
TPLP 23 (6): 1307–1333, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

doi:10.1017/S1471068423000194 First published online 5 July 2023
1307

An Interleaving Semantics of the Timed Concurrent
Language for Argumentation to Model Debates and

Dialogue Games∗

STEFANO BISTARELLI and CARLO TATICCHI
University of Perugia, Perugia, Italy

(e-mails: stefano.bistarelli@unipg.it, carlo.taticchi@unipg.it)

MARIA CHIARA MEO
University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy

(e-mail: mariachiara.meo@unich.it)

submitted 13 July 2022; revised 26 January 2023; accepted 12 June 2023

Abstract

Time is a crucial factor in modelling dynamic behaviours of intelligent agents: activities have
a determined temporal duration in a real-world environment, and previous actions influence
agents’ behaviour. In this paper, we propose a language for modelling concurrent interaction
between agents that also allows the specification of temporal intervals in which particular actions
occur. Such a language exploits a timed version of Abstract Argumentation Frameworks to
realise a shared memory used by the agents to communicate and reason on the acceptability of
their beliefs with respect to a given time interval. An interleaving model on a single processor
is used for basic computation steps, with maximum parallelism for time elapsing. Following
this approach, only one of the enabled agents is executed at each moment. To demonstrate
the capabilities of the language, we also show how it can be used to model interactions such
as debates and dialogue games taking place between intelligent agents. Lastly, we present an
implementation of the language that can be accessed via a web interface.

KEYWORDS: computational argumentation, concurrency, interleaving

1 Introduction

Agents in distributed environments can perform operations that affect the behaviour

of other components. Many formalisms have been proposed for modelling concurrent

systems to describe the interactions that may take place between intelligent agents.

For example, Concurrent Constraint Programming (CC) – Saraswat and Rinard (1990)

– relies on a constraint store of shared variables in which agents can read and write

in accordance with some properties posed on the variables. The basic operations that

∗ The authors are members of the INdAM Research group GNCS and Consorzio CINI. This work has
been partially supported by: GNCS-INdAM, CUP E55F22000270001; Project RACRA, funded by
Ricerca di Base 2018-2019, University of Perugia; Project FICO, funded by Ricerca di Base 2021, Uni-
versity of Perugia; Project BLOCKCHAIN4FOODCHAIN, funded by Ricerca di Base 2020, University
of Perugia; Project GIUSTIZIA AGILE, CUP J89J22000900005.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194
https://orcid.org/0000-0003-1260-4672
mailto:stefano.bistarelli@unipg.it
mailto:carlo.taticchi@unipg.it
mailto:mariachiara.meo@unich.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000194&domain=pdf
https://doi.org/10.1017/S1471068423000194

1308 S. Bistarelli et al.

agents can execute in the CC framework are a blocking Ask and an atomic Tell. These

operations realise the interaction with the store and also allow one to deal with partial

information.

When dealing with concurrent interactions, the notion of time plays a fundamental

role: in many “real-life” applications, the activities have a temporal duration that can

even be interrupted, and the coordination of such activities has to consider this timeliness

property. The interacting actors are mutually influenced by their actions, meaning that

A reacts accordingly to the timing and quantitative aspects related to B’s behaviour, and

vice versa. Moreover, the information brought forward by debating agents that interact

in a dynamic environment can be affected by time constraints limiting, for instance, the

influence of some arguments in the system to a certain time lapse. Therefore, a mechanism

for handling time is required to better model the behaviour of intelligent agents involved

in argumentation processes.

Moreover, to simulate human behaviour, intelligent agents operating within distributed

systems should communicate with each other through forms of interaction, like debate,

that mirror those used by human beings. Debate constitutes, for example, the basis of

multi-agent applications for decision making – Azhar and Sklar (2016), planning – Pardo

and Godo (2018), opinion polling – Rago and Toni (2017), and negotiation – Amgoud

et al . (2000). We will use the terms dialogue and debate interchangeably, as both can

be modelled in the same way and differ only in purpose: the former is typically intended

in a collaborative sense, while the latter is usually oppositional. Walton and Krabbe

(1995) categorise dialogues into six different forms depending on the information the

participants have, their individual goals, and the goals they share: in an information-

seeking dialogue, one participant seeks the answer to a question by consulting another

participant who presumably knows the answer; in an inquiry dialogue, on the other hand,

participants work together to find the answer, which nobody knows, to a question; in a

persuasion dialogue, one participant tries to convince the other to accept a proposition;

the participants in a negotiation dialogue aim to reach an agreement on the division of

a given good or resource; in a deliberation dialogue, participants work together to make

a decision about an action to take; finally, in an eristic dialogue, participants aim to

emerge victorious by countering the arguments presented by others rather than coming

to a truth or conclusion acceptable to all.

A dialogue between two or more parties often unfolds as an ordered series of ac-

tions in which the various participants take turns to exchange arguments. With these

premises, allowing an agent to have too many choices about which actions to take can

be counterproductive and blow up the state space. It may therefore be convenient to

resort to the so-called dialogue games – McBurney and Parsons (2009), that is, rule-

guided interaction that provides sufficient expressiveness while avoiding state space ex-

plosion. Dialogue games, known since ancient times – Aristotle (1928), find application

in different areas, ranging from philosophy to computational linguistics and computer

science – McBurney and Parsons (2009). In particular, within the field of Artificial

Intelligence, they provide valuable support to model, analyse and automatise human-

like reasoning. For example, McBurney et al . (2003) use dialogue games to model in-

teracting agents that autonomously perform negotiation tasks, while in the work of

Prakken and Sartor (1998), dialogue games are used to represent and analyse legal rea-

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1309

soning. Therefore, the ability to model debates and dialogue games is a relevant feature

of languages aimed at representing the interaction between intelligent agents.

In Bistarelli et al . (2021), we introduced tcla, a timed extension of the Concurrent Lan-

guage for Argumentation – Bistarelli and Taticchi (2020), Bistarelli and Taticchi (2021),

Bistarelli and Taticchi (2023) – which models dynamic interactions between agents using

basic actions like add, rmv, check and test, and exploits notions from Argumentation

Theory to reason about shared knowledge. The time extension is based on the hypothesis

of bounded asynchrony: the computation takes a bounded period of time and is measured

by a discrete global clock. Parallel operations are expressed in terms of maximum paral-

lelism. According to the maximum parallelism policy (applied, for example, in Saraswat

et al . (1994; 1996)), at each moment every enabled agent of the system is activated.

However, this setting implies the existence of an unbounded number of processors ready

to handle the execution of a programme. In Bistarelli et al . (2022), then, we revised tcla

semantics by considering a paradigm where the parallel operator is interpreted in terms

of interleaving. The interleaving approach limits the number of enabled agents executed

at a time, mimicking the limited number of available processors as in the real world. We

still assume maximum parallelism for actions depending on time. In other words, time

passes for all the parallel processes involved in a computation. This is accomplished by

allowing all the time-only dependent actions, that we identify through τ -transitions, to

concurrently run with at most one action manipulating the store, that is, a ω-transition.

This approach, analogous to that adopted by de Boer et al . (2004), differs from that

considered by Busi et al . (2000) where time does not elapse for timeout constructs. It is

also different from works like Bistarelli et al . (2008), de Boer et al . (2000) that assume

maximum parallelism for all types of action.

This paper extends previous work on the interleaving version of tcla – Bistarelli et al .

(2022) – by providing further details on the functionality and implementation of the

language. In detail, the additional contents consist of the following points:

• a clarification of the differences between debates and dialogue games;

• a formalisation of debates and a translation function which produces a tcla pro-

gramme starting from a debate;

• a formal methodology for modelling dialogue games as tcla programmes;

• a detailed description of the tcla implementation with interleaving, also including

a comparison with the maximum parallelism-based version;

• examples illustrating the concepts introduced alongside the discussions regarding

debates, dialogue games and the implementation.

The rest of the paper is organised as follows: in Section 2, we summarise the background

notions that will be used to present our proposal; Section 3 presents the interleaving ver-

sion of tcla, providing both the syntax and the operational semantics; in Section 4, we

exemplify the use of timed paradigms in the proposed language by modelling a delibera-

tion dialogue and a persuasion dialogue game as tcla processes; in Section 5, we describe

a working implementation of tcla, and we compare the interleaving version with the max-

imum parallelism one; Section 6 features related works relevant to our study; Section 7,

finally, concludes the paper by also indicating possible future research lines.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1310 S. Bistarelli et al.

2 Background

Argumentation Theory aims to understand and model the natural human fashion of

reasoning, allowing one to deal with uncertainty in non-monotonic (defeasible) reasoning.

The building blocks of abstract argumentation are defined by Dung (1995).

Definition 1 (AFs)

Let U be the set of all possible arguments,1 which we refer to as the “universe.” An Ab-

stract Argumentation Framework is a pair 〈Arg,R〉 where Arg ⊆ U is a set of adopted

arguments and R is a binary relation on Arg representing attacks among adopted argu-

ments.

AFs can be represented through directed graphs that we depict using standard con-

ventions. For two arguments a, b ∈ Arg, the notation (a, b) ∈ R (or, equivalently, a → b)

represents an attack directed from a against b.

Definition 2 (Acceptable Argument)

Given an AF F = 〈A,R〉, an argument a ∈ A is acceptable with respect to D ⊆ A if and

only if ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ D such that (c, b) ∈ R, and we say that a is

defended from D.

We identify the sets of attacking arguments as follows.

Definition 3 (Attacks)

Let F = 〈A,R〉 be an AF, a ∈ A and S ⊆ A. We define the sets a+ = {b ∈ A | (a, b) ∈ R}
and S+ =

⋃
a∈S a+. Moreover, we define R|a = {(a, b) ∈ R}.

The notion of defence can be used for identifying subsets of “good” arguments. The

goal is to establish which are the acceptable arguments according to a certain semantics,

namely a selection criterion. Non-accepted arguments are rejected. Different kinds of

semantics that reflect desirable qualities for sets of arguments have been studied in works

like Baroni et al . (2011), Dung (1995). We first give the definition for extension-based

semantics, namely admissible, complete, stable, semi-stable, preferred, and grounded

semantics, denoted with adm, com, stb, sst, prf and gde, respectively, and generically

with σ.

Definition 4 (Extension-based semantics)

Let F = 〈Arg,R〉 be an AF. A set E ⊆ Arg is conflict-free in F , denoted E ∈ Scf (F), if

and only if there are no a, b ∈ E such that (a, b) ∈ R. For E ∈ Scf (F), we have that:

• E ∈ Sadm(F) if each a ∈ E is defended by E;

• E ∈ Scom(F) if E ∈ Sadm(F) and ∀a ∈ Arg defended by E, a ∈ E;

• E ∈ Sstb(F) if ∀a ∈ Arg \ E, ∃b ∈ E such that (b, a) ∈ R;

• E ∈ Ssst(F) if E ∈ Scom(F) and E ∪ E+ is maximal;2

• E ∈ Sprf (F) if E ∈ Sadm(F) and E is maximal;

• E ∈ Sgde(F) if E ∈ Scom(F) and E is minimal.

1 The set U is not present in the original definition of AFs – Dung (1995) – and we introduce it for our
convenience to distinguish all possible arguments from the adopted ones.

2 The set E ∪ E+ is also called range of E – Caminada (2006b).

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1311

Fig. 1. Example of abstract argumentation framework.

Moreover, if E satisfies one of the above properties for a certain semantics, we say that

E is an extension of that semantics. In particular, if E ∈ Sadm/com/stb/sst/prf/gde(F), we

say that E is an admissible/complete/stable/semi-stable/preferred/grounded extension.

Besides enumerating the extensions for a certain semantics σ, one of the most common

tasks performed on AFs is to decide whether an argument a is accepted in all extensions

of Sσ(F) or just in some of them. In the former case, we say that a is sceptically accepted

with respect to σ; in the latter, a is instead credulously accepted with respect to σ.

Example 1

In Figure 1 we provide an example of AF where sets of extensions are given for all the

mentioned semantics: Scf (F) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}, Sadm(F)

= {{}, {a}, {c}, {d}, {a, c}, {a, d}}, Scom(F) = {{a}, {a, c}, {a, d}}, Sprf (F) = {{a, c},
{a, d}}, Sstb(F) = {{a, d}}, and Sgde(F) = {{a}}.
The singleton {e} is not conflict-free because e attacks itself. The argument b is not

contained in any admissible extension because it is never defended from the attack of a.

The empty set {}, and the singletons {c} and {d} are not complete extensions because

a, which is not attacked by any other argument, has to be contained in all complete

extensions. The maximal admissible extensions {a, c} and {a, d} are preferred, while

the minimal complete {a} is the (unique) grounded extension. The arguments in {a, d}
conduct attacks against all the other arguments, namely b, c and e, thus forming a stable

extension. To conclude the example, we have that a is sceptically accepted with respect

to the complete semantics since it appears in all three subsets of Scom(F). On the other

hand, arguments c and d, each of which is in one complete extension only, are credulously

accepted with respect to the complete semantics.

The phenomenon for which an argument is accepted in some extension because it is

defended by another argument belonging to that extension is known as reinstatement –

Caminada (2006a). Caminada also gives a definition for reinstatement labelling.

Definition 5 (Reinstatement labelling)

Let F = 〈Arg,R〉 and L = {in, out, undec}. A labelling of F is a total function L : Arg →
L. We define in(L) = {a ∈ Arg | L(a) = in}, out(L) = {a ∈ Arg | L(a) = out} and

undec(L) = {a ∈ Arg | L(a) = undec}. We say that L is a reinstatement labelling if and

only if it satisfies the following:

• ∀a, b ∈ Arg, if a ∈ in(L) and (b, a) ∈ R then b ∈ out(L);

• ∀a ∈ Arg, if a ∈ out(L) then ∃b ∈ Arg such that b ∈ in(L) and (b, a) ∈ R.

In other words, an argument is labelled in if all its attackers are labelled out, and it is

labelled out if at least one in node attacks it. In all other cases, the argument is labelled

undec. In Figure 2, we show an example of reinstatement labelling on an AF in which

arguments a and c highlighted in green are in, red ones (b and d) are out, and the yellow

argument e, that attacks itself, is undec.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1312 S. Bistarelli et al.

Fig. 2. Example of reinstatement labelling.

One of the strengths of labelling functions is the possibility of identifying arguments

acceptable according to extension-based semantics. Given a labelling L, the set of in
arguments coincides with a complete extension, while other semantics can be obtained

through restrictions on the labelling as shown in Baroni et al . (2011).

3 Syntax and semantics

The syntax of our timed concurrent language for argumentation, tcla, is presented in

Table 1. In detail, P denotes a generic process, C a sequence of procedure declarations

(or clauses), A a generic agent and E a generic guarded agent, that is, an agent preceded

by a condition that must be satisfied in order to continue the execution. Moreover t ∈
N ∪ {+∞}.
The communication between tcla agents is implemented via shared memory, similarly

to cla – Bistarelli and Taticchi (2020; 2021) – and CC – Saraswat and Rinard (1990) –

and opposed to other languages as CSP – Hoare (1978) – and CCS – Milner (1980) –

which are based on message passing. We denote by E the class of guarded agents and

by E0 the class of guarded agents such that all outermost guards have t = 0. Note that

a Boolean syntactic category could be introduced in replacement of E0 to handle guards

and allow for finer distinctions. In a tcla process P = let C in A, A is the initial agent

to be executed in the context of the set of declarations C. Then, a clause defined with

C,C corresponds to the concatenation of more procedure declarations. We will usually

write a tcla process P = let C in A as the corresponding agent A, omitting C when not

required by the context.

The operational model of tcla processes can be formally described by a labelled tran-

sition system T = (Conf , Label,→), where we assume that each transition step takes

exactly one time-unit. Configurations in Conf are pairs consisting of a process and an

AF F = 〈Arg,R〉 representing the common knowledge base. L = {τ, ω} is the set of la-

bels that we use to distinguish “real” computational steps performed by processes which

have the control (label ω) from the transitions which model only the passing of time (label

τ). Hence, ω-actions are those performed by processes that modify the store (add, rmv),

check the store (checkt, c-testt, s-testt), call a procedure, and correspond to exceeding

a timeout (check0, c-test0, s-test0). On the other hand, τ -actions are those performed

by timeout processes (checkt, c-testt, s-testt) in case they do not have control of the

processor. The transition relation
ω−→⊆ Conf × Conf is the least relation satisfying the

rules in Tables 2 and 3, and it characterises the (temporal) evolution of the system. So,

〈A,F 〉 ω−→ 〈A′, F ′〉 means that, if at time t we have the process A and the AF F , then

at time t+ 1 we have the process A′ and the AF F ′.
In Tables 2 and 3, we give the definitions for the transition rules. The agents success

and failure represent a successful and a failed termination, respectively, so they may

not make any further transition. Action prefixing is denoted by →, non-determinism

is introduced via the guarded choice construct E + E, if-then-else statements can be

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1313

Table 1. tcla syntax

P ::= let C in A
C ::= p(x) :: A | C,C
A ::= success | failure | add(Arg,R) → A | rmv(Arg,R) → A | E | A‖A | ∃xA | p(x)
E ::= c-testt(a, l, σ) → A | s-testt(a, l, σ) → A | checkt(Arg,R) → A | E + E | E +P E | E‖GE

realised through +P , parallel and guarded parallel compositions are denoted by ‖ and

‖G, and a notion of locality is introduced by the agent ∃xA, which behaves like A with

argument x considered local to A, thus hiding the information on x provided by the

external environment. Moreover, we have the c-testt(a, l, σ) → A, s-testt(a, l, σ) → A

and checkt(Arg,R) → A constructs, which are explicit timing primitives introduced in

order to allow for the specification of timeouts. In Tables 2 and 3 we have omitted the

symmetric rules for the choice operator + and for the two parallel composition operators

‖ and ‖G. Indeed, + is commutative, so E1 +E2 produces the same result as (that is, is

congruent to) E2 + E1. The same is true for ‖ and ‖G. Note that +, ‖ and ‖G are also

associative. Moreover, success and failure are the identity and the absorbing elements

under the parallel composition ‖, respectively; that is, for each agent A, we have that

A‖success and A‖failure are the agents A and failure, respectively.

In the following we give an operational semantics of tcla, where the parallel operator is

modelled in terms of interleaving. While in the maximum parallelism paradigm, at each

moment, every enabled agent of the system is activated, in the interleaving paradigm,

agents may have to wait for the processor to be “free.” Clearly, since we have dynamic

process creation, a maximum parallelism approach has the disadvantage that, in general,

it implies the existence of an unbound number of processes. On the other hand a naive

interleaving semantic could be problematic from the time viewpoint, as in principle the

time does not pass for enabled agent which are not scheduled.

For the operational semantics of tcla we follow a solution analogous to that adopted

in Bistarelli et al . (2008): we assume that the parallel operator is interpreted in terms

of interleaving, as usual, however we must assume maximum parallelism for actions de-

pending on time. In other words, time passes for all the parallel processes involved in a

computation. Practically, we use τ -actions to make the time pass for agents who do not

require the processor.

Suppose we have an agent A whose knowledge base is represented by an AF F =

〈Arg,R〉. An add(Arg′, R′) action performed by the agent results in the addition of a

set of arguments Arg′ ⊆ U , where U is the universe, and a set of relations R′ to the

AF F . When performing an Add, (possibly) new arguments are taken from U \ Arg.

We want to make clear that the tuple (Arg′, R′) is not an AF, indeed it is possible to

have Arg′ = ∅ and R′ �= ∅, which allows to perform an addition of only attacks to the

considered AF. It is as well possible to add only arguments to F , or both arguments and

attacks. Intuitively, rmv(Arg,R) allows to specify arguments and/or attacks to remove

from the knowledge base. Removing an argument from an AF requires to also remove the

attacks involving that argument and trying to remove an argument or an attack which

does not exist in F will have no consequences.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1314 S. Bistarelli et al.

Table 2. tcla operational semantics (part I)

〈add(Arg′, R′) → A, 〈Arg,R〉〉 ω−→ 〈A, 〈Arg ∪Arg′, R ∪R′′〉〉
where R′′ = {(a, b) ∈ R′ | a, b ∈ Arg ∪Arg′} Add

〈rmv(Arg′, R′) → A, 〈Arg,R〉〉 ω−→ 〈A, 〈Arg \Arg′, R \ {R′ ∪R′′}〉〉
where R′′ = {(a, b) ∈ R | a ∈ Arg′ ∨ b ∈ Arg′} Rmv

Arg′ ⊆ Arg ∧R′ ⊆ R t > 0

〈checkt(Arg′, R′) → A, 〈Arg,R〉〉 ω−→ 〈A, 〈Arg,R〉〉
Chk (1)

Arg′ �⊆ Arg ∨R′ �⊆ R t > 0

〈checkt(Arg′, R′) → A, 〈Arg,R〉〉 ω−→ 〈checkt−1(Arg′, R′) → A, 〈Arg,R〉〉
Chk (2)

〈checkt(Arg′, R′) → A,F 〉 τ−→ 〈checkt−1(Arg′, R′) → A,F 〉 t > 0 Chk (3)

〈check0(Arg′, R′) → A,F 〉 ω−→ 〈failure, F 〉 Chk (4)

∃L ∈ Sσ(F) | l ∈ L(a) t > 0

〈c-testt(a, l, σ) → A,F 〉 ω−→ 〈A,F 〉
CrT (1)

∀L ∈ Sσ(F) | l �∈ L(a) t > 0

〈c-testt(a, l, σ) → A,F 〉 ω−→ 〈c-testt−1(a, l, σ) → A,F 〉
CrT (2)

〈c-testt(a, l, σ) → A,F 〉 τ−→ 〈c-testt−1(a, l, σ) → A,F 〉 t > 0 CrT (3)

〈c-test0(a, l, σ) → A,F 〉 ω−→ 〈failure, F 〉 CrT (4)

∀L ∈ Sσ(F).l ∈ L(a) t > 0

〈s-testt(a, l, σ) → A,F 〉 ω−→ 〈A,F 〉
ScT (1)

∃L ∈ Sσ(F).l �∈ L(a) t > 0

〈s-testt(a, l, σ) → A,F 〉 ω−→ 〈s-testt−1(a, l, σ) → A,F 〉
ScT (2)

〈s-testt(a, l, σ) → A,F 〉 τ−→ 〈s-testt−1(a, l, σ) → A,F 〉 t > 0 ScT (3)

〈s-test0(a, l, σ) → A,F 〉 ω−→ 〈failure, F 〉 ScT (4)

〈E1, F 〉 ω−→ 〈A1, F 〉, 〈E2, F 〉 τ−→ 〈A2, F 〉 E1, E2 �∈ E0, A1 �∈ E

〈E1‖GE2, F 〉 ω−→ 〈A1‖A2, F 〉
GPa (1)

〈E1, F 〉 ξ−→ 〈E′
1, F 〉, 〈E2, F 〉 τ−→ 〈E′

2, F 〉, E1, E2 �∈ E0, E′
1, E

′
2 ∈ E

〈E1‖GE2, F 〉 ξ−→ 〈E′
1‖GE′

2, F 〉
ξ ∈ {τ, ω} GPa (2)

E1 ∈ E0, 〈E2, F 〉 ξ−→ 〈A2, F 〉
〈E1‖GE2, F 〉 ξ−→ 〈A2, F 〉

ξ ∈ {τ, ω} GPa (3)

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1315

Table 3. tcla operational semantics (part II)

〈E1, F 〉 ω−→ 〈A,F 〉, E1 �∈ E0, A1 �∈ E

〈E1 +P E2, F 〉 ω−→ 〈A1, F 〉
ITE (1)

〈E1, F 〉 ξ−→ 〈E′
1, F 〉, E1 �∈ E0, E′

1 ∈ E

〈E1 +P E2, F 〉 ξ−→ 〈E′
1 +P E2, F 〉

ITE (2)

E1 ∈ E0, 〈E2, F 〉 ξ−→ 〈A2, F 〉
〈E1 +P E2, F 〉 ξ−→ 〈A2, F 〉

ξ ∈ {τ, ω} ITE (3)

〈A1, F 〉 ξ−→ 〈A′
1, F

′〉, 〈A2, F 〉 τ−→ 〈A′
2, F 〉

〈A1‖A2, F 〉 ξ−→ 〈A′
1‖A′

2, F
′〉

ξ ∈ {τ, ω} Par (1)

〈A1, F 〉 ξ−→ 〈A′
1, F

′〉, 〈A2, F 〉 � τ−→
〈A1‖A2, F 〉 ξ−→ 〈A′

1‖A2, F ′〉
ξ ∈ {τ, ω} Par (2)

〈E1, F 〉 ω−→ 〈A1, F 〉, E1, E2 �∈ E0 A1 �∈ E

〈E1 + E2, F 〉 ω−→ 〈A1, F 〉
NDt (1)

E1 ∈ E0, 〈E2, F 〉 ξ−→ 〈A2, F 〉
〈E1 + E2, F 〉 ξ−→ 〈A2, F 〉

ξ ∈ {τ, ω} NDt (2)

〈E1, F 〉 ξ−→ 〈E′
1, F 〉, 〈E2, F 〉 τ−→ 〈E′

2, F 〉 E1, E2 �∈ E0, E′
1, E

′
2 ∈ E

〈E1 + E2, F 〉 ξ−→ 〈E′
1 + E′

2, F 〉
ξ ∈ {τ, ω} NDt (3)

〈A[y/x], F 〉 ξ−→ 〈A′, F ′〉
〈∃xA,F 〉 ξ−→ 〈A′, F ′〉

with y fresh ξ ∈ {τ, ω} HVa

〈p(y), F 〉 ω−→ 〈A[y/x], F 〉 with p(x) :: A and x ∈ {a, l, σ, t} PrC

The operator checkt(Arg
′, R′) realises a timed construct used to verify whether the

specified arguments and attacks are contained in the knowledge base, at the time of

execution or some subsequent instant before the timeout, without introducing any fur-

ther change. If t > 0 and the check is positive, the operation succeeds and the agent

checkt(Arg
′, R′) → A can perform a ω-action in the agent A (Rule Chk (1)). If t > 0

and the check is not satisfied, then the control is repeated at the next time instant and

the value of the counter t is decreased; note that in this case we use the label ω, since

a check on the store has been performed (Rule Chk (2)). As shown by axiom Chk (3),

the counter can be decreased also by performing a τ -action: intuitively, this rule is used

to model the situation in which, even though the evaluation of the timeout started al-

ready, another parallel process has the control. In this case, analogously to the approach

in de Boer et al . (2004) and differently from the approach in Busi et al . (2000), time

continues to elapse, via τ -actions, also for the timeout process. Axiom Chk (4) shows

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1316 S. Bistarelli et al.

that, if the timeout is exceeded, that is, the counter t has reached the value of 0, then

the process checkt(Arg
′, R′) → A fails.

The rules CrT (1)-(4) and ScT (1)-(4) in Table 2 perform a credulous and a sceptical

test, respectively, and are similar to rules Chk (1)-(4) described before. Observe that we

have two distinct test operations, both requiring the specification of an argument a ∈ A,

a label l ∈ {in, out, undec} and a semantics σ ∈ {adm, com, stb, prf, gde}. The credulous

c-testt(a, l, σ), with t > 0, succeeds if there exists at least one extension of Sσ(F) whose

corresponding labelling L is such that L(a) = l. Similarly, the sceptical s-testt(a, l, σ),

with t > 0, succeeds if a is labelled l in all possible labellings L ∈ Sσ(F).

The operator +P (rules ITE (1)-(3)) is left-associative and realises an if-then-else

construct: if we have E1 +P E2 and E1 is successful, than E1 will be always chosen over

E2, even if E2 is also successful, so in order for E2 to be selected, it has to be the only

one that succeeds. The guarded parallelism ‖G (rules GPa (1)-(3)) is designed to allow all

the operations for which the guard in the inner expression is satisfied. In detail, E1‖GE2

is successful when either E1, E2 or both are successful and all the operations that can

be executed are executed. This behaviour is different both from classical parallelism (for

which all the agents have to succeed in order for the procedure to succeed) and from

non-determinism (that only selects one branch).

The remaining operators are classical concurrency compositions. Rules Par (1)-(2) in

Table 3 model the parallel composition operator in terms of interleaving, since only one

basic ω-action is allowed for each transition (i.e. for each unit of time). This means that

the access to the shared AF F is granted to one process at a time. However, time passes

for all the processes appearing in the ‖ context at the external level, as shown by rule

Par (1), since τ -actions are allowed together with a ω-action. On the other hand, as

shown by rule Par (2), a parallel component is allowed to proceed in isolation if and

only if the other parallel component cannot perform a τ -action. To summarise, we adopt

maximum parallelism for time elapsing (i.e. τ -actions) and an interleaving model for basic

computation steps (i.e. ω-actions). By transition rules, an agent in a parallel composition

obtained through ‖ succeeds only if all the agents succeed. The parallel composition

operator enables the specification of complex concurrent argumentation processes: for

example, a debate involving many agents that asynchronously provide arguments can

be modelled as a parallel composition of add operations performed on the knowledge

base. Any agent composed through + (rules NDt (1)-(3)) is chosen if its guards succeed;

the existential quantifier ∃xA behaves like agent A where variables in x are local to

A. Finally, in the procedure call (rule PrC), we consider the clause p(x) :: A present

in the context C, in which p(x) is executed. The parameter x can be an argument, a

label among in, out and undec, a semantics σ, or an instant of time. The procedure call

can be extended if necessary to allow more than one parameter. In rules HVa (Hidden

Variables) and PrC, A[x/y] denotes the agent obtained from A by replacing variable x for

variable y.

Using the transition system described in the rules of Tables 2 and 3, we can now define

our notion of observables, which considers the traces based only on ω-actions and whose

components are AFs, of successful or failed terminating computations that an agent A

can perform for each tcla process P = let C in A.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1317

Definition 6 (Observables for tcla)

Let P = let C in A be a tcla process. We define

Oio(P) = λF. {F1 · · ·Fn · ss | F = F1 and 〈A,F1〉 ω−→∗ 〈success, Fn〉} ∪
{F1 · · ·Fn · ff | F = F1 and 〈A,F1〉 ω−→∗ 〈failure, Fn〉}.

4 Modelling debates and dialogue games in tcla

This section provides two possible applications of tcla. In the first example, we model

a persuasion dialogue between several debating counterparts, while the second example

presents the formalisation of a dialogue game between two participants. We propose

operational procedures to translate both types of argumentative interaction into tcla

processes.

4.1 Modelling a debate

A possible use case for tcla can be identified in modelling information sharing for com-

mon resource management. This problem can be instantiated as done in other works

like Emele et al . (2011), Paget et al . (2013) as a debate in a multi-agent environment

where argumentation techniques are exploited for arriving at desirable outcomes. We

start from the scenario proposed by Paget et al . (2013), where three counterparts debate

on the use of fertilisers for oyster production.

Example 2

We have three agents: Alice (a farmer), Bob (an oyster farmer) and Carol (a state repre-

sentative). They are debating on the impact of the fertilisers on the oysters, as reported

in the following:

• Alice: using a lot of fertiliser helps to have a big yield (argument a);

• Bob: using a lot of fertiliser pollutes the lake and harms the oyster (argument b);

• Carol: using a lot of fertiliser increases the risk of control (argument c);

• Carol: using more fertiliser than the norm implies a fine (argument d);

• Alice: there is no risk of being controlled because of lack of means (argument e);

• Carol: an important polluting event can lead to harden the norms (argument f);

• Alice: lake pollution is not linked to pesticides (argument g).

A total of seven arguments are presented, upon which the AF of Figure 3 is built. The

specifications of this debate make it fall into the category of deliberation dialogues –

Walton and Krabbe (1995), where two or more participants, potentially with disagreeing

positions, discuss in order to decide what course of action to take in a given situation.

Following Prakken (2005), a finite debate D between two or more participants (rational

agents) with respect to an AF is a set of sequences of moves which respect a protocol

and where several participants cannot speak at the same time. All protocols are assumed

to satisfy the following basic conditions: the arguments a participant could reasonably

believe are non-conflicting, that is, a participant cannot reply to one’s own arguments;

the arguments are not repeated, and the arguments can only attack other arguments that

have already been introduced. In order to formally model a finite debate, we introduce

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1318 S. Bistarelli et al.

Fig. 3. AF obtained starting from the arguments of Alice, Bob and Carol.

the definition of ordered sequence of arguments, where an argument can only attack

arguments that precede it.

Definition 7

Let F = 〈Arg,R〉 be an AF and let D = {s1, . . . , sk} be a set of possibly empty sequences

of arguments, such that for i ∈ [1, k], si = ai1 · · · aini
. An ordered sequence associated to

D is a sequence of non-repeated arguments a1 · · · an such that

• {a1, . . . , an} =
⋃k

i=1(∪ni
j=1{aij}),

• for each i ∈ [1, n] a+i ⊆ {a1, . . . , ai−1} and if i > 1 then a+i �= ∅.
We denote by ord(D) the set of the ordered sequences of D. Now, we can formally

define a debate, and in particular the three basic conditions associated with a protocol,

as follows.

Definition 8 (Debate)

A debateD in a multi-agent system, with respect to an AF F = 〈Arg,R〉, is a set of agents
D = {Ag1, . . . , Agk} where each agent Agi is a sequence of arguments si = ai1 · · · aini

,

such that
⋃k

i=1(∪ni

l=1{ail}) ⊆ Arg and the following holds

• for each i ∈ [1, k], l, r ∈ [1, ni] (a
i
l, a

i
r) �∈ R;

• for each i, j ∈ [1, k], l ∈ [1, ni] and r ∈ [1, nj] if i �= j or l �= r then ail �= air;

• ord(D) �= ∅.

Definition 9 (Traces associated to a debate)

A trace of a debate D is a sequence of pairs of arguments and attacks

〈a1, R|a1
〉 · · · 〈an, R|an

〉 such that a1 · · · an ∈ ord(D). tr(D) denotes the set of traces of the

debate D. Moreover, we denote by TrF (D) the set of sequences of abstract frameworks

associated to traces in tr(D). Namely

TrF (D) = {〈A1, R1〉 · · · 〈An, Rn〉 |
there exists 〈a1, R|a1

〉 · · · 〈an, R|an
〉 ∈ tr(D)

such that for l ∈ [1, n], Al = {a1, . . . , al} and Rl = ∪l
j=1R|aj

}

Example 3

By using the previous definition, we can model the debate in Example 2 by using the

following three agents:

• Alice = a · e · g;
• Bob = b;

• Carol = c · d · f .
Note that a · b · c · · · g ∈ ord({Alice,Bob,Carol}).

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1319

Given the AF F = 〈Arg,R〉 and a ∈ Arg, we define the procedure

wait(a) :: − (check1(a
+, {}) → add(a,R|a)) +P

check1({}, {}) → wait(a)

where we use add(Arg,R) as shortcut for add(Arg,R) → success. The procedure wait(a)

executes the check operation until a+ (the set of arguments attacked by a) is contained

in the set of arguments of the knowledge base, and then the agent add(a,R|a) → success

is executed. Practically, wait(a) lets the action add(a) wait for the presence of the argu-

ments attacked by a in the common store.

In the following, ε denotes an empty sequence and given a possibly empty sequence

s = a1 · · · an of elements we denote by rd(s) the sequence obtained from s by removing

duplicates of a same element.

Definition 10 (Translation)

The translation of a debate D = {Ag1, . . . , Agk} in a multi-agent environment with

respect to the AF F = 〈Arg,R〉, such that for each i = 1, . . . , k, Agi is the sequence of

arguments ai1 · · · aini
is defined as

T (D) = T (Ag1, . . . , Agk) = T (a11 · · · a1n1
)‖ · · · ‖T (ak1 · · · aknk

)

where

T (s) =

{
success if s = ε

wait(a1) ‖T (a2 · · · an) if s = a1 · · · an
We can write a tcla programme emulating such an exchange of arguments, using three

agents in parallel to model the behaviour of Alice, Bob and Carol, respectively. Each agent

inserts the arguments at its disposal into the knowledge base through add operations.

The first argument to appear in the debate is a, and since it does not attack any other

argument, it can be directly added to the AF. The arguments that come after and attack

a, namely b, c, d and f , are not brought forward before a itself has been added. Indeed,

although tcla allows one to add arguments and attacks to the knowledge base at separate

times, in a debate we want arguments that come after a, namely b, c, d and f , to be added

together with their attacks toward a. Also the order in which the arguments are added

must be respectful of the timing with which the debate between the three contenders

takes place. To ensure that those arguments will always be added after a, agents acting

in place of Bob and Carol have to perform, beforehand, a check operation to verify

whether a belongs to the shared memory. Only once the check succeeds the agents can

go on with the execution. Analogously, Alice will check the arguments c and d before

adding e, which attacks them, and the argument b before adding g. By using the previous

definition, we can model the debate in Example 3 by the process Alice ‖Bob ‖Carol,

where

• Alice = wait(a) ‖wait(e) ‖wait(g);
• Bob = wait(b);

• Carol = wait(c) ‖wait(d) ‖wait(f).
The following theorem, whose proof is immediate by definition of translation, states

the translation of a debate D produces a tcla process P such that the set of traces of the

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1320 S. Bistarelli et al.

Table 4. tcla program realising the AF of Figure 3

add({a}, {}) →
check9({c, d}, {}) → add({e}, {(e, c), (e, d)}) → success ‖G
check9({b}, {}) → add({g}, {(g, b)}) → success

‖
check9({a}, {}) → add({b}, {(b, a)}) → success
‖
check9({a}, {}) → add({c, d}, {(c, a), (d, a)}) → success ‖G
check9({a}, {}) → add({f}, {(f, a)}) → success

debate D is the set of successful sequences of the computed AF by P , without duplicates,

starting from the store F0 = 〈∅, ∅〉.
Theorem 1

The translation T of a debate D = {Ag1, . . . , Agk} in a multi-agent environment, with

respect to the AF 〈Arg,R〉 produces a tcla process P such that

TrF (D) = {rd(F1 · · ·Fn) | 〈∅, ∅〉 · F1 · · ·Fn · ss ∈ Oio(P)}
Note that we can give alternative translations of the same debate, as shown by the

tcla process in Table 4. Since parallel executions are handled via interleaving, only one

agent will operate on the knowledge base at a time, simulating the alternation of the

three counterparts in exchanging arguments during the debate. Check operations, in

particular, allow agents to wait for their turn to “speak.” In this example, we specify a

timeout of 9 instants of time, meaning that the check will be repeated up to 9 times until

it is either satisfied or expired. In our case, checks can always be successful before their

timeouts. Note that a shorter timeout cannot guarantee the successful termination of all

check operations. Different solutions can also be implemented. For instance, arguments

c and d could be added with two distinct operations or together with f .

4.2 Modelling dialogue games

Dialogues can also be constrained to form dialogue games – McBurney and Parsons

(2009), adding rules that govern their unfolding. In this section, we provide an example

of how tcla programmes can be used to model dialogue games involving two agents taking

“turns” to assert their beliefs. Different dialogue games have been developed in the area

of computational dialectics. We adopt a simple, popular game often used in the literature

– Procaccia and Rosenschein (2005), Wooldridge (2002), Yuan et al . (2007) – in which the

dialectical framework is defined as dialogues between two players P (the “proponent”)

and O (the “opponent”), each of which is referred to as the other’s “counterpart.” We use

a scenario given by Polberg and Hunter (2018), where two individuals P and O exchange

arguments a, b, . . . about the safety of the children flu vaccine.

Example 4

Let us consider the following dialogue game between two agents. The dialogue starts

with P (the proponent) claiming that the vaccine is not safe, to which O (the opponent)

objects and the discussion proceeds to revolve around whether it contains mercury-based

compounds or not.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1321

• P: The flu vaccine is not safe to use by children (argument a);

• O: The flu vaccine contains no poisonous components and is safe (argument b);

• P: The vaccine contains some mercury compounds. The mercury compounds are

poisonous, and therefore the vaccine is not safe to use (argument c);

• O: The child vaccine does not contain any mercury compounds. The virus is only

accompanied by stabilisers and possibly trace amounts of antibiotics used in its

production (argument d);

• P: The vaccine contains a preservative called thimerosal which is a mercury-based

compound (argument e);

• O: Children receive the nasal spray vaccine, and thimerosal has been removed from

it over 15 years ago (argument f).

According to Walton and Krabbe (1995), the proposed example can be seen as a

persuasion dialogue game since each participant tries to convince the other that his/her

own position on the vaccine is correct.

A game begins with the player P moving an initial argument x to be tested. The

opponent O and P then take turns in moving arguments that attack their counterpart’s

last move. The dialogue game is formalised as follows.

Definition 11

Let F = 〈Arg,R〉 be an AF. A dialogue game is a quadruple G = 〈F, d,Rl, P ls〉, where d
(the dialogue history) is a possibly infinite sequence of moves m0,m1, . . . which contains

the moves made by game participants, Rl is a set of rules regulating players to make a

move, and Pls is a pair of players {P0, P1}, with P0 and P1 representing the proponent

P and the opponent O, respectively. The dialogue d is such that:

• ε denotes the empty dialogue and, if d is not empty, m0 the “initial move”;

• each mi is of the form xPl where x ∈ Arg is the argument moved in mi, denoted

by arg(mi), and Pl ∈ {P,O} is the player of mi, denoted pl(mi).

In the following, given d = m0,m1, . . . we denote by arg(d) the possibly infinite set of

arguments ∪i≥0 arg(mi). Finally the set Rl contains six rules:

1. First move in d is made by P: pl(m0) = P;

2. Players take turns making moves: pl(mi) �= pl(mi+1);

3. Players cannot repeat a move, namely the same argument cannot appear twice in

a game: if i �= j and mi,mj ∈ d then arg(mi) �= arg(mj);

4. Each move has to attack (defeat) only the previous (target) move: for each

i ≥ 1, (arg(mi), arg(mi−1)) ∈ R, and there is no j ∈ [0, i − 2] such that

(arg(mi), arg(mj)) ∈ R;

5. The game is ended if no further moves are possible: d = m0,m1, . . . ,mn and there

is no a ∈ Arg \ arg(d) such that (a, arg(mn)) ∈ R;

6. The winner of an ended game is the player that makes the final move. In this case,

the finite dialogue d = m0,m1, . . . ,mn is said to be won by Pwinner = pl(mn) =

Pnmod 2 and we denote by result(d) the AF 〈arg(d), {(arg(mi), arg(mi−1)) | i ∈
[1, n]}.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1322 S. Bistarelli et al.

Example 5

By using the previous definition, we can model the dialogue in Example 4 by G =

〈F, d,Rl, P ls〉 with F = 〈Arg,R〉, where
Arg = {a, b, c, d, e, f},
R = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (e, f), (f, e)}.

and d = a · b · c · · · f .
We can write a tcla programme emulating a game in the AF 〈Arg,R〉, using two agents

in parallel to model the behaviour of P and O, respectively. Each agent inserts the argu-

ments at its disposal into the knowledge base through an add operation. Therefore, if the

argument of the move mi of the agent Pl attacks the argument in the move mi−1 then Pl

inserts in the knowledge base the argument arg(mi) and the attack (arg(mi), arg(mi−1)).

In the following definition, as in the previous section, we use add(Arg,R) as a shortcut

for add(Arg,R) → success. Moreover, given a dialogue d = m0 ·m1 ·m2 · · · , we denote by
even(d) (odd(d)) the sequence of arguments arg(m0)·arg(m2) · · · (arg(m1)·arg(m3) · · ·).
Definition 12 (Translation)

Let turni, finishi �∈ Arg for i = 0, 1 and let hold(a) a shorthand for check4({a}, {}) →
rmv({a}, {}). The translation of a finite dialogue d in the dialogue game G =

〈F, d,R, P ls〉, is defined as follows.

F (d) =

{
success if d = ε

FP(even(s))‖FO(odd(s)) otherwise

where

FP(a · s′) = add({a, turn1}, {}) → F ′
0(s

′);

FO(s) =

{
hold(turn1) → add({finish1}, {}) if s = ε

hold(turn1) → add({a, turn0}, {R|a}) → F ′
1(s

′) if s = a · s′
and for i = 0, 1,

F ′
i(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hold(finishi+1mod2) → success +p hold(turni) → add({finishi}, {})
if s = ε

hold(turni) → add({a, turni+1mod2}, R|a) → F ′
i(s

′)

if s = a · s′

The following theorem, whose proof is immediate by definition of translation, states the

translation of a dialogue d produces a tcla process P such that for each finite successful

finite trace computed by P , starting from the empty store F0 = 〈∅, ∅〉, result(d) is the

last computed AF of the trace itself.

Theorem 2

The translation F of a finite dialogue game G = 〈F, d,R, P ls〉 produces a tcla process

P such that for each sequence F0 · F1 · · ·Fm · ss ∈ Oio(P), where F0 = 〈∅, ∅〉
• result(d) = Fm and

• for i = 0, 1, Pwinner = Pi if and only if there exists j ∈ [0, n] such that Fj = 〈Aj , Rj〉
and finish(i+1)mod 2 ∈ Aj .

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1323

Table 5. Implementation of tcla operations

tcla syntax Implementation

add(Arg,R) add(Arg,R)

rmv(Arg,R) rmv(Arg,R)

checkt(Arg,R) check(t,Arg,R)

c-testt(a, l, σ) ctest(t,{a},l,σ)
s-testt(a, l, σ) stest(t,{a},l,σ)
E + · · ·+ E sum(E,...,E)

E‖G . . . ‖GE gpar(E,...,E)

E +P E (E)+P(E)

Note that the previous translation can be extended in a straightforward way in order

to also model:

• dialogue games with more than two players,

• game trees – Procaccia and Rosenschein (2005), Rahwan and Larson (2009) – rep-

resenting sequences of actions agents may take, and

• turn-taking functions that determine how the turn shifts starting from the current

player and from the abstract framework produced by the portion of the dialogue

that has already taken place.

Example 6

By using Definition 12 we can model the dialogue d in the Example 4 by the process:

T (d) = TP(a · c · e)‖TO(b · d · f)
where

TP(a · c · e) = add({a, turn1}, {}) →
hold(turn0) → add({c, turn1}, {(c, b)}) →
hold(turn0) → add({e, turn1}, {(e, d)}) →
(hold(finish1) → success +p hold(turn0) → add({finish0}))

and

TO(b · d · f) = hold(turn1) → add({b, turn0}, {(b, a)}) →
hold(turn1) → add({d, turn0}, {(d, c)}) →
hold(turn1) → add({f, turn0}, {(f, e)}) →
(hold(finish0) → success +p hold(turn1) → add({finish1}))

5 tcla simulator

We developed a working implementation for the interleaving version of tcla. Some of

the operations had their syntax translated (see Table 5) to enable users to specify tcla

programmes manually. In this section, we describe the details of our implementation,

also comparing the interleaving version of tcla with the maximum parallelism version.

The simulator’s core consists of a Python script that covers three fundamental tasks:

it serves as an interpreter for the tcla syntax, executes programmes taken in input, and

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1324 S. Bistarelli et al.

communicates with a web interface. The interpreter is built using ANTLR,3 a parser

generator for reading, processing, executing, and translating structured text. We start

with a grammar file defining the constructs in Table 1. Any source programme, then, is

parsed according to the grammar, and a parse tree is generated. ANTLR provides two

ways to traverse the parse tree: via a listener or a visitor. The most significant difference

between these two mechanisms is that listener methods are called independently by

a built-in ANTLR object, while visitor methods must traverse the tree by recursively

visiting the children of visited nodes with explicit visit calls. Since we want to implement

guards in our language, we must have the possibility of deciding which part of the tree

will be visited, making our choice fall on the visitor approach.

Each node of the parse tree corresponds to one operation to perform, whose behaviour

is defined in a dedicated Python class. Hence, visiting the parse tree is equivalent to

executing the corresponding programme. The root of the parse tree is always a visitPrg

node, which calls the visit on its children, collects the results and returns the final output.

Below, we provide details on the visiting functions for the various node types.

The terminal nodes are visitSuc and visitFlr, which represent the leaves of the tree

and correspond to success and failure agents, respectively.

visitAdd and visitRmv nodes implement add(Arg,R) and rmv(Arg,R) operations, re-

spectively. They modify the knowledge base by adding/removing part of the framework,

always succeeding and continuing on their children. For adding an attack (a, b), argu-

ments a and b must be contained in the shared memory when visitAdd is performed. The

two arguments can be introduced in the same step in which the attack between them is

added. visitRmv, then, also succeeds if the specified arguments and attacks are not in

the AF; in that case, the AF is left unchanged.

visitChk checks if a given set of arguments and attacks belongs to the knowledge base

at time t as per the check(t,Arg,R) operator. In case of success, the visit proceeds to

the consequent action. On the other hand, when the knowledge base does not contain

the specified parts of AF, the timeout is decreased and the check repeated. When the

timeout reaches zero, visitChk fails.

visitTcr (ctest(t,{a},l,σ)) and visitTsk (stest(t,{a},l,σ)) call the ConArg4

solver to credulously/sceptically test the acceptability of a given argument a, with respect

to a semantics σ at a time t. The functions repeat the verification until either the test

succeeds or the timeout reaches zero. In the latter case, both constructs return failure.

A visitNdt node implements sum(E,...,E), which is a concatenation of + operators,

inspecting the guards of all its children expressions and randomly selecting one branch

to execute among the possible ones. If no guards are found with satisfiable conditions, all

timeouts are decreased, and the conditions are rechecked in the next step. Expressions

with expired timeouts are discarded, and if no expression can be executed before the last

timeout expires, the construct fails.

visitIte behaves like the if-then-else construct (E)+P(E). The expressions are handled

in the same order in which they are specified. If the first expression succeeds, visitIte

succeeds without executing the second one. If the first expression fails, the second one is

executed. If also the second expression fails, the construct fails; otherwise, it succeeds.

3 ANTLR website: https://www.antlr.org.
4 ConArg is a Constraint Programming-based tool for solving computational argumentation problems.
It is available online at the following webpage: https://conarg.dmi.unipg.it/.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://www.antlr.org
https://conarg.dmi.unipg.it/
https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1325

The node visitPar starts separated threads to execute two parallel agents composed

through the operator ‖. It returns true if both agents succeed or false as soon as one

action fails.

visitGpa implements gpar(E,...,E), namely a concatenation of ‖G operators. It cycles

through its children, starting a new thread for every expression found with a satisfiable

guard. If all the executed expressions succeed, the construct succeeds. In case no expres-

sion can be executed, all timeouts are decreased, and expressions with expired timeouts

are discarded. The process is repeated until either all the expressions have been executed

or discarded for timeout or when one of the expressions terminates with a failure.

The parallel execution of ω-actions is handled through interleaving: only one ω-action,

that is, one operation of the types visitAdd, visitRmv, visitChk, visitTcr and visitTsk can

be executed at each step. Such a behaviour is accomplished by means of a Python lock

object which acts as a synchronisation primitive, entrusting the control of the shared

memory to one action at a time. In detail, when an ω-action is ready to be executed,

it tries to acquire the lock object. If the object is unlocked, it immediately changes

its status to locked, and the action continues its execution. Before proceeding to the

subsequent step, the action releases the lock, which becomes unlocked again. If, on the

other hand, the object is locked, the action cannot be executed (because another ω-action

has already been granted such privilege upon the acquisition of the lock) and, thus, it will

be postponed to the next step. Practically, we rewrite the parse tree of the programme

so that each node representing an ω-action A that cannot be executed at a given step s

is assigned a child node which is a clone of A itself, except for possible timeouts (only

present in visitChk, visitTcr and visitTsk operations), that are decreased by one. Failed

attempts of execution also consume a unit of time: when the condition of a guarded

ω-action is not satisfied, its timeout is decreased, and the execution is postponed by

one step.

Differently from ω-actions, τ -actions do not directly interact with the underlying

knowledge base, as they are used to make time pass for timeout operations. Several

τ -actions can be executed concurrently with an ω-action at each step. To obtain maxi-

mum parallelism for τ -actions, we synchronise the threads that implement the agents by

keeping track of CPU time elapsing in each parallel branch of the execution. We have

equipped the interpreter with an internal scheduler that manages the execution of the

various actions. In each step, the scheduler executes τ -actions of parallel threads together

with a single ω-action. In this way, only one agent at a time has access to the shared

memory, while timeouts in all parallel branches are decremented at the same instant t.

Since the execution of all operations is governed by a scheduler function that synchronises

the threads, the τ -actions in a certain step will be executed in parallel within the inter-

preter, which will see each of these actions terminated at the same instant t. However,

the τ -actions will not be executed with true parallelism by the processor, which can only

perform one operation at a time.

The input programme is provided to the Python script through a web interface5 (see

Figure 4), developed in HTML and JavaScript. After the programme has been executed,

its output is also shown within the interface. We have two main areas, one for the input

and the other for the output. First, the user enters a programme in the dedicated text

5 The web interface can be tested at the following link: https://conarg.dmi.unipg.it/tcla-i.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://conarg.dmi.unipg.it/tcla-i
https://doi.org/10.1017/S1471068423000194

1326 S. Bistarelli et al.

Fig. 4. Example of execution via the web interface of the tcla programme given in Table 4.

box (either manually or by selecting one of the provided examples), after which there

are two ways to proceed. By clicking on the “Run All” button, the whole programme is

executed at once, and the final result is displayed in the output area. Alternatively, by

clicking on the “Run 1 Step” button, it is possible to monitor the execution step by step.

The interface communicates with the underlying Python engine through an Ajax call

which passes the programme as a parameter and asynchronously retrieves the output.

After the execution of (a step of) the programme, three different components are simul-

taneously visualised in the output area: the programme output, the state of the shared

memory and a timeline representing the behaviour of arguments during the time. The

programme output box shows the results of the execution, divided by steps. The begin-

ning of each step is marked by a separating line explicitly showing the step number. The

shared memory box is updated after each step of the execution and shows the AF used

as the knowledge base. Finally, the bottom-left box contains the visual representation

of arguments during the time and shows the temporal evolution of the AF used by the

tcla programme. Time is reported on the x axis, and each bar of the timeline shows the

intervals of time during which an argument is contained in the shared memory.

We now compare the interleaving-based implementation of tcla reported in this paper

with the approach presented in Bistarelli et al . (2021), Bistarelli and Taticchi (2021)

where maximum parallelism is used for allowing parallel execution of an infinite number

of concurrent agents. We use an example to illustrate how the two versions handle actions

in parallel constructs differently.

Example 7

Consider the following tcla programme, which involves three parallel agents. Each of

those agents performs an addition operation of a different argument and then succeeds.

add({a},{}) -> success ||

add({b},{}) -> success ||

add({c},{}) -> success;

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1327

Fig. 5. Parse tree for the tcla programme of Example 7.

Fig. 6. Availability of arguments in shared memory for the tcla programme of Example 7
according to execution with maximum parallelism (left) and interleaving (right).

Since the two implementations share the same syntax for the various language con-

structs, the interpreter will produce the same parse tree for both the interleaving and

the maximum parallelism approach. The parse tree generated for the programme used

in this example is depicted in Figure 5.

We distinguish three main parallel branches in this tree, each containing one addition

operation for argument a, b and c, respectively. When executed with the maximum

parallelism version of the simulator, the three additions are performed at the same instant

of time t = 0, as shown in Figure 6 right, and arguments a, b and c will be all available

in the shared memory starting from t = 1. On the other hand, when interleaving is

used, only one addition operation is executed at each instant, so the three arguments

are inserted in the shared memory at different times. In this example, add({a},{}) is

executed at t = 0, add({b},{}) at t = 1, and add({c},{}) at t = 2.

The two versions of tcla illustrated in Example 7 are designed to meet different needs

in modelling interactions between argumentative agents. Therefore, they both have ben-

efits and disadvantages depending on the use case. When maximum parallelism is em-

ployed, different agents may perform several concurrent actions simultaneously. This can

be particularly useful in multi-agent systems where many components compete for the

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1328 S. Bistarelli et al.

allocation of resources through, for example, negotiation protocols. In this case, run-

ning multiple parallel processes offers two advantages: on the one hand, it increases the

system’s efficiency, and on the other hand, it enables the simulation of concurrent inter-

actions between intelligent agents. However, this approach is less suitable for modelling

typical human interactions, such as debate, in which the interaction between the various

agents is assumed to take place in a controlled manner. For example, in the dialogue

games introduced in the previous section, the participants act according to a turn-based

model. For this type of application, which is closer to the human way of reasoning, the in-

terleaving version of tcla provides a better executing tool than the version with maximum

parallelism.

6 Related work

Time is an important aspect to consider when representing processes that take place in

the real-life, and much effort has been put into studying models that incorporate the

temporal dimension. In this section, we report on some significant works in the literature

that deal with both the dynamics of argumentation and, more broadly, languages and

formalisms that use the notion of time.

A formalism for expressing dynamics in AFs is defined by Rotstein et al . (2008) as

a Dynamic Argumentation Framework (DAF). This framework allows for instantiating

Dung-style AFs by considering “evidence” (a set of arguments to adopt) from a universe

of arguments. DAF generalises AFs by adding the possibility of modelling changes but,

contrary to our study, it does not consider how such modifications affect the semantics

and does not allow to model the behaviour of concurrent agents.

In our model, AFs are equipped with a universe of arguments that agents use to insert

new information into the knowledge base. The problem of combining AFs, that is, merg-

ing arguments and attacks of two different AFs, is addressed in a paper by Baumeister

et al . (2018), that studies the computational complexity of verifying if a subset of argu-

ments is an extension for a certain semantics in Incomplete Argumentation Frameworks.

The incompleteness is considered both for arguments and attacks. Similarly to our ap-

proach, arguments and attacks can be brought forward by agents and used to build new

acceptable extensions. On the other hand, the authors focus on a complexity analysis

and do not provide implementations for the merging.

In the context of Argumentation Theory, it is reasonable to assume that the interaction

between entities is regulated by the passing of time – Mann and Hunter (2008), Marcos

et al . (2010). Timed Abstract Argumentation Frameworks (TAFs) – Budán et al . (2015),

Cobo et al . (2010) – have been proposed to meet the need for including the notion of

time into argumentation processes. The existence of arguments in a TAF is regulated

by a function that determines the exact intervals of time in which every argument is

available within the framework. In a previous work – Bistarelli et al . (2021), we used

tcla constructs to dynamically instantiate a TAF. The interleaving approach we propose

with the current work, however, is not suitable for that task: since only one agent can

interact with the store at once, it is not possible to model a TAF in which, for instance,

two different arguments are added and removed in the same instant of time.

The Linear Temporal Logic (LTL) was first proposed by Pnueli (1977) for the formal

verification of concurrent systems. LTL is a modal logic that can express properties of

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1329

programmes over time through the use of two fundamental operators: next, which says

that a formula has to hold at the next state of the execution, and until, expressing that a

formula has to hold at least until another formula becomes true. LTL differs from tcla both

syntactically and semantically. In particular, contrary to tcla, LTL allows propositional

variables and modal operators to express time-related properties.

Difference Logic can express properties of timed automata and is used to approach

time-related problems like verification of timed systems and scheduling. In the context of

the Satisfiability Modulo Theories (SMT) problem – Barrett et al . (2021), which concerns

the satisfiability of formulas with respect to some background theory, a solver for Differ-

ence Logic can be obtained by using the DPLL(T) architecture proposed by Nieuwenhuis

et al . (2006), where the T parameter is instantiated with a theory of integers that allow

handling time. However, SMT does not allow for the encoding of interactions between

arguing agents, contrary to the system we propose, which instead has operators appro-

priately designed for this use.

To deal with quantitative temporal information, Allen (1983) proposes an Interval

Algebra where entities like actions or events can be placed in a timeline, with pairs of

endpoints setting entities beginning and end. Then, various configurations between those

entities can be encoded and studied through a set of binary temporal relations which

express, for example, whether an event occurred before, after or overlapping another.

Arguments shared by tcla agents are bound by a time duration and can be regarded as

entities in Allen’s framework. However, although we can express the temporal availability

of arguments by adding and removing them from the shared memory at set instants

of time, tcla neither uses explicit time intervals nor the relative availability between

arguments.

A collection of process calculi is presented by Busi et al . (2000) as a solution for

the lack of formal definitions of languages like Linda, JavaSpaes and TSpaes. In this

regard, an operational semantics is introduced to enable formal reasoning and allow the

systematic comparison of primitives with respect to their expressiveness. Although the

authors consider the passing of time (represented as divided into discrete intervals), time

does not elapse for timeout constructs. In our work, instead, also timeout processes can

make time pass.

Other works related to ours extend CC with timed constructs, also based on the

hypothesis of bounded asynchrony – Bistarelli et al . (2008), de Boer et al . (2000). In

these approaches, time elapsing is measured by means of a global clock and each time

instant is marked through action prefixing. The resulting timed languages are able to

describe the behaviour of intelligent agents interacting within a dynamic environment.

Apart from the different scope of application (Bistarelli et al . (2008) deal with constraint

systems), the main difference with our work lies in the fact that maximum parallelism is

assumed for concurrent actions instead of interleaving.

Interleaving is also used to model parallel composition of actions in the context of a

temporal logic based on CC – de Boer et al . (2004). The paper’s primary purpose is

to devise a logic for reasoning about the correctness of timed concurrent constraint pro-

grammes. Indeed, the authors focus on providing soundness and completeness of a related

proof system rather than modelling complex reasoning processes in multi-agent systems.

Consequently, a significant difference with our work is that information is monotonically

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1330 S. Bistarelli et al.

accumulated in the shared memory, as per classical CC tell operation, and cannot be

retracted by the agents.

Fox and Long (2003) propose PDDL2.1, a planning language capable of modelling

domains with temporal features. The language allows for defining actions endowed with

activation conditions and effects. Through a system of temporal annotations, it is then

possible to specify whether each condition and effect associated with an action must be

valid at the beginning, at the end, or during the entire duration of that action. Like tcla,

PDDL2.1 allows the management of concurrent processes. However, being designed as an

action-oriented planning language, it does not support argumentative interactions, like

debates ad dialogue games, in multi-agent systems.

7 Conclusion

In this paper, we presented a formalisation of tcla based on two kinds of actions, τ -

actions and ω-actions, which realise time elapsing and computation steps, respectively.

Parallel composition of τ -actions is handled through maximum parallelism, while, for

ω-actions, we adopt an interleaving approach. Indeed, it seems more natural for time-

out operators not to interrupt the elapsing of time once the evaluation of a timeout

has started. Clearly, one could start the elapsing of time when the timeout process is

scheduled rather than when it appears in the top-level current parallel context. This

modification could easily be obtained by adding a syntactic construct to differentiate

active timeouts from inactive ones and changing the transition system accordingly. One

could also easily modify the semantics (both operational and denotational) to consider

a more liberal assumption which allows multiple ask actions in parallel. Along with our

language, we have shown two examples of possible applications where we consider debates

and dialogue games, respectively. In particular, we have provided procedures for trans-

lating these two types of interaction into tcla programmes, where the interleaving used to

manage the parallelism of omega actions allows for modelling the behaviour of agents act-

ing in turn. Finally, we compared the interleaving-based implementation of tcla with the

maximum parallelism implementation presented in previous work, highlighting the dif-

ferences in running parallel agents and discussing the advantages offered in different use

cases.

In future work, we first plan to use existential quantifiers to extend our language by

allowing the agents to have local stores. Then, to test the capabilities of our language and

evaluate its expressiveness, we also plan to conduct a study on strategic argumentation

– Governatori et al . (2021), Thimm (2014): intelligent agents could interact through

tcla constructs and modify their shared memory to reach the desired outcome in terms

of accepted arguments. In addition to classical AFs, we also would like to investigate

other kinds of frameworks we might use as a knowledge base for our agents (e.g. Bipolar

Argumentation Frameworks – Cayrol and Lagasquie-Schiex (2005), Abstract Dialectical

Frameworks – Brewka and Woltran (2010), and Extended Argumentation Frameworks

– Modgil (2009)). Such refined AFs are endowed with more complex structures for the

arguments and the relations between them, allowing one to model different nuances of

reasoning processes.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1331

References

Allen, J. F. 1983. Maintaining knowledge about temporal intervals. Communications of the
ACM 26, 11, 832–843.

Amgoud, L., Parsons, S. and Maudet, N. 2000. Arguments, dialogue, and negotiation. In
ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence, Berlin,
Germany, 20–25 August 2000. IOS Press, 338–342.

Aristotle. 1928. Topics. Clarendon Press, Oxford, UK. Ross, W. D. trans. (original work c.
350 B.C.).

Azhar, M. Q. and Sklar, E. I. 2016. Analysis of empirical results on argumentation-based
dialogue to support shared decision making in a human-robot team. In 25th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication, RO-MAN 2016, New
York, NY, USA, 26–31 August 2016. IEEE, 861–866.

Baroni, P., Caminada, M. and Giacomin, M. 2011. An introduction to argumentation se-
mantics. The Knowledge Engineering Review 26, 4, 365–410.

Barrett, C. W., Sebastiani, R., Seshia, S. A. and Tinelli, C. 2021. Satisfiability modulo
theories. In Handbook of Satisfiability - Second Edition, A. Biere, M. Heule, H. van Maaren
and T. Walsh, Eds. Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press,
1267–1329.

Baumeister, D., Neugebauer, D., Rothe, J. and Schadrack, H. 2018. Verification in
incomplete argumentation frameworks. Artificial Intelligence 264, 1–26.

Bistarelli, S., Gabbrielli, M., Meo, M. C. and Santini, F. 2008. Timed soft concurrent
constraint programs. In Proceedings of COORDINATION 2008 - 10th International Confer-
ence on Coordination Models and Languages. LNCS, vol. 5052. Springer, 50–66.

Bistarelli, S., Meo, M. C. and Taticchi, C. 2021. Timed concurrent language for argumen-
tation. In Proceedings of CILC 2021- 36th Italian Conference on Computational Logic. CEUR
Workshop Proceedings, vol. 3002. CEUR-WS.org, 1–15.

Bistarelli, S., Meo, M. C. and Taticchi, C. 2022. Timed concurrent language for argumen-
tation: An interleaving approach. In PADL. LNCS, vol. 13165. Springer, 101–116.

Bistarelli, S. and Taticchi, C. 2020. A concurrent language for argumentation. In Proceedings
of AI3 2020 - 4th Workshop on Advances In Argumentation In Artificial Intelligence, Co-
located with AIxIA 2020- 19th International Conference of the Italian Association for Artificial
Intelligence. CEUR Workshop Proceedings, vol. 2777. CEUR-WS.org, 75–89.

Bistarelli, S. and Taticchi, C. 2021. Introducing a tool for concurrent argumentation. In
Proceedings of JELIA 2021 - 17th European Conference on Logics in Artificial Intelligence.
LNCS, vol. 12678. Springer, 18–24.

Bistarelli, S. and Taticchi, C. 2023. A concurrent language for modelling agents arguing on
a shared argumentation space. Argument & Computation Pre-press, Pre-press, 1–28.

Brewka, G. and Woltran, S. 2010. Abstract dialectical frameworks. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR
2010, Toronto, Ontario, Canada, 9–13 May 2010. AAAI Press.

Budán, M. C., Lucero, M. J. G., Chesñevar, C. I. and Simari, G. R. 2015. Modeling time
and valuation in structured argumentation frameworks. Information Sciences 290, 22–44.

Busi, N., Gorrieri, R. and Zavattaro, G. 2000. Process calculi for coordination: From linda
to javaspaces. In Proceedings of AMAST 2000 - 8th International Conference on Algebraic
Methodology and Software Technology. LNCS, vol. 1816. Springer, 198–212.

Caminada, M. 2006a. On the issue of reinstatement in argumentation. In Proceedings of JELIA
2006- 10th European Conference on Logics in Artificial Intelligence. LNCS, vol. 4160. Springer,
111–123.

Caminada, M. 2006b. Semi-stable semantics. In Proceedings of COMMA 2006 - 1st Interna-
tional Conference on Computational Models of Argument. Frontiers in Artificial Intelligence
and Applications, vol. 144. IOS Press, 121–130.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

1332 S. Bistarelli et al.

Cayrol, C. and Lagasquie-Schiex, M. 2005. On the acceptability of arguments in bipo-
lar argumentation frameworks. In Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, 8th European Conference, ECSQARU 2005, Barcelona, Spain, 6–8 July 2005,
Proceedings. LNCS, vol. 3571. Springer, 378–389.

Cobo, M. L., Mart́ınez, D. C. and Simari, G. R. 2010. On admissibility in timed abstract
argumentation frameworks. In Proceedings of ECAI 2010 - 19th European Conference on
Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press,
1007–1008.

de Boer, F. S., Gabbrielli, M. and Meo, M. C. 2000. A timed concurrent constraint lan-
guage. Information and Computation 161, 1, 45–83.

de Boer, F. S., Gabbrielli, M. and Meo, M. C. 2004. A timed linda language and its
denotational semantics. Fundamenta Informaticae 63, 4, 309–330.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 2, 321–358.

Emele, C. D., Norman, T. J. and Parsons, S. 2011. Argumentation strategies for plan
resourcing. In Proceedings of AAMAS 2011 - 10th International Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS, 913–920.

Fox, M. and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing temporal plan-
ning domains. Journal of Artificial Intelligence Research 20, 61–124.

Governatori, G., Maher, M. J. and Olivieri, F. 2021. Strategic argumentation. FLAP 8, 6,
1679–1748.

Hoare, C. A. R. 1978. Communicating sequential processes. Communications of the
ACM 21, 8, 666–677.

Mann, N. and Hunter, A. 2008. Argumentation using temporal knowledge. In Proceedings
of COMMA 2008 - 2nd International Conference on Computational Models of Argument.
Frontiers in Artificial Intelligence and Applications, vol. 172. IOS Press, 204–215.

Marcos, M. J., Falappa, M. A. and Simari, G. R. 2010. Dynamic argumentation in abstract
dialogue frameworks. In Proceedings of ArgMAS 2010 - 7th International Workshop on Ar-
gumentation in Multi-Agent Systems, Revised, Selected and Invited Papers. LNCS, vol. 6614.
Springer, 228–247.

McBurney, P. and Parsons, S. 2009. Dialogue games for agent argumentation. In Argumen-
tation in Artificial Intelligence. Springer, 261–280.

McBurney, P., van Eijk, R. M., Parsons, S. and Amgoud, L. 2003. A dialogue game
protocol for agent purchase negotiations. Autonomous Agents and Multi-Agent Systems 7, 3,
235–273.

Milner, R. 1980. A Calculus of Communicating Systems. LNCS, vol. 92. Springer.

Modgil, S. 2009. Reasoning about preferences in argumentation frameworks. Artificial Intelli-
gence 173, 9–10, 901–934.

Nieuwenhuis, R., Oliveras, A. and Tinelli, C. 2006. Solving SAT and SAT modulo theories:
From an abstract davis–putnam–logemann–loveland procedure to DPLL(T). Journal of the
ACM 53, 6, 937–977.

Paget, N., Pigozzi, G. and Barreteau, O. 2013. Information sharing for natural resources
management. Presented at EUMAS 2013 - 11th European Workshop on Multi-Agent Systems.

Pardo, P. and Godo, L. 2018. A temporal argumentation approach to cooperative planning
using dialogues. Journal of Logic and Computation 28, 3, 551–580.

Pnueli, A. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October–1 November 1977. IEEE
Computer Society, 46–57.

Polberg, S. and Hunter, A. 2018. Empirical evaluation of abstract argumentation: Support-
ing the need for bipolar and probabilistic approaches. International Journal of Approximate
Reasoning 93, 487–543.

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

An interleaving semantics of TCLA to model debates and dialogue games 1333

Prakken, H. 2005. Coherence and flexibility in dialogue games for argumentation. Journal of
Logic and Computation 15, 6, 1009–1040.

Prakken, H. and Sartor, G. 1998. Modelling reasoning with precedents in a formal dialogue
game. Artificial Intelligence and Law 6, 2–4, 231–287.

Procaccia, A. D. and Rosenschein, J. S. 2005. Extensive-form argumentation games. In
EUMAS, 312–322.

Rago, A. and Toni, F. 2017. Quantitative argumentation debates with votes for opinion
polling. In PRIMA 2017: Principles and Practice of Multi-Agent Systems - 20th Interna-
tional Conference, Nice, France, 30 October–3 November 2017, Proceedings. LNCS, vol. 10621.
Springer, 369–385.

Rahwan, I. and Larson, K. 2009. Argumentation and game theory. In Argumentation in
Artificial Intelligence. Springer, 321–339.

Rotstein, N. D., Moguillansky, M. O., Garcia, A. J. and Simari, G. R. 2008. An abstract
argumentation framework for handling dynamics. In Proceedings of the Argument, Dialogue
and Decision Workshop in NMR 2008, 131–139.

Saraswat, V. A., Jagadeesan, R. and Gupta, V. 1994. Foundations of timed concurrent
constraint programming. In Proceedings of LICS 1994 - 9th Annual Symposium on Logic in
Computer Science. IEEE Computer Society, 71–80.

Saraswat, V. A., Jagadeesan, R. and Gupta, V. 1996. Timed default concurrent constraint
programming. Journal of Symbolic Computation 22, 5/6, 475–520.

Saraswat, V. A. and Rinard, M. 1990. Concurrent constraint programming. In Proceedings
of POPL 1990 - 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, 232–245.

Thimm, M. 2014. Strategic argumentation in multi-agent systems. Künstliche Intelligenz 28, 3,
159–168.

Walton, D. and Krabbe, E. C. 1995. Commitment in Dialogue: Basic Concepts of Interper-
sonal Reasoning. SUNY Press.

Wooldridge, M. J. 2002. Introduction to Multiagent Systems. Wiley.

Yuan, T., Svansson, V., Moore, D. and Grierson, A. 2007. A computer game for abstract
argumentation. In Proceedings of the 7th Workshop on Computational Models of Natural Ar-
gument (CMNA07).

https://doi.org/10.1017/S1471068423000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000194

	Introduction
	Background
	Syntax and semantics
	Modelling debates and dialogue games in tcla
	Modelling a debate
	Modelling dialogue games

	tcla simulator
	Related work
	Conclusion
	References

