we consider will be subfields of U . An affine differential
variety is the zero set of a (finite) system of irreducible differential polynomial equations over (a
finitely generated subfield of) U .

Let (y1, . . . , yn) be a finite set of differential indeterminants over U and let Θ denote the set
of derivative operators on U . Since we are interested in differential fields with a single derivation,
Θ = {δk : k ≥ 0}. A ranking on (y1, . . . yn) is a total ordering on the derivatives {θyj : θ ∈ Θ, 1 ≤
j ≤ n} such that for all such derivatives u, v, and all θ ∈ Θ, we have

u ≤ θu, u ≤ v ⇒ θu ≤ θv.

A ranking is orderly if whenever the order of θ1 is lower than the order of θ2, we have θ1yi < θ2yj

for any i, j. An elimination ranking is a ranking in which yi < yj implies θ1yi < θ2yj for any
θ1, θ2 ∈ Θ. For a δ-polynomial f(y1, . . . , yn), the highest ranking θyj appearing in f is the leader
of f , denoted uf . If uf has degree d in f , we can rewrite f as a polynomial in uf , f =

∑d
i=0 Iiu

i
f ,

where the initial of f , Id, is not zero. The separant of f is the formal derivative ∂f/∂uf . Note
that the leader, initial, and separant of a differential polynomial are defined only after choosing
a specific ranking. A detailed treatment of these definitions can be found in [Kol76, p. 75].

Let ā ∈ U , and F be a differential subfield of U . There is a numerical polynomial ω(ā/F )
called the Kolchin polynomial of ā over F such that for sufficiently large s ∈ N,

ωā/F (s) = trdeg
(
F
(
ā, δ(ā), . . . , δs(ā)

)
/F
)

(see [Kol76, Theorem 6, p. 115]). When X is a differential variety, that is, a closed irreducible
set in the Kolchin topology, ω(X/F ) := ω(ā/F ) where ā is a generic point on X over F . Since
we are only concerned with differential fields with a single derivation, the degree of ω(X/F ),
sometimes called the differential type, is either zero or one. The leading coefficient of ω(X/F )
is called the typical differential dimension. Crucially for our purposes, the Kolchin polynomial
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witnesses forking in the sense of model theory, that is,

ā |�
A

C ⇐⇒ ωā/A(s) = ωā/A∪C(s).

Proof of this fact can be found in Theorem 4.3.10 of [McG00] and in Proposition 2.8 of [Pon03].
Let X ⊂ Un be a differential variety and let I(X) be the ideal of differential polynomials

vanishing on X. The differential tangent bundle TΔX is the differential variety given by{
(x1, . . . , xn, w1, . . . , wn) ∈ U2n : ∀f ∈ I(X), f(x̄) = 0,

∑
i≤n

j≤ord(f)

∂f

∂x
(j)
i

(x̄)w(j)
i = 0

}
,

where (∂f/∂x
(j)
i )(x̄) is a formal partial derivative where the x

(j)
i are considered as algebraic

variables. Given ā ∈ X, the differential tangent space of X over ā, denoted by TΔ
ā X, is the fiber

of TΔX over ā. We now state a few basic properties of TΔX which will be used later.

• The fibers TΔ
ā X are (possibly infinite-dimensional) C-vector spaces where C is the field of

constant elements in U .
• If Y is a closed differential subvariety of X and ā ∈ Y , then TΔ

ā Y is a closed C-vector subspace
of TΔ

ā X.

The following lemma appears as a corollary of [Kol84, Theorem 1, p. 199]. The sentence involving
a single differential variable is an improvement on Kolchin’s corollary and follows immediately
from Kolchin’s proof.

Lemma 2.1. Let F be a differential field, X a differential variety defined over F . Then there
is a Kolchin open set U ⊆ X such that for every ā ∈ U , the Kolchin polynomial ω

(
X/F

)
=

ω
(
TΔ

ā (X)/F 〈ā〉). Moreover, if X is defined by the vanishing of a single differential polynomial
f ∈ F{x1, . . . , xn}, then U can be taken to be the open set defined by Ifsf �= 0 where If is the
initial of f and sf is the separant of f with respect to some orderly ranking.

3. A general sufficient criterion for strong minimality

Let f(x) be an order n ≥ 1 nonlinear differential polynomial in one variable without a constant
term. Let ᾱ denote the coefficients of f and let α0 be differentially transcendental over ᾱ. Let V0

be the differential variety corresponding to f(x) = α0. Our goal in this section is to find sufficient
conditions under which such a variety V0 is strongly minimal.

Our next proposition shows that when α0 is differentially transcendental over Q〈ᾱ〉, there
are no proper subvarieties of V0 which are defined over the field Q〈ᾱ, α0〉. Though the argument
is simple, an elaboration of the technique in the proof will be used in the more difficult general
case where one extends the field of coefficients.

Proposition 3.1. Let f(x) be a nonlinear order h ≥ 1 differential polynomial with coefficients
ᾱ, let α0 be differentially transcendental over Q〈ᾱ〉, and let V0 be the differential variety defined
by f(x) = α0. Then V0 has no infinite proper subvarieties that are defined over Q〈ᾱ, α0〉.
Proof. Suppose towards a contradiction that W0 is an infinite proper subvariety of V0 defined
over Q〈ᾱ, α0〉. Then W0 is given by some positive-order δ-polynomial g(x) ∈ Q〈ᾱ, α0〉{x}. By
clearing the denominators of α0, we can write g(x, α0) ∈ Q〈ᾱ〉{x, α0}. For ease of notation, let
k = Q〈ᾱ〉.

Let V be the differential variety given by f(x) = y and let W be given by g(x, y) = 0 so
that each instance of α0 is replaced with the variable y. These varieties are now defined by
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δ-polynomials in two variables with coefficients in k and W � V . Let a = (a1, a2) be a generic
point of W over k. Since α0 is differentially transcendental over ᾱ the locus of y over k is A1, so
it follows that W is an infinite-rank (proper) subvariety of V . Consider the orderly ranking with
x ranked higher than y.

We claim that the generic point a of W lies outside the locus on V where the separant of
f(x) − y vanishes (we will call this the singular locus of V ). This follows because the locus of
the separant of f inside of V is of finite rank (to see this, note that the separant is a differential
polynomial in k{x} so its generic solution has x-coordinate differentially algebraic over k). From
the fact that a lies outside the singular locus of V and the singular locus of W (since a is generic
on W ), it follows that the Kolchin polynomials of TΔ

a W and TΔ
a V are equal to the Kolchin

polynomials of W and V , respectively, and so TΔ
a W � TΔ

a V .
For 0 ≤ i ≤ n, let

βi(x) =
∂f

∂x(i)
(x)

denote the formal derivative of f with respect to the ith derivative of x. Using this notation, the
differential tangent space TΔ

a V is the set of (w, z) satisfying the linear differential equation

z =
n∑

i=0

βi(a)w(i).

From this equation, we can see that z is determined by our choice of w, but w may be chosen
freely. This gives a definable bijection between TΔ

a V and A1(U). Further, it follows that TΔ
a V

has no infinite-rank subspaces over k〈a〉, since if it did, we could consider the image of this
subvariety under the definable bijection to A1(U). However, A1(U) has no infinite-rank subsets,
so the image must have finite rank. Therefore, ω

(
TΔ

a W/k〈a〉) is finite, a contradiction. �
Remark 3.2. For X a differential variety over a differential field Q〈ᾱ〉, the following conditions
on the differential tangent space TΔ

ā X are equivalent.

(1) The Lascar rank RU
(
TΔ

ā V
)

= ω.
(2) The Morley rank RM

(
TΔ

ā X
)

= ω.
(3) The differential tangent space TΔ

ā X has no proper infinite-rank C-vector subspaces definable
over Q〈ā, ᾱ〉.

(4) The differential tangent space TΔ
ā X has no proper infinite-rank C-vector subspaces definable

over U .
(5) The differential tangent space TΔ

ā X has no proper infinite-rank subvarieties definable over
Q〈ā, ᾱ〉.

(6) The differential tangent space TΔ
ā X has no proper infinite-rank subvarieties definable over U .

The equivalence of (1) and (2) is proved in [PP02] and the equivalence of the others follows
from the Berline–Lascar decomposition [Poi87, Theorem 6.7]. By the argument at the end of
the previous proof, each of these properties is implied by the existence of a definable bijection
between the differential tangent space TΔ

ā X and A1(U).

Remark 3.3. The previous result shows that under very general circumstances, for instance when
any single coefficient is differentially transcendental over the others, the equation has no sub-
varieties over the coefficients of the equation itself. We state the following result, but omit its
proof, as it is analogous to the previous proof and will not be used later in this paper.

Proposition 3.4. Let f be a differential polynomial in one variable and V the zero set of f .
Let ᾱ denote the tuple of coefficients in f . If ᾱ has some element α1 such that α1 is differentially
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transcendental over Q〈ᾱ−1〉,3 then V has no differential subvarieties over Q〈ᾱ〉 except perhaps
the zero set given by the monomial of which α1 is a coefficient.

The previous proposition works in such generality, in part because we have restricted the
coefficient field. In various situations, identifying differential subvarieties defined over the field
of definition of a variety V is a much easier problem than identifying differential subvarieties
of V defined over differential field extensions. For instance, in [Nis89], Nishioka shows that the
equations corresponding to automorphic functions of dense subgroups of SL2 have no differential
subvarieties over C. In the special case of genus zero Fuchsian functions, a much more difficult
argument was required to extend the result to differential subvarieties over differential field
extensions [CFN20], answering a long-standing open problem of Painlevé.

There is one general-purpose model-theoretic tool which restricts the field extensions one
needs to consider. We will use a principle in stability theory, generally related to stable embed-
dedness (see, for instance, [CH08] where this general type of result is referred to as the Shelah
reflection principle). For the following result, see [Pil96, Lemma 2.28].

Lemma 3.5. In a superstable theory, let A ⊆ B and p ∈ S(B) which forks over A. Then there
is an indiscernible sequence (ai : i ∈ N) such that the canonical base of p is contained in the
definable closure of A, a1, . . . , ad, where a1, . . . , ad is a finite initial segment of this indiscernible
sequence.

Let f and V0 be as before and let d ∈ N. Consider V
[d]
0 , the set of d-tuples so that each

coordinate xi satisfies f(xi) = α0. As before, we can replace each instance of α0 with a new
variable y, resulting in a differential variety V [d] defined by the system of equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(x1) = y,

f(x2) = y,
...
f(xd) = y.

Proposition 3.6. Let f(x) be a nonlinear order h ≥ 1 differential polynomial with coefficients
ᾱ, let α0 be differentially transcendental over Q〈ᾱ〉, and let V0 be the differential variety defined
by f(x) = α0. Suppose that for all d ∈ N and for all indiscernible sequences ā = (a1, . . . , ad) in
the generic type of V0 with a1, . . . ad algebraically independent over Q〈ᾱ〉, we have that the
differential tangent space TΔ

ā

(
V [d]

)
has no proper infinite-rank C-vector subspaces definable over

Q〈ᾱ, ā〉. Then V0 is strongly minimal.

Proof. Suppose V0 is not strongly minimal and let p(x) ∈ S1

(
Q〈ᾱ, α0〉

)
be the type of

a generic solution of V0. By Proposition 3.1, V0 does not have any infinite subvarieties
defined over Q〈ᾱ, α0〉, so p has a forking extension q over a differential field extension
K > Q〈ᾱ, α0〉. By Lemma 3.5, there exist some finite d and a Morley sequence (a1, . . . , ad)
for q such that (a1, . . . , ad) is not Q〈ᾱ, α0〉-independent. Consider the minimal such d. Then
tp
(
a1/Q〈ᾱ, α0, a2, a3, . . . , ad〉

)
forks over Q〈ᾱ, α0〉. Since these are types over differential fields,

this happens exactly when the Kolchin polynomial of
(
a1/Q〈ᾱ, α0, a2, a3, . . . , ad〉

)
is strictly

less than the Kolchin polynomial of
(
a1/Q〈ᾱ, α0〉

)
because the Kolchin polynomial witnesses

forking.
Thus, there is a differential polynomial g(x) ∈ Q〈ᾱ, α0, a2, . . . , ad〉{x} such that g(a1) = 0

and g has order strictly less than the order of f . By clearing denominators, we can
write g(x1, . . . , xd) ∈ Q〈ᾱ, α0〉{x1, . . . , xd} such that g(a1, . . . , ad) = 0. Let U0 ⊂ V

[d]
0 be the

3 By ᾱ−1, we mean the tuple ᾱ excluding α1.
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vanishing set of g(x1, . . . , xd). Just as with V , we can replace α0 with a new vari-
able y after clearing denominators again, giving a Q〈ᾱ〉-polynomial g(x1, . . . , xd, y) and the
corresponding variety U ⊂ V [d]. The Kolchin polynomial ω

(
U/Q〈ᾱ〉) is non-constant. Let

ā = (a1, . . . , ad, α0) and notice that ā is a generic point of U over Q〈α〉. By Lemma 2.1,
the Kolchin polynomial of the differential tangent space ω

(
TΔ

ā (U)/Q〈ᾱ, ā〉) is also non-
constant, so TΔ

ā (V [d]) has an infinite-rank subspace over Q〈ᾱ,ā〉, a contradiction to our
assumption. �
Remark 3.7. Using Lemma 3.5 together with Proposition 3.6 gives a strategy for establish-
ing the strong minimality of nonlinear differential equations with generic coefficients, but
only if one can verify the hypothesis of Proposition 3.6. A priori, this looks quite hard
since it would require the analysis of systems of linear differential equations in n variables
for all n ∈ N. This may be possible via a clever inductive argument for specially selected
classes of equations, but Theorem 1.2 gives a bound for the number of variables we need to
consider.

Theorem 3.8. Let f(x) be a nonlinear order h ≥ 1 differential polynomial with coefficients
ᾱ, let α0 be differentially transcendental over Q〈ᾱ〉, and let V0 be the differential vari-
ety defined by f(x) = α0. Let p be the generic type of V0. Suppose that for some d ≥
nmdeg p + 1, the following property holds: for any ā = (a1, . . . , ad) realizing the generic type of
V0 with a1, . . . , ad algebraically independent over Q〈ᾱ〉, the differential tangent space TΔ

ā

(
V [d]

)
has no definable proper infinite-rank C-vector subspace over Q〈ᾱ, ā〉. Then V0 is strongly
minimal.

Proof. By Proposition 3.1, there are no subvarieties of V0 defined over the differential field
generated by the coefficients of f . So, we need only consider forking extensions of the generic
type of V0. By definition of non-minimality degree, if there is an infinite proper differential
subvariety of V0, then it is defined over (the algebraic closure of) a Morley sequence of length
at most nmdeg(p). Thus, there is a proper subvariety of W0 ⊂ V

[d]
0 which surjects onto the first

d − 1 coordinates such that the fiber over a generic point in the first d − 1 coordinates is a
forking extension of the generic type of V0. But then by the argument of Proposition 3.6, there
is a definable proper infinite-rank subspace of TΔ

ā

(
V [d]

)
over Q〈ᾱ, ā〉. �

4. Strong minimality of generic equations

4.1 A first example
Theorem 4.1. Let Xα be the differential variety given by

x′′ +
n∑

i=1

αix
i = α (1)

for some n ≥ 8, where (α, α0, . . . , αn) is a tuple of independent differential transcendentals
over Q. Then Xα is strongly minimal.

Proof. By Theorem 1.2, we know that the degree of non-minimality of the generic type
of Xα is at most three, so it suffices to verify the hypotheses of Theorem 3.8 for d = 4.
Thus, we need to show that given any solutions a1, a2, a3, a4 to (1) that are algebraically
independent over Q〈α, α1, . . . , αn〉,4 we cannot have that the transcendence degree of
Q〈a1, α, α1, . . . , αn, a2, . . . , a4〉 over Q〈α, α1, . . . , αn, a2, . . . , a4〉 is one.

4 That is, a1, a2, a3, a4 satisfy no polynomial relation over Q〈α, α1, . . . , αn〉.
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Observe that the differential tangent space TΔ
ā

(
X [4]

)
after eliminating y is given by the

system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
0 +

(
n∑

i=1

iai−1
1 αi

)
u0 = v′′0 +

(
n∑

i=1

iai−1
2 αi

)
v0,

u′′
0 +

(
n∑

i=1

iai−1
1 αi

)
u0 = w′′

0 +

(
n∑

i=1

iai−1
3 αi

)
w0,

u′′
0 +

(
n∑

i=1

iai−1
1 αi

)
u0 = z′′0 +

(
n∑

i=1

iai−1
4 αi

)
z0.

For j = 1, . . . , 4, we let βj =
∑n

i=0 iai−1
j αi. We argue that β1, . . . , β4 are independent differential

transcendentals. Note that⎛
⎜⎜⎜⎜⎝

nan−1
1 (n − 1)an−2

1 . . . 2a1 1

nan−1
2 (n − 1)an−2

2 . . . 2a2 1

nan−1
3 (n − 1)an−2

3 . . . 2a3 1

nan−1
4 (n − 1)an−2

4 . . . 2a4 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

αn

αn−1

...
α1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠ .

We claim that any four columns of the matrix of ai are linearly independent. To see this,
note that if not then the vanishing of the corresponding determinant shows that there is a non-
trivial polynomial relation which holds of a1, . . . , a4. This contradicts the fact that a1, . . . a4 are
algebraically independent over Q. By the independence of α1, . . . , αn, and since n ≥ 8, there
are at least four of the αi which are independent differential transcendentals over the other αi

and a1, . . . , a4. Without loss of generality, assume α1, . . . , α4 are independent differential tran-
scendentals over Q〈α5, . . . , αn, a1, . . . , a4〉. Then since the last four columns of the above matrix
of ai are linearly independent, it follows that α1, . . . , α4 are interalgebraic with β1, . . . , β4 over
Q〈a1, . . . , a4, α5, . . . , αn〉. It follows that β1, . . . , β4 are independent differential transcendentals
over Q〈a1, . . . , a4, α5, . . . , αn〉.
Lemma 4.2. A linear system of the form⎧⎪⎪⎨

⎪⎪⎩
u′′

0 + β1u0 = v′′0 + β2v0,

u′′
0 + β1u0 = w′′

0 + β3w0,

u′′
0 + β1u0 = z′′0 + β4z0

(2)

with β1, . . . , β4 independent differential transcendentals has no proper infinite rank C-vector
subspaces definable over U .

Proof. We will prove that this system has no infinite-rank subvarieties by proving that the
solution set is in definable bijection with A1(U). This is constructed by composing a series of
linear substitutions.

First, we substitute u1 for u0, where u0 = u1 + v0. This reduces the order of v0 in the top
equation, resulting in the system⎧⎪⎪⎨

⎪⎪⎩
u′′

1 + β1u1 = (β2 − β1)v0,

u′′
1 + β1u1 + v′′0 + β1v0 = w′′

0 + β3w0,

u′′
1 + β1u1 + v′′0 + β1v0 = z′′0 + β4z0.

1396

https://doi.org/10.1112/S0010437X23007212 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007212


Generic differential equations are strongly minimal

To reduce the order v0 in the lower equations we substitute w1, z1 for w0, z0, where w0 = w1 +
v0, z0 = z1 + v0. Then we have⎧⎪⎪⎨

⎪⎪⎩
u′′

1 + β1u1 = (β2 − β1)v0,

u′′
1 + β1u1 + (β1 − β3)v0 = w′′

1 + β3w1,

u′′
1 + β1u1 + (β1 − β4)v0 = z′′1 + β4z1.

Solving the top equation for v0 in terms of u1 and plugging this in for v0 allows us to eliminate
v0 from lower equations, resulting in the system{

A2,0u
′′
1 + A0,0u1 = w′′

1 + β3w1,

C2,0u
′′
1 + C0,0u1 = z′′1 + β4z1,

where (after some simplification)

A2,0 :=
β2 − β3

β2 − β1
, A0,0 := β1A2,0,

C2,0 :=
β2 − β4

β2 − β1
, C0,0 := β1C2,0.

We again reduce the order of the variable in the top equation by substituting u2 for u1 defined
by u1 = u2 + (1/A2,0)w1, resulting in the system{

A2,0u
′′
2 + A0,0u2 = B1,1w

′
1 + B0,1w1,

C2,0u
′′
2 + C0,0u2 + D2,1w

′′
1 + D1,1w

′
1 + D0,1w1 = z′′1 + β4z1,

where

B1,1 := −2A2,0

(
1

A2,0

)′
, B0,1 := β3 − A2,0

(
1

A2,0

)′′
− A0,0

A2,0
,

D2,1 :=
C2,0

A2,0
, D1,1 := 2C2,0

(
1

A2,0

)′
, D0,1 := C2,0

(
1

A2,0

)′′
+

C0,0

A2,0
.

We next reduce the order of w1 in lower equations with the substitution z2 for z1 defined by
z1 = z2 + D2,1w1. Now we have the system{

A2,0u
′′
2 + A0,0u2 = B1,1w

′
1 + B0,1w1,

C2,0u
′′
2 + C0,0u2 + E1,1w

′
1 + E0,1w1 = z′′2 + β4z2,

where

E1,1 := D1,1 − D′
2,1, E0,1 := D0,1 − D′′

2,1 − β4D2,1.

Next we reduce the order of u2 in the top equation by substituting w2 for w1 with w1 = w2 +
(A2,0/B1,1)u′

2, resulting in the system{
A1,1u

′
2 + A0,1u2 = B1,1w

′
2 + B0,1w2,

C2,1u
′′
2 + C1,1u

′
2 + C0,1u2 + E1,1w

′
2 + E0,1w2 = z′′2 + β4z2,
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where

A1,1 := −B1,1

(
A2,0

B1,1

)′
− B0,1

A2,0

B1,1
, A0,1 := A0,0,

C2,1 := C2,0 + E1,1
A2,0

B1,1
, C1,1 := E1,1

(
A2,0

B1,1

)′
+ E0,1

A2,0

B1,1
, C0,1 := C0,0.

The reduction in order of the top equation continues with the replacement of u2 with u3 given
by u2 = u3 + (B1,1/A1,1)w2. This results in the system{

A1,1u
′
3 + A0,1u3 = B0,2w2,

C2,1u
′′
3 + C1,1u

′
3 + C0,1u3 + D2,2w

′′
2 + D1,2w

′
2 + D0,2w2 = z′′2 + β4z2,

where

B0,2 := B0,1 − A1,1

(
B1,1

A1,1

)′
− A0,1

B1,1

A1,1
,

D2,2 := C2,1
B1,1

A1,1
, D1,2 := E1,1 + 2C2,1

(
B1,1

A1,1

)′
+ C1,1

B1,1

A1,1
,

D0,2 := E0,1 + C2,1

(
B1,1

A1,1

)′′
+ C1,1

(
B1,1

A1,1

)′
+ C0,1

B1,1

A1,1
.

Next we replace z2 with z3 given by z2 = z3 + D2,2w2 to arrive at{
A1,1u

′
3 + A0,1u3 = B0,2w2,

C2,1u
′′
3 + C1,1u

′
3 + C0,1u3 + E1,2w

′
2 + E0,2w2 = z′′3 + β4z3,

where

E1,2 := D1,2 − D′
2,2, E0,2 := D0,2 − D′′

2,2 − β4D2,2.

Now we can solve the top equation for w2 in terms of u3 and plug the resulting expression into
the lower equations:

C2,2u
′′
3 + C1,2u

′
3 + C0,2u3 = z′′3 + β4z3,

where

C2,2 := C2,1 + E1,2
A1,1

B0,2
,

C1,2 := C1,1 + E1,2

(
A1,1

B0,2

)′
+ E0,2

A1,1

B0,2
+ E1,2

A0,2

B0,2
,

C0,2 := C0,1 + E1,2

(
A0,1

B0,2

)′
+ E0,2

A0,1

B0,2
.

Next we perform analogous substitutions to eliminate z3 from the top equation, beginning with
substituting u4 for u3 defined by u3 = u4 + (1/C2,2)z3, so we have{

C2,2u
′′
4 + C1,2u

′
4 + C0,2u4 = F1,1z

′
3 + F0,1z3,

where

F1,1 := −2C2,2

(
1

C2,2

)′
− C1,2

C2,2
, F0,1 := β4 − C2,2

(
1

C2,2

)′′
− C1,2

(
1

C2,2

)′
− C0,2

C2,2
.

1398

https://doi.org/10.1112/S0010437X23007212 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007212


Generic differential equations are strongly minimal

Next, substitute z4 for z3, where z3 = z4 + (C2,2/F1,1)u′
4. This will result in the equation

C1,3u
′
4 + C0,3u4 = F1,1z

′
4 + F0,1z4,

where

C1,3 := C1,2 − F1,1

(
C2,2

F1,1

)′
+ F0,1

C2,2

F1,1
, C0,3 := C0,2.

Replace u4 with u5 defined by u4 = u5 + (F1,1/C1,3)z4, giving us the equation

C1,3u
′
5 + C0,3u5 = F0,2z4, (3)

where

F0,2 := F0,1 − C1,3

(
F1,1

C1,3

)′
+ F0,1

F1,1

C1,3
.

Any solution to (3) is determined by the value of u5, so the solution set is in definable bijection
with A1(U). Each of these linear substitutions gives rise to a definable bijection between systems
so long as the substitutions are well defined, that is, the denominators of the coefficients are all
non-zero. For this procedure to give a definable bijection from the original system (2) to A1(U),
we must verify that the following expressions are not zero:

β2 − β1, A2,0, B1,1, A1,1, B0,2, C2,2, F1,1, C1,3, and F0,2.

The expression β2 − β1 is non-zero because β1, β2, β3, β4 are all distinct. Each of these coefficients
can be considered as a differential rational function in terms of β1, β2, β3, β4, and so they can
be analyzed according to a ranking on β̄. We will show that these coefficients are non-zero
by showing that the initials of each are non-zero in some elimination ranking. It then follows
that the coefficients themselves are non-zero because β1, β2, β3, β4 are independent differential
transcendentals.

Consider the terms of these expressions ordered by some elimination ranking on β̄ with β3

ranked highest. The leading term in this ranking of each expression can be calculated using
the definitions of previous coefficients. The following table shows that these leading terms are
non-zero:

A2,0
−1

β2 − β1
β3

B1,1
−2

β2 − β3
β′

3

A1,1
−2

(β2 − β1)B1,1
β′′

3

B0,2
−2

(β2 − β1)A1,1
β

(3)
3

We turn our attention to an elimination ranking with β4 ranked highest to prove that the
remaining coefficients are non-zero. The following table shows that the leading terms of these
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coefficients are also non-zero:

C2,2
−3

(β2 − β1)B0,2
β′′

4

F1,1
−4

(β2 − β1)B0,2C2,2
β

(3)
4

C1,3
−7

(β2 − β1)B0,2F1,1
β

(4)
4

F0,2
−7

(β2 − β1)B0,2C1,3
β

(5)
4

We have shown that each substitution is well defined, and therefore we have constructed a
definable bijection between system (2) and A1(U). Since A1(U) has no infinite-rank subspaces,
neither does our original system, completing the proof of the proposition. �

We now finish the proof of Theorem 4.1. Since the differential tangent space TΔ
ā

(
X [4]

)
satisfies

the conditions of Lemma 4.2, it has no infinite-rank subspaces over Q〈ᾱ, ā〉. Therefore, Xα is
strongly minimal by Theorem 3.8. �

4.2 Generic higher-order equations
The technique used in the previous example can be applied to more general classes of equations.
In this section we use analogous techniques to show that generic equations with high enough
degree have differential tangent spaces cut out by linear equations with generic coefficients and
that these tangent spaces have no proper infinite-rank C-vector subspace definable over U .

Let

f(x) = α +
d∑

i=1

α0,ix
i +

∑
j∈M1

α1,jmj

(
x, x′)+ · · · +

∑
k∈Mh

αh,kmk

(
x, x′, . . . , x(h)

)
,

where Mn indexes the set of all order n monomials of degree at most d and the entire collection
of coefficients α, αi,j are independent differential transcendentals over Q. Let Vα be the zero set
of f(x) and let m be the degree of non-minimality of f plus one. Following the notation of § 3,
we let V [m] be the following system of equations in x1, . . . , xm, y:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∑
i=0

∑
j∈Mi

αi,jmj

(
x1, . . . , x

(i)
1

)
= y,

h∑
i=0

∑
j∈Mi

αi,jmj

(
x2, . . . , x

(i)
2

)
= y,

...
h∑

i=0

∑
j∈Mi

αi,jmj

(
xm, . . . , x(i)

m

)
= y.

Let ā = (a1, . . . , am) be an indiscernible sequence in Vα such that am forks over a1, . . . , am−1

and tp(am/Q〈α, αi,j , a1, . . . , am−1〉i=0,...,h,j∈Mi has rank between one and h − 1. That is,
am satisfies a differential equation of order at least one but no more than h − 1 over
Q〈α, αi,j , a1, . . . , am−1〉i=0,...,h,j∈Mi . Crucially for this proof, we note that a1, . . . , am are
algebraically independent over Q〈α, αi,j〉.
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Let TΔ
(ā,α)

(
V [m]

)
denote the differential tangent space of V [m] over (ā, α). Then TΔ

(ā,α)

(
V [m]

)
is given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∑
i=0

βi,1z
(i)
1 = y,

h∑
i=0

βi,2z
(i)
2 = y,

...

h∑
i=0

βi,mz(i)
m = y,

where βi,j = (∂f/∂x(i))(aj) as used in previous sections.

Lemma 4.3. Let V be a differential variety cut out by a generic differential polynomial of order
h, degree d and non-minimality degree no more than m − 1. If ā = (a1, . . . , am) are realizations
of the generic type of V0 such that a1, . . . , am are algebraically independent over Q〈ᾱ〉, then the
variety TΔ

(ā,α)

(
V [m]

)
has coefficients which are independent differential transcendentals over Q

whenever d ≥ 2m.

Proof. We proceed by induction on the order, beginning with β0,1, β0,2, . . . , β0,m. Since d ≥ 2m,
there are j1, . . . , jm such that α0,j1 , . . . , α0,jm are independent differential transcendentals over
Q〈A0a1 · · · am〉 where A0 = {αi,j : 0 ≤ i ≤ h, j ∈ Mi} \ {α0,j1 , . . . , α0,jm}. Note that⎛

⎜⎜⎜⎜⎜⎜⎝

j1a
j1−1
1 j2a

j2−1
1 . . . jmajm−1

1

j1a
j1−1
2 j2a

j2−1
2 . . . jmajm−1

2

...
...

j1a
j1−1
m j2a

j2−1
m . . . jmajm−1

m

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

α0,j1

α0,j2

...

α0,jm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

β0,1

β0,2

...

β0,m

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

l1

l2

...

lm

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where li ∈ Q〈A0a1 · · · am〉.
The above matrix is invertible, as the vanishing of its determinant imposes a non-trivial

algebraic relation among a1, . . . , am, which are, by assumption, algebraically independent. It
follows that β0,1, . . . , β0,m are interdefinable with α0,j1 , . . . , α0,jm over Q〈A0a1 · · · am〉. Thus,
β0,1, . . . , β0,m are independent and differentially transcendental over Q〈A0a1 · · · am〉. Note that
the coefficients {βi,j : 1 ≤ i ≤ h, 1 ≤ j ≤ m} are contained in the field Q〈A0a1 · · · am〉, so we have
shown that β0,1, . . . , β0,m are independent differential transcendentals over Q〈βi,j : 1 ≤ i ≤ h, 1 ≤
j ≤ m〉.

Suppose we have already shown that βn,1, . . . , βn,m are independent differential transcen-
dentals over Q〈βi,j : n + 1 ≤ i ≤ h, 1 ≤ j ≤ m〉 for some n < h. Let M∗

n+1 index the collection
of order n + 1 monomials of order no more than d excluding the monomials of the form
{x(n+1)xr : 0 ≤ r ≤ d − 1}. Assume the order n + 1 terms in f(x) are ordered so that

∑
k∈Mn+1

αn+1,kmk(x, x′, . . . , x(n+1)) =
d−1∑
k=0

αn+1,kx
(n+1)xk +

∑
j∈M∗

n+1

αn+1,jmj

(
x, x′, . . . , x(n+1)

)
.
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Since d ≥ 2m, there are k1, . . . , km < d such that αn+1,k1 , . . . , αn+1,km are independent and dif-
ferentially transcendental over Q〈An+1a1 · · · am〉, where An+1 = {αi,j : n + 1 ≤ i ≤ h, j ∈ Mi} \
{αn+1,k1 , . . . , αn+1,km}. Note that⎛

⎜⎜⎜⎜⎜⎝

ak1
1 ak2

1 . . . akm
1

ak1
2 ak2

2 . . . akm
2

...
...

ak1
m ak2

m . . . akm
m

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

αn+1,k1

αn+1,k2

...

αn+1,km

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

βn+1,1

βn+1,2

...

βn+1,m

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

r1

r2

...

rm

⎞
⎟⎟⎟⎟⎟⎠ ,

where ri ∈ Q〈An+1a1 · · · am〉. The above matrix is invertible, since we are assuming that
a1, . . . , am are algebraically independent. Thus, αn+1,k1 , . . . , αn+1,km are interdefinable with
βn+1,1, . . . , βn+1,m over Q〈An+1a1 · · · am〉. Since {βi,j : n + 1 < i ≤ h, 1 ≤ j ≤ m} are contained
in the field Q〈An+1a1 · · · am〉, it follows that βn+1,1, . . . , βn+1,m are independent and differentially
transcendental over {βi,j : n + 1 < i ≤ h, 1 ≤ j ≤ m}.

Putting together the above analysis, we have proved that the set of coefficients {βi,j : 0 ≤
i ≤ h, 1 ≤ j ≤ m} are independent and differentially transcendental over Q〈a1, . . . , am〉 and thus
over Q. �

Eliminating the variable y from TΔ
(ā,α)

(
V [m]

)
results in a system of m − 1 linear equations in

m variables as described in the following theorem.

Theorem 4.4. Consider a system of m − 1 linear differential equations of order h in variables
(z1, . . . , zm) of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∑
i=0

βi,1z
(i)
1 =

h∑
i=0

βi,2z
(i)
2 ,

h∑
i=0

βi,1z
(i)
1 =

h∑
i=0

βi,3z
(i)
3 ,

...
h∑

i=0

βi,1z
(i)
1 =

h∑
i=0

βi,mz(i)
m ,

(4)

where the entire set of coefficients {βi,j : 0 ≤ i ≤ h, 1 ≤ j ≤ m} are independent differential
transcendentals. Then the solution set of such a system has no proper infinite-rank C-vector
subspaces definable over U for h > 1 and m > 1.

As in Lemma 4.2, we show that such a system has no infinite-rank subspaces by constructing
a definable bijection to A1(U). This is accomplished through two algorithms: Algorithm A will
apply a sequence of linear substitutions which will lower the order of the top equation by one,
and Algorithm B will apply Algorithm A inductively to reduce the number of equations and
variables by one.

Algorithm A. We begin with a system of equations of the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�∑
i=0

aiu
(i) =

�∑
i=0

biz
(i),

h∑
i=0

ciu
(i) +

h−1∑
i=0

eiz
(i) =

h∑
i=0

βiw
(i),
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with 1 ≤ 	 ≤ h. We lower the order of the top equation by applying a trio of substitutions. The
first substitution replaces the variable u with ũ where u = ũ + (b�/a�)z, which reduces the order
of z in the top equation by one. This results in the new system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�∑
i=0

aiũ
(i) =

�−1∑
i=0

b̃iz
(i),

h∑
i=0

ciũ
(i) +

h∑
i=0

diz
(i) =

h∑
i=0

βi, w
(i)

where

dh := ch

(
b�

a�

)
,

di := ei +
h−i∑
k=0

(
h

h − i − k

)
ch−k

(
b�

a�

)(h−i−k)

for 0 ≤ i ≤ h − 1, and

b̃i := bi −
�−i∑
k=0

(
	

	 − i − k

)
a�−k

(
b�

a�

)(�−i−k)

for 0 ≤ i ≤ 	 − 1.
The next substitution replaces v with ṽ, defined by v = ṽ + (dh/βh)z, reducing the order of

z in the lower equation by one. This results in the system of equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�∑
i=0

aiũ
(i) =

�−1∑
i=0

b̃iz
(i),

h∑
i=0

ciũ
(i) +

h−1∑
i=0

ẽiz
(i) =

h∑
i=0

βiṽ
(i),

where

ẽi := di −
h−i∑
k=0

(
h

h − i − k

)
βh−k

(
dh

βh

)(h−i−k)

for 0 ≤ i ≤ h − 1.
To complete the trio, we substitute z̃ for z defined by z = z̃ + (a�/b̃�−1)ũ′. Now we have the

system ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�−1∑
i=0

ãiũ
(i) =

�−1∑
i=0

b̃iz̃
(i),

h∑
i=0

c̃iũ
(i) +

h−1∑
i=0

ẽiz̃
(i) =

h∑
i=0

βiṽ
(i),

where

c̃i := ci +
h−i∑
k=0

(
h − 1

h − i − k

)
ẽh−1−k

(
a�

b̃�−1

)(h−i−k)

,

c̃0 := c0

1403

https://doi.org/10.1112/S0010437X23007212 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007212


M. DeVilbiss and J. Freitag

for 1 ≤ i ≤ h, and

ãi := ai −
�−i∑
k=0

(
	 − 1

	 − i − k

)
b̃�−1−k

(
a�

b̃�−1

)(�−i−k)

,

ã0 := a0

for 1 ≤ i ≤ 	 − 1.
We must first prove that each of these linear substitutions is well defined under the assump-

tions of Theorem 4.4, that is, that the coefficients a�, βh, and b̃�−1 which appear in the
denominators of substitutions are all non-zero.

Lemma 4.5. The tuple (bi, ai : 0 ≤ i ≤ 	) is interdefinable with (b�, a�, b̃i, ãi : 0 ≤ i ≤ 	 − 1) as
defined in Algorithm A.

Proof. It is clear from the definition of b̃i that (bi : 0 ≤ i ≤ 	 − 1) is interdefinable with (b̃i :
0 ≤ i ≤ 	 − 1) over b� and {ai : 0 ≤ i ≤ 	}. By adding the parameters themselves, we have that
(bi, ai : 0 ≤ i ≤ 	) is interdefinable with (b�, b̃i : 0 ≤ i ≤ 	 − 1) ∪ (ai : 0 ≤ i ≤ 	). It is also clear
from the definition of ãi that (ai : 0 ≤ i ≤ 	 − 1) is interdefinable with (ãi : 0 ≤ i ≤ 	 − 1) over
a� and {b̃i : 0 ≤ i ≤ 	 − 1}. Combining these two facts, we conclude that the desired tuples are
interdefinable. �

Assuming the initial coefficients {ai, bi : 0 ≤ i ≤ 	} ∪ {βi : 0 ≤ i ≤ h} constitute an indepen-
dent set of differential transcendentals, Lemma 4.5 shows that {ãi, b̃i : 0 ≤ i ≤ 	 − 1} ∪ {βi : 0 ≤
i ≤ h} ∪ {a�, b�} are also independent differential transcendentals, and hence non-zero. It follows
that the substitutions in Algorithm A are well defined as long as the initial coefficients have this
property.

Lemma 4.6. Suppose that (ei : 0 ≤ i ≤ h − 1) is differentially algebraic over {ci : 0 ≤ i ≤ h} ∪
{a�, b�, ã�−1, b̃�−1, } ∪ {βi : 0 ≤ i ≤ h}. Then (ci : 0 ≤ i ≤ h) is interdifferentially algebraic with
(c̃i : 0 ≤ i ≤ h) over {ai, bi : 0 ≤ i ≤ 	} ∪ {βi : 0 ≤ i ≤ 	}, and (ẽi : 0 ≤ i ≤ h − 1) is differentially
algebraic over {c̃i : 0 ≤ i ≤ h} ∪ {a�, b�, ã�−1, b̃�−1, } ∪ {βi : 0 ≤ i ≤ h}.
Proof. From the definitions, it is clear that (c̃i : 0 ≤ i ≤ h) is differentially algebraic over (ci :
0 ≤ i ≤ h). To prove the other direction, we combine the definitions of c̃i, ẽi, and di, and we can
write c̃i in terms of (ci : 0 ≤ i ≤ h) (as well as other terms). Doing this for c̃h (and performing
some simplifications), we have

c̃h =
b�

b̃�−1

ch−1 − hb�

b̃�−1

c′h +
[
1 +

a�

b̃�−1

(
h

(
b�

a�

)′
− hβh

(
b�

βha�

)′
− βh−1b�

βha�

)]
ch +

a�

b̃�−1

eh−1. (5)

Doing the same to the other c̃s, we see that ch appears with order at least one, but each ci

is order zero and linear over Q〈a�, ã�−1, b�, b̃�−1〉 for i < h. This is represented in the following
matrix equation:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 M0 0 · · · 0 0 0 0
M2 M1 M0 · · · 0 0 0 0
M3 M2 M1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
Mh−3 Mh−4 Mh−5 · · · M1 M0 0 0
Mh−2 Mh−3 Mh−4 · · · M2 M1 M0 0
Mh−1 Mh−2 Mh−3 · · · M3 M2 M1 M0

0 0 0 · · · 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ch−1

ch−2

ch−3
...
c3

c2

c1

c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃h−1

c̃h−2

c̃h−3
...
c̃3

c̃2

c̃1

c̃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lh−1

Lh−2

Lh−3
...

L3

L2

L1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)
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where Li ∈ Q〈{ch, a�, b�, ã�−1, b̃�−1} ∪ {βi : 0 ≤ i ≤ h} ∪ {ei : 0 ≤ i ≤ h − 1}〉. The matrix entries
can be computed as follows:

M0 =
b�

b̃�−1

,

M1 = h

(
b�

a�

)′( a�

b̃�−1

)
+ (h − 1)

(
b�

a�

)(
a�

b̃�−1

)′
+ 1,

Mi =
i∑

k=0

(
h − 1

k

)(
h

i − k

)(
b�

a�

)(i−k)( a�

b̃�−1

)(k)

for i > 1. Using Gaussian elimination, we can make this matrix lower triangular:

M∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1,h−1 0 0 · · · 0 0 0 0
M2,h−2 M1,h−2 0 · · · 0 0 0 0
M3,h−3 M2,h−3 M1,h−3 · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

Mh−3,3 Mh−4,3 Mh−5,3 · · · M1,3 0 0 0
Mh−2,2 Mh−3,2 Mh−4,2 · · · M2,2 M1,2 0 0
Mh−1,1 Mh−2,1 Mh−3,1 · · · M3,1 M2,1 M1,1 0

0 0 0 · · · 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the new matrix entries can be computed recursively for 2 ≤ j ≤ h − 1 and 1 ≤ i ≤ h − j:

Mi,1 := Mi, Mi,j := Mi −
(

M0

M1,j−1

)
Mi+1,j−1.

Claim 4.7. For all 1 ≤ j ≤ h − 1 and 1 ≤ i ≤ h − j, Mi,j �= 0, and therefore, the determinant
of M∗ is non-zero.

Proof. We prove this by showing that Mi,j is order i + j − 1 in a� using induction on j. It
follows from Claim 4.5 that Mi,1 is order i in a� for each i. Now suppose the claim holds for j.
Since Mi,j+1 = Mi − (M0/M1,j)Mi+1,j , we can see that Mi,j+1 is order i + j since Mi+1,j is order
i + j by assumption, and all other terms in the definition have strictly smaller order. Thus the
determinant is non-zero. �

Since M∗ is non-singular, it follows also that the original matrix in (6) is non-singular. There-
fore, (ci : 0 ≤ i ≤ h − 1) and (c̃i : 0 ≤ i ≤ h − 1) are interdefinable over {ch, a�, b�, ã�−1, b̃�−1} ∪
{βi : 0 ≤ i ≤ h} ∪ {ei : 0 ≤ i ≤ h − 1}.

Turning our attention once more to (5), we use this interdefinability to substitute ch−1 for
an expression involving ch and (c̃i : 0 ≤ i ≤ h). The resulting equation establishes a differential
relation between ch and (c̃i : 0 ≤ i ≤ h). It follows that (ci : 0 ≤ i ≤ h) is differentially alge-
braic over c̃i : 0 ≤ i ≤ h) along with {a�, b�, ã�−1, b̃�−1} ∪ {βi : 0 ≤ i ≤ h} ∪ {ei : 0 ≤ i ≤ h − 1}.
By assumption, (ei : 0 ≤ i ≤ h − 1) is identically 0 or differentially algebraic over {ci : 0 ≤ i ≤
h} ∪ {a�, b�, ã�−1, b̃�−1, } ∪ {βi : 0 ≤ i ≤ h}. In either case, it follows that (ci : 0 ≤ i ≤ h) and
c̃i : 0 ≤ i ≤ h) are interdifferentially algebraic over {a�, b�, ã�−1, b̃�−1} ∪ {βi : 0 ≤ i ≤ h}.

So that this lemma can be applied inductively, we show that (ẽi : 0 ≤ i ≤ h − 1) is dif-
ferentially algebraic over {c̃i : 0 ≤ i ≤ h} ∪ {a�, b�, ã�−1, b̃�−1, } ∪ {βi : 0 ≤ i ≤ h}. If ei = 0 for
all i, this result follows from the definition of ẽi. Suppose otherwise, and we can see that
ẽi is defined by (ci : 0 ≤ i ≤ h), (ei : 0 ≤ i ≤ h − 1), and {a�, b�, b̃�−1, ã�−1} ∪ {βi : 0 ≤ i ≤ h}.
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By assumption on ei, we can see that (ẽi : 0 ≤ i ≤ h − 1) is differentially algebraic over
(ci : 0 ≤ i ≤ h) and {a�, b�, b̃�−1, ã�−1} ∪ {βi : 0 ≤ i ≤ h}. We have already shown that (ci : 0 ≤
i ≤ h) and (c̃i : 0 ≤ i ≤ h) are interdifferentially algebraic, so (ẽi : 0 ≤ i ≤ h − 1) is differentially
algebraic over (c̃i : 0 ≤ i ≤ h), and {a�, b�, b̃�−1, ã�−1} ∪ {βi : 0 ≤ i ≤ h}. �
Algorithm B. We begin with a system of equations of the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h∑
i=0

aiu
(i) =

h∑
i=0

biz
(i),

h∑
i=0

ciu
(i) =

h∑
i=0

βiw
(i).

(7)

Algorithm B will eliminate the top equation in this system by first applying Algorithm A
h times, reducing the order of the top equation to zero:⎧⎪⎪⎨

⎪⎪⎩
ã0u = b̃0z

(i),

h∑
i=0

c̃iu
(i) +

h−1∑
i=0

ẽiz
(i) =

h∑
i=0

βiw
(i).

Finally, z = (ã0/b̃0)u, so we substitute this expression for z in the lower equation, eliminating z
from the system:

h∑
i=0

ĉiu
(i) =

h∑
i=0

βiw
(i), (8)

where

ĉh := c̃h,

ĉi := c̃i +
h−i∑
k=0

(
h − 1

h − i − k

)
ẽh−1−k

(
ã0

b̃0

)(h−i−k)

+ · · · + ẽi

(
ã0

b̃0

)
.

Lemma 4.8. For ai, bi, ci, ĉi, and βi as defined in Algorithm B, suppose {ai, bi, βi : 0 ≤ i ≤ h}
is an independent set of differential transcendentals and suppose (ai : 0 ≤ i ≤ h) and (ci :
0 ≤ i ≤ h) are interdifferentially algebraic over the other coefficients {bi, βi : 0 ≤ i ≤ h}. Then
(ci : 0 ≤ i ≤ h) and (ĉi : 0 ≤ i ≤ h) are interdifferentially algebraic over {bi, βi : 0 ≤ i ≤ h}.
Proof. By Lemmas 4.6 and 4.5, we see that (ci : 0 ≤ i ≤ h) is interdifferentially algebraic with
(c̃i : 0 ≤ i ≤ h) over {ai, bi : 0 ≤ i ≤ h} ∪ {βi : 0 ≤ i ≤ 	}. Since (ai : 0 ≤ i ≤ h) is interdifferen-
tially algebraic with (ci : 0 ≤ i ≤ h) by assumption, it follows that (ci : 0 ≤ i ≤ h) is interdif-
ferentially algebraic with (c̃i : 0 ≤ i ≤ h) over {bi : 0 ≤ i ≤ h} ∪ {βi : 0 ≤ i ≤ 	}. Consequently,
(c̃i : 0 ≤ i ≤ h) is independent over {bi : 0 ≤ i ≤ h} ∪ {βi : 0 ≤ i ≤ 	}.

It follows from the definition that (c̃i : 0 ≤ i ≤ h) is interdefinable with (ĉi : 0 ≤ i ≤ h) over
{ai, bi : 0 ≤ i ≤ h, } ∪ {βi : 0 ≤ i ≤ h} ∪ {ẽi : 0 ≤ i ≤ h − 1}. By Lemma 4.6, (ẽi : 0 ≤ i ≤ h − 1)
is differentially algebraic over {c̃i : 0 ≤ i ≤ h} ∪ {ai, bi : 0 ≤ i ≤ h} ∪ {βi : 0 ≤ i ≤ h}, and we
have already seen that (ai : 0 ≤ i ≤ h) is interdifferentially algebraic with (c̃i : 0 ≤ i ≤ h).
Thus, (ĉi : 0 ≤ i ≤ h) is interdefinable with (c̃i : 0 ≤ i ≤ h), and hence with (ci : 0 ≤ i ≤ h) over
{bi : 0 ≤ i ≤ h} ∪ {βi : 0 ≤ i ≤ 	}. �
Remark 4.9. Due to the nature of the substitutions defining Algorithms A and B, only coeffi-
cients from the first equation influence the lower equation, and not vice versa. For simplicity,
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Algorithms A and B have been defined for systems of two equations, although due to this lack
of interaction these algorithms can be easily applied to systems of many equations. The only
change that need be made is that an analogous form of the middle substitution in Algorithm A
must be applied to all lower equations simultaneously (lowering the order of z in all of these
equations by one).

Using Lemma 4.8, we can apply Algorithm B recursively to system (4) until all but one
variables have been eliminated. This results in a definable bijection between system (4) and
A1(U), resulting in a proof of Theorem 4.4.

Proof of Theorem 1.3. Let f(x) be a generic differential polynomial of order h > 1 and degree d.
Let ā be the coefficients of f and let p be the type of a generic solution to f(x) = 0. Suppose that
d ≥ 2 · (nmdeg(p) + 1). Let ā = (a1, . . . am) be realizations of p which are algebraically indepen-
dent over Q〈ᾱ〉 where m ≤ d/2. By Lemma 4.3, the differential tangent space TΔ

(ā,ᾱ)

(
V [m]

)
has

coefficients which are independent differential transcendentals over Q. This differential tangent
space satisfies the hypotheses of Theorem 4.4, so the solution set of TΔ

(ā,ᾱ)

(
V [m]

)
has no infinite-

rank proper C-vector subspaces definable over Q〈ā, ᾱ〉. By Theorem 3.8, we conclude that the
differential variety defined by f(x) = 0 is strongly minimal. �

Finally, we present an example of a system of equations which does not have transcendental
coefficients where the substitutions of Algorithms A and B are not well defined.

Example 4.10. Consider a generic fiber of the differential equation satisfied by the j-function

Eα := S(x) + R(x)(x′)2 = α,

where α is a differential transcendental, S(x) is the Schwarzian derivative

S(x) =
(

x′′

x′

)′
− 1

2

(
x′′

x′

)2

,

and

R(x) =
x2 − 1978x + 2654208

2x2(x − 1728)2
.

Following the procedure laid out in § 3, let (a1, a2) be a Morley sequence5 for Eα. We replace
the transcendental α with a variable y, compute the differential tangent space, and eliminate y,
resulting in the equation

A3u
(3) + A2u

′′ + A1u
′ + A0u = B3v

(3) + B2v
′′ + B1v

′ + B0v,

where

A3 :=
1
a′1

, B3 :=
1
a′2

,

A2 := − 3a′′1
(a′1)2

, B2 := − 3a′′2
(a′2)2

,

A1 := − a
(3)
1

(a′1)2
+

3(a′′1)2

(a′1)3
+ 2a′1R(a1), B1 := − a

(3)
2

(a′2)2
+

3(a′′2)2

(a′2)3
+ 2a′2R(a2),

A0 := (a′1)2R′(a1), B0 := (a′2)2R′(a2).

Unlike in § 4, these coefficients are not independent differential transcendentals. In fact,
A2 = 3A′

3 and B2 = 3B′
3. We now apply the sequence of substitutions found in Algorithm A.

5 If we were strictly applying the arguments from § 3, we would need a sequence of longer length. However, only
two will be necessary to demonstrate this example.
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First (u, v) �→ (ũ, v) where ũ = u − (B3/A3)v, resulting in the equation

A3ũ
(3) + A2ũ

′′ + A1ũ
′ + A0ũ = B̃2v

′′ + B̃1v
′ + B̃0v,

where

B̃2 := B2 − 3A3

(
B3

A3

)′
− A2

(
B3

A3

)
,

B̃1 := B1 − 3A3

(
B3

A3

)′′
− 3A2

(
B3

A3

)′
− A1

(
B3

A3

)
,

B̃0 := B0 − A3

(
B3

A3

)(3)

− 3A2

(
B3

A3

)′′
− 3A1

(
B3

A3

)′
− A0

(
B3

A3

)
.

The next substitution would replace v with ṽ where v = ṽ + (A3/B̃2)ũ′, which would reduce
the order of the ũ. However, this substitution is not well defined because B̃2 = 0:

B̃2 = 3B′
3 − 3A3

(
B3

A3

)′
− 3A′

3

(
B3

A3

)

= 3B′
3 − 3A3

(
B′

3A3 − A′
3B3

A2
3

)
− 3A′

3B3

A3

= 3B′
3 − 3B′

3 +
3A′

3B3

A3
− 3A′

3B3

A3

= 0.

While this specific substitution does not yield a definable bijection, one can use another substi-
tution (ṽ = v − (A3/B̃1)ũ′′), and in this case the fact that B̃2 = 0 results in fewer substitutions
being necessary to reach the desired result.

5. Orthogonality to the constants

We have seen that bounds of [FM21] on the degree of non-minimality can be used in conjunction
with linearization techniques to establish the strong minimality of general classes of differen-
tial equations. There are two main obstacles to the wide application of these techniques for
establishing strong minimality of many classical nonlinear equations.

(1) The methods developed in the previous sections seem to require at least one coefficient of
the equation in question to be differentially transcendental.

(2) For a given equation, even of small order, the computations required to verify strong
minimality are quite involved.

In this section we will show how the computational demands can be significantly reduced if
a weaker condition than strong minimality is the goal: V is either strongly minimal or almost
internal to the constants. In [FM21] it is shown that if nmdeg(p) > 1, then p is an isolated
type which is almost internal to a non-locally modular type. In differentially closed fields, this
means that p is almost internal to the constant field whenever nmdeg(p) > 1. Thus, verifying
the weaker condition only requires an analysis of forking extensions over one new solution – the
computations need only involve two unknown variables in this case.

Example 5.1. We will show that the equation

x′′ + x2 − α = 0,

1408

https://doi.org/10.1112/S0010437X23007212 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007212


Generic differential equations are strongly minimal

where α is a differential transcendental, is either strongly minimal or internal to the constants.
If the equation is not internal to the constants and not strongly minimal, then by the results
of [FM21] there is an indiscernible sequence of length two (x1, x2), which would satisfy the system{

x′′
1 + x2

1 = α,

x′′
2 + x2

2 = α,

such that x2 satisfies an order one equation over x1. Using the same strategy as in the previous
sections, we replace α with a variable y in both equations, and then compute the differential
tangent space: {

u′′ + 2x1u = y,

v′′ + 2x2v = y.

Eliminating y, we are left with the single equation

u′′ + 2x1u = v′′ + 2x2v.

Consider the definable bijection given by the substitution (u, v) �→ (w, v) where u = w + v. This
transforms the above equation into

w′′ + 2x1w = 2(x2 − x1)v

which can be solved for v since x1 �= x2. Therefore the differential tangent space has no infinite-
rank subvarieties, a contradiction, so x′′ + x2 − α = 0 is either strongly minimal or almost
internal to the constants.

Question 5.2. Varieties which are internal to the constants have certain stronger properties that
may, in general, allow one show via some additional argument the strong minimality of specific
equations. For instance, by [FM17], if X is non-orthogonal to the constants, then there are
infinitely many subvarieties of X of co-order one. Thus, in this setting, showing strong minimality
(after an argument like that of the example above) is equivalent to ruling out subvarieties of co-
order one. Are there interesting classes of equations in which one can successfully employ this
strategy?

After the completion of this work, the authors, together with Guy Casale and Joel Nagloo,
were able to give an affirmative answer to Question 5.2 in the case of the equation satisfied by
the j-function. This gives a new proof of the main theorem of [FS17]: the differential equation
satisfied by the j-function(

y′′

y′

)′
− 1

2

(
y′′

y′

)2

+ (y′)2 · y2 − 1968y + 2654208
y2(y − 1728)2

= 0

is strongly minimal. We also employ the strategy to establish the strong minimality of several
new equations. Nevertheless, we have left Question 5.2 as stated above, since we feel pursuing
this approach is an important direction for future research.

During the revisions of this paper, the bounds on the degree of non-minimality in differentially
closed fields were improved dramatically [FJM22a]: the degree of non-minimality in differentially
closed fields is at most two. This does not affect the statement of our main result, Theorem 1.3,
but does widen the scope of the result as pointed out in [FJM22a]: generic differential equations
of degree at least six are strongly minimal.
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