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Differentiability Properties
of Optimal Value Functions

Jean-Paul Penot

Abstract. Differentiability properties of optimal value functions associated with perturbed optimiza-

tion problems require strong assumptions. We consider such a set of assumptions which does not use

compactness hypothesis but which involves a kind of coherence property. Moreover, a strict differen-

tiability property is obtained by using techniques of Ekeland and Lebourg and a result of Preiss. Such

a strengthening is required in order to obtain genericity results.

1 Introduction

Optimal value functions of optimization problems depending on parameters are of

excruciating importance in analysis and optimization [2], [4], [5], [15], [22], [35].

Distance functions are of this type and many results of game theory and optimal con-

trol theory rely on their study (e.g., [24], [42]); moreover they play an important role

for bilevel programming (e.g., [25], [43]) and for the solvability of Hamilton-Jacobi

equations (e.g., [3], [40]). Value functions are seldom differentiable. For this reason,

strong assumptions have to be made in order to get differentiability or subdifferen-

tiability properties. The usual ones are compactness or coercivity assumptions [5],

[10], [12], [39]. Here our assumptions are of a different kind: as in [14], [32], we

use the simple idea that stability or smoothness properties for the value function are

ensured by a certain coherence of the variations of the objective function as the pa-

rameter changes. Of course, we have to be careful in imposing such a condition; oth-

erwise some situations would be ruled out. Moreover, we have to take into account

the one-sided character of the problem. For subdifferentiability properties (as for

semicontinuity or calmness properties) the case of marginal functions and the case

of performance functions must be distinguished. They are the functions obtained as

m(w) := sup
x∈X

f (w, x), w ∈ W

p(w) := inf
x∈X

f (w, x) w ∈ W

respectively. Hereafter the decision variable x belongs to an arbitrary set X, the pa-

rameter variable w belongs to a normed vector space W and f : W × X → R :=

R ∪ {−∞, +∞} is a function called the perturbation function. A distinctive feature
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of our work is that we do not assume attainment, an assumption which would much

simplify the question, but which is not always satisfied.

Our objective in the present paper is to devise conditions ensuring strict differ-

entiability of m and p at a given point u of W . This notion is still more demanding

than differentiability at u (in the presence of differentiability around u, it amounts

to continuity at u of the derivative). It is an important concept which is appropriate

for inverse mapping theorems (e.g., [7], [11], [26], [28]). It plays a crucial role in re-

cent studies about generalized equations ([34]) which are connected with optimality

conditions for mathematical programming problems. Let us also recall that a Lips-

chitzian function on W is strictly differentiable at u iff its Clarke subdifferential at u

is a singleton.

Our study has been prompted by genericity results about the existence of opti-

mal solutions to the problem of minimizing fw := f (w, · ) which require strict dif-

ferentiability of the performance function p; differentiability properties would not

suffice. These results ([31]) are in the line of the work by Ekeland and Lebourg

([14]); see also [2], [13], [21], [23], [29], [36], [37], [45]. Our proofs here also

closely follow the methods of [14]; however, we deal with unilateral properties using

one-sided assumptions and, as mentioned above, we focus most of our efforts on

(sub)differentiability at a specific point u. In order to get genericity properties we

rely on deep results of Preiss [33]. The uses of new notions of tameness and of the

minimizing grill of a function introduced in [32] also represent new features of our

approach. These concepts are recalled in the next section. Section 3 is devoted to

subdifferentiability properties. Differentiability properties are obtained in sections 4

and 5. An application to the regularization of functions is presented in section 6.

For the applications of the strict differentiability results of section 5 to existence

and genericity properties, we refer to [31], and, for previous results of this kind,

to [2], [4], [5], [14], [23], [45], [46] and their bibliographies; they might also be

relevant to the methods of [20] which concerns such questions and to classical topics

of mathematical economics such as the customer problem. Here we present another

application; it concerns the regularization of nonsmooth functions. We consider a

Moreau type regularization; for simplicity, we do not take a general regularization

kernel as in [6], [8], [9] but limit our illustration to an infimal convolution process

as in [30]. We also present some illustrations in the study of best approximations and

of the Fenchel transform.

We use standard notation. In particular, the open ball with center w and radius r

in W is denoted by B(w, r) and if h : X → R := R ∪ {−∞, +∞} is a function and

λ ∈ R, [h ≤ λ] stands for {x ∈ X : h(x) ≤ λ}. In the following sections but the

last one, u is a given point of W at which p is finite; N(u) stands for the family of

neighborhoods of u in W .

2 Preliminaries

Let us recall some notions which have been coined in [32]. We first observe that

the behavior of the performance function p around the given point u ∈ W is more

influenced by the behavior of f at points (w, x) where x is an approximate solution

than by the behavior of f at any other point. The precise meaning of the approximate
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solution set is as follows: for w ∈ W, α > 0

S(w, α) := Sα(w) := {x ∈ X : f (w, x) ≤ p(w) +̂ α},

where the addition is extended to R×(0, +∞) by setting r +̂ α := −1/α for r = −∞,
r +̂ α := +∞ if r = +∞. The set S(w, α) is also called the set of α-minimizers of

fw := f (w, · ); its definition is devised in such a way that it is always nonempty.

Moreover the set S(w) of minimizers of fw satisfies S(w) =
⋂

α>0 S(w, α).

In fact, instead of controlling the functions fx := f ( · , x) for any x ∈ S(w, α), it

would suffice to control these functions for x in a sufficiently representative subset

of S(w, α). In order to give a precise meaning to this idea, we introduced in [32] the

minimizing grill of fw as the family

Mw := {M ⊂ X : inf fw(M) = p(w)} = {M ⊂ X : ∀α > 0 M ∩ S(w, α) 6= ∅}.

For w = u, we simplify the notation by setting M := Mu. Of course, any member

of the family Aw := {S(w, α) : α > 0} of approximate solution sets of fw is a mem-

ber of Mw but Mw is a much larger family (so that many assumptions below are less

stringent than assumptions formulated in terms of the family Aw). Both families play

a natural role in minimization problems: M belongs to Mw iff M contains a minimiz-

ing sequence of fw. In making assumptions about a family ( fx)x∈M := ( f ( · , x))x∈M

one is willing to take M ∈ M as small as possible. The best case occurs when the set

S(u) of minimizers of fu is nonempty: then one can take for M a singleton {x}, where

x ∈ S(u). However, we endeavour to avoid the assumption that S(u) is nonempty.

As for calmness properties, a strong control of the approximate solution sets is

required in order to get differentiability properties. Let us recall appropriate con-

cepts partly introduced in [32] which have some similarities with the notion of tame

perturbation of [36] but are different.

Definition 2.1 The perturbation f is said to be compliant at u ∈ W or that it is a

C-perturbation at u if p(u) := inf fu is finite and if for any α > 0 there exist β > 0

and V ∈ N(u) such that for each v ∈ V one has

S(v, β) ⊂ S(u, α).

It is said that f is docile at u or that it is a D-perturbation at u if p(u) := inf fu is finite

and if for any α > 0 there exists V ∈ N(u) such that S(u, α) ∈ Mv for each v ∈ V,
or, in other terms,

∀α > 0, ∃V ∈ N(u), ∀v ∈ V, ∀β > 0, S(v, β) ∩ S(u, α) 6= ∅.

It is compliant (resp. docile) with respect to some subset M of X if one can replace in

the preceding conditions S(u, α) and S(v, β) by S(u, α) ∩ M and S(v, β) ∩ M respec-

tively.

Thus a compliant perturbation is docile. Before recalling compliance criteria, let

us present an example.
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Example 2.1 Let X be a closed nonempty subset of a normed vector space W and

let f be given by f (w, x) := ‖w − x‖. For any u ∈ W and any α, β, ρ > 0 such that

β + 2ρ ≤ α one has S(v, β) ⊂ S(u, α) for each v ∈ B(u, ρ) since p = d( · , X) is

Lipschitzian with rate 1. Thus f is compliant.

Example 2.2 More generally, if X is an arbitrary set and if for each x ∈ X the

function fx is Lipschitzian with rate k (i.e., | fx(w) − fx(w ′)| ≤ kd(w, w ′) for any

w, w ′ ∈ W, x ∈ X), then the perturbation f is compliant at each point u of W

since for any α, β, ρ > 0 such that β + 2kρ ≤ α one has S(v, β) ⊂ S(u, α) for each

v ∈ B(u, ρ).

Lemma 2.2 ([32]) Suppose X is a topological space, f is lower semicontinuous at

(u, x) and fu is continuous at x for any x ∈ X0, where X0 is a subset of X such that

for any sequences (εn) → 0+, (un) → u in W, (xn) in X with xn ∈ S(un, εn) for each n,
the sequence (xn) has a cluster point in X0. Then, if p is upper semicontinuous at u, f is

compliant at u.

Proposition 2.3 ([14], [32]) Suppose that for each x ∈ X the function fx is lower

semicontinuous on W and bounded below. Suppose there exist some λ > p(u), k ∈ R+

and V ∈ N(u) such that for each v ∈ V and each x ∈ [ fv ≤ λ] there exists σ > 0 for

which

(2.1) fx(w) ≤ fx(v) + kd(v, w) ∀w ∈ B(v, σ).

Then f is compliant at u and p is Lipschitzian with rate k on some neighborhood V ′

of u.

3 Subdifferentiability of the Optimal Value Functions

Recall that a function h : W → R finite at u ∈ W is said to be Fréchet (or firmly)

subdifferentiable at u if for some u∗ ∈ W ∗ one has

lim inf
w→0, w 6=0

1

‖w‖

(
h(u + w) − h(u) − 〈u∗, w〉

)
≥ 0.

We denote by ∂−h(u) the set of u∗ ∈ W ∗ satisfying this condition and we call it the

firm (or Fréchet) subdifferential of h at u. We observe that ∂−h(u) =
⋂

ε>0 ∂−
ε h(u) =

∂−
0 h(u), where, for ε ∈ R+, ∂−

ε h(u) is the set of u∗ ∈ W ∗ such that for each ε ′ > ε
the function w 7→ f (w) + 〈u∗, w〉 + ε ′ ‖w − u‖ attains a local minimum at w = u.

The firm (or Fréchet) superdifferential of h at u is the set

∂+h(u) := −∂−(−h)(u).

Similarly, ∂+h(u) =
⋂

ε>0 ∂+
ε h(u), where ∂+

ε h(u) := −∂−
ε (−h)(u). In particular,

∂−m(u) = −∂+ p(u). We say that h is subdifferentiable (resp. superdifferentiable) at u

if ∂−h(u) (resp. ∂+h(u)) is nonempty. Obviously, h is (Fréchet) differentiable at u iff
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it is subdifferentiable and superdifferentiable at u. Then one has ∂−h(u) = ∂+h(u) =

{Dh(u)}.

Using the preceding notions, two compliance criteria can be deduced from Propo-

sition 2.3.

Corollary 3.1 Suppose that for each x ∈ X the function fx is lower semicontinuous

and bounded below on W and one of the following assumptions holds:

(i) there exist some λ > p(u), c ∈ R+ and V ∈ N(u) such that for each v ∈ V

and each x ∈ [ fv ≤ λ] the function fx is finite and differentiable at v with

‖D fx(v)‖ ≤ c.

(ii) there exist some ε > 0, λ > p(u), c ∈ R+ and V ∈ N(u) such that for each v ∈ V

and each x ∈ [ fv ≤ λ] the function fx is finite at v and ∂+
ε fx(v) ∩ B(0, c) 6= ∅.

Then f is compliant at u and, for each k ≥ c + ε, p is Lipschitzian with rate k on

some neighborhood V ′ of u.

Proof Assume (ii) holds. Given k ≥ c + ε, for each v ∈ V and each x ∈ [ fv ≤ λ],
picking v∗ ∈ ∂+

ε fx(v) ∩ B(0, c), one can find σ > 0 such that

fx(w) ≤ fx(v) + 〈v∗, w − v〉 + ε ‖w − v‖ ≤ fx(v) + kd(v, w) ∀w ∈ B(v, σ).

Thus Proposition 2.3 applies.

Superdifferentiability of the performance function p (and subdifferentiability

of m) is easy to obtain.

Proposition 3.2 Suppose the following condition is satisfied for some u∗ ∈ W ∗:

(s+) for any ε > 0 there exists η > 0 such that for any v ∈ B(u, η), α > 0, there are

x ∈ S(u, α) and w∗ ∈ B(u∗, ε) with

(3.1) f (v, x) ≤ f (u, x) + 〈w∗, v − u〉 + ε ‖v − u‖ .

Then p is superdifferentiable at u and u∗ ∈ ∂+ p(u).

When the set S(u) of minimizers of fu is nonempty and when for some x ∈ S(u)

the function fx is superdifferentiable at u, one gets that ∂+ fx(u) ⊂ ∂+ p(u), an obvi-

ous fact. Here we do not assume S(u) 6= ∅.

Proof Given ε > 0, let η > 0 be as in condition (s+). Then, for any v ∈ B(u, η)

and any α > 0, we pick x ∈ S(u, α) and w∗ ∈ B(u∗, ε) such that (3.1) is satisfied.

Then, from the inequalities p(v) ≤ f (v, x), f (u, x) ≤ p(u) + α, 〈w∗, v − u〉 ≤
〈u∗, v − u〉 + ε ‖v − u‖ we deduce from (3.1) that

p(v) ≤ p(u) + α + 〈u∗, v − u〉 + 2ε ‖v − u‖ ∀v ∈ B(u, η).

Since α > 0 is arbitrarily small, we obtain

p(v) ≤ p(u) + 〈u∗, v − u〉 + 2ε ‖v − u‖ ∀v ∈ B(u, η),
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so that u∗ ∈ ∂+ p(u).

In the following corollary we use the notion of limit superior of a family B of

subsets of W ∗: u∗ ∈ lim sup B if for any ε > 0, B ∈ B, the set B ∩ B(u∗, ε) is

nonempty. Thus lim sup B =
⋂

B∈B
B, where B is the closure of B. One also says that

u∗ is a cluster point of B. When B = {F(t) : t > 0}, where (F(t))t>0 is an increasing

family of subsets of W ∗, i.e., F(s) ⊂ F(t) for s < t, as is the case below, this notion

coincides with the familiar concept of lim sup
t→0+

F(t). In the following corollary we

take for B the family D+ := {D+
α : α > 0}, where, for some given M ∈ Mu,

D+
α := D+

u,α := {w∗ ∈ W ∗ : ∃x ∈ S(u, α) ∩ M, w∗ ∈ ∂+ fx(u)}.

Corollary 3.3 Suppose the following conditions bearing on some member M of Mu

hold:

(a+) for each x ∈ M the function fx is superdifferentiable at u;

(b+) lim sup D+ is nonempty;

(e+) for any ε > 0 there exist α, η > 0 such that for any x ∈ M ∩ S(u, α), w∗ ∈
∂+ fx(u) one has

(3.2) fx(v) ≤ fx(u) + 〈w∗, v − u〉 + ε ‖v − u‖ ∀v ∈ B(u, η).

Then p is superdifferentiable at u and lim sup D+ ⊂ ∂+ p(u).

Condition (e+) is obviously satisfied when fx is concave for each x ∈ M. In that

case a number of results ensuring equality under appropriate assumptions are known

(see [19] p. 201, [41] p. 66 for instance). This assumption is a weakened form of the

following condition (which can be called equi-superdifferentiability at u of the family

( fx)x∈M):

(e ′+) for any ε > 0 there exists η > 0 such that for any x ∈ M, w∗ ∈ ∂+ fx(u) (3.2)

holds.

Proof Given ε > 0, we take η > 0, α > 0 as in condition (e+). Then, we use

condition (b+) to pick u∗ ∈ lim sup D+, so that for any β > 0, there exists x ∈
M ∩ S(u, γ) with γ = min(α, β) and w∗ ∈ ∂+ fx(u) ∩ B(u∗, ε) satisfying (3.2); that

ensures that condition (s+) is satisfied.

Of course, usual differentiability and equi-differentiability can be substituted to

their one-sided counterparts used in the preceding corollary, observing that under

assumption (a) below, one has ∂+ fx(u) = {D fx(u)}.

Corollary 3.4 Suppose the following conditions hold for some M ∈ Mu:

(a) for each x ∈ M the function fx is differentiable at u;

(b) lim sup D is nonempty, where D := {Dα : α > 0} with Dα := {D fx(u) : x ∈
M ∩ S(u, α)};
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(e) the family ( fx)x∈M is eventually equi-differentiable at u in the following sense: for

any ε > 0 there exist η > 0, α > 0 such that for any x ∈ M ∩ S(u, α) one has

(3.3) | fx(v) − fx(u) − 〈D fx(u), v − u〉| ≤ ε ‖v − u‖ ∀v ∈ B(u, η).

Then p is superdifferentiable at u and lim sup D ⊂ ∂+ p(u).

The following example presents a case in which (e) is automatically satisfied. A

more general criterion ensuring equi-differentiability will be recalled in Lemma 4.3

below. When the set S(u) of minimizers of fu is nonempty and fx is differentiable at

u for any x ∈ S(u), conditions (a), (b), (e) are satisfied for the choice M := {x} for

any x ∈ S(u) and, denoting by coA∗ the weakly closed convex hull of a subset A∗ of

W ∗, one gets

co{D fx(u) : x ∈ S(u)} ⊂ ∂+ p(u),

an easy and classical result (see for instance [3, p. 44] where equality is shown un-

der some uniform continuity assumptions, W being finite dimensional and X being

compact).

The preceding result can be translated into a subdifferentiability criterion for the

marginal function m. A classical example concerns the case of the Fenchel transform

of a function (see [1], [45] for related results dealing with Fréchet differentiability

under additional well-posedness assumptions).

Example 3.1 Suppose X is a normed vector space, W = X∗, u = 0 and ϕ : X →
R ∪ {+∞} is an arbitrary function such that infX ϕ is finite. Taking f (w, x) =

ϕ(x) − 〈w, x〉, setting Dα := {−x : ϕ(x) ≤ infX ϕ + α}, D := {Dα : α > 0} and

observing that the family ( fx)x∈X being composed of affine continuous functions is

equi-differentiable at 0, we get that the (Fenchel or Fréchet) subdifferential at 0 of the

Fenchel transform ϕ∗ := −p of ϕ contains −co(lim sup D). In particular, the set S

of minimizers of ϕ satisfies −coS ⊂ ∂ϕ∗(0), a well known fact.

Subdifferentiability of p requires more stringent assumptions. One of them uses

the notion of limit inferior of a family (F(s))s∈S of subsets of a metric space Z param-

etrized by a subset S of a topological space T as s → t, where t is some point in the

closure of S : u∗ ∈ lim infs→t F(s) iff d(u∗, F(s)) → 0 as s → t in S. We will use this

concept with Z := W ∗ and S := W × (0, +∞), T := W × R, t := (u, 0), and for

some M ⊂ X, s := (v, β) ∈ S, F(s) := Av,β where

Av,β := {v∗ ∈ W ∗ : ∃x ∈ S(v, β) ∩ M, v∗ ∈ ∂− fx(u)}.

Since Av,β ⊂ Av,γ for β < γ, one has u∗ ∈ lim inf(v,β)→(u,0+) Av,β iff

∀ε > 0 ∃η > 0 : ∀v ∈ B(u, η), ∀β > 0, Av,β ∩ B(u∗, ε) 6= ∅.

Proposition 3.5 Suppose the following conditions hold for some V ∈ N(u) and some

M ⊂ X such that M ∈ Mv for each v ∈ V :

(a−) fx is subdifferentiable at u for each x ∈ M;

https://doi.org/10.4153/CJM-2004-037-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-037-x


832 Jean-Paul Penot

(b−) the set lim inf(v,β)→(u,0+) Av,β is nonempty;

(c) the perturbation f is compliant with respect to M;

(e−) the family ( fx)x∈M is eventually equi-subdifferentiable at u in the following sense:

for any ε > 0 there exist α, η > 0 such that for any x ∈ S(u, α) ∩ M, w∗ ∈
∂− fx(u), one has

(3.4) fx(v) − fx(u) − 〈w∗, v − u〉 ≥ −ε ‖v − u‖ ∀v ∈ B(u, η).

Then p is subdifferentiable at u and lim inf(v,α)→(u,0+) Av,α ⊂ ∂−p(u).

Remarks

(1) Condition (e−) is clearly satisfied when for each x ∈ M the function fx is convex.

(2) Assumption (e−) is a weakened form of the following equi-subdifferentiability

condition (or uniform with respect to x ∈ M subdifferentiability condition):

(e ′−) for any ε > 0 there exists η > 0 such that for any x ∈ M, w∗ ∈ ∂− fx(u) one

has (3.4).

(3) Assumption (b−) is rather stringent. It is not satisfied for W = X = R, f (w, x) =

|w − x| , u = 0, although p = 0 is differentiable with derivative 0. However, it is sat-

isfied when f (w, x) = (w − x)2. In the next corollary we give a criterion ensuring it.

Proof Given ε > 0, replacing ε by ε/2 in condition (e−), we get some α, η > 0 such

that for any x ∈ S(u, α) ∩ M, v ∈ B(u, η), w∗ ∈ ∂− fx(u) we have

fx(v) − fx(u) − 〈w∗, v − u〉 ≥ −(ε/2) ‖v − u‖ .

Let u∗ ∈ lim inf(v,β)→(u,0+) Av,β so that, taking a smaller η if necessary, for any v ∈
B(u, η) and any β > 0 there exist x ∈ S(v, β) ∩ M and w∗ ∈ ∂− fx(u) ∩ B(u∗, ε/2).

Since f is compliant, taking β small enough and replacing η by a smaller number if

necessary, we have S(v, β) ∩ M ⊂ S(u, α) ∩ M. Then, using the preceding inequality,

we get

fx(v) ≥ fx(u) + 〈u∗, v − u〉 − ε ‖v − u‖ ,

for each v ∈ B(u, η) and some x ∈ S(v, β) ∩ M, hence

p(v)+̂β ≥ fx(v) ≥ p(u) + 〈u∗, v − u〉 − ε ‖v − u‖ .

Passing to the infimum over β, we get

(3.5) p(v) ≥ p(u) + 〈u∗, v − u〉 − ε ‖v − u‖ .

This shows that p is subdifferentiable at u, and u∗ ∈ ∂−p(u)

In the next statement, we replace the compliance condition by the weaker one that

f is docile at u, but we have to reinforce condition (b−). For doing so, we recall the

notion of lower limit of a family (F(x))x∈X of subsets of a metric space Z parametrized
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by a set X as e(x) → t, where e is a map from X to some topological space T and t is

some point in T : u∗ ∈ lim infe(x)→t F(x) iff d(u∗, F(x)) → 0 as e(x) → t in T. This

notion encompasses the usual notion of lim infs→t F(s) used above: taking X = S,
e(x) = x, we recover the preceding notion. Here we take e(x) := f (u, x) − p(u) and

F(x) := ∂− fx(u). Thus, u∗ ∈ lim infe(x)→0 F(x) if for any ε > 0 there exists some

β > 0 such that for any x ∈ S(u, β) ∩ M one has ∂− fx(u) ∩ B(u∗, ε) 6= ∅.

Proposition 3.6 Suppose that for some V ∈ N(u) and some M ⊂ X such that M ∈
Mv for each v ∈ V the conditions (a−), (e−) of the preceding proposition hold and that

the conditions (b−) and (c) are replaced by the following ones:

(b ′−) the set lim infe(x)→0 F(x) is nonempty;

(d) the perturbation f is docile with respect to M;

Then p is subdifferentiable at u and lim infe(x)→0 F(x) ⊂ ∂−p(u).

Proof Given ε > 0, we get again from (e−) some α, η > 0 such that condition (3.4)

is satisfied with ε/2 instead of ε for any x ∈ S(u, α)∩M, v ∈ B(u, η), w∗ ∈ ∂− fx(u).

Given u∗ ∈ lim infe(x)→0 F(x), taking a smaller α if necessary, we may suppose that

for any x ∈ S(u, α) ∩ M there exists some w∗ ∈ ∂− fx(u) ∩ B(u∗, ε/2). Then, using

the preceding inequality, we get

fx(v) ≥ fx(u) + 〈u∗, v − u〉 − ε ‖v − u‖ ,

for each v ∈ B(u, η) and any x ∈ S(u, α) ∩ M. Since f is docile with respect to

M, taking β small enough and replacing η by a smaller number if necessary, we have

S(v, β) ∩ S(u, α) ∩ M 6= ∅ for any v ∈ B(u, η). Thus, in the preceding relation we

may pick x ∈ S(v, β) ∩ S(u, α) ∩ M. It follows that

p(v)+̂β ≥ fx(v) ≥ p(u) + 〈u∗, v − u〉 − ε ‖v − u‖ .

Passing to the infimum over β, we obtain again relation (3.5) which shows that p is

subdifferentiable at u, and that u∗ ∈ ∂−p(u).

Remark One may observe that, when f is docile with respect to M, one has

lim inf
e(x)→0

F(x) ⊂ lim inf
(v,α)→(u,0+)

Av,α.

Let u∗ ∈ lim infe(x)→0 F(x). By definition, given ε > 0, we can find some θ > 0 such

that for any x ∈ S(u, θ) ∩ M, we have B(u∗, ε) ∩ ∂− fx(u) 6= ∅. Since f is docile at

u there exists η > 0 such that S(u, θ) ∩ M ∈ Mv for each v ∈ B(u, η). Therefore,

for any v ∈ B(u, η), α > 0 there exists some x ∈ S(v, α) ∩ S(u, θ) ∩ M and, as

B(u∗, ε) ∩ ∂− fx(u) 6= ∅, we get B(u∗, ε) ∩ Av,α 6= ∅.

Example 3.2 Let X be a nonempty closed subset of a normed vector space W and

let u ∈ W be such that u has a best approximation z ∈ X and such that (xn) → z

whenever xn ∈ X and (d(u, xn)) → dX(u) := infx∈X d(u, x). Then, if the norm of W
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is Fréchet differentiable at z−u, with derivative J(z−u), one has J(z−u) ∈ ∂−dX(u).

In fact, when the norm is Fréchet differentiable at z − u, by [17, Theorem 4, p. 148]

or [44, Theorem 2.4.11], the multifunction J = ∂ ‖ · ‖ is lower semicontinuous at

z − u. Thus, our well-posedness assumption ensures that J(z − u) ⊂ lim inf D− for

f (w, x) = ‖w − x‖ , M = W . Since f is convex continuous, assumptions (a−) and

(e−) are satisfied. Moreover, f is compliant by Proposition 2.3. This fact is a variant

of differentiability results of [16, Corollary 3.5], [27, Prop. 1.5], [30, Corollary 2.10],

[45, Corollary 2] given under additional smoothness properties of the norm or ad-

ditional assumptions on X. Let us note that since the conditions of Corollary 3.3 are

satisfied with M = {z}, we get that J(z − u) ∈ ∂−dX(u) ∩ ∂+dX(u), so that dX is

Fréchet differentiable at u.

4 Differentiability Properties

Gathering the previous results, we obtain a differentiability property. Recall that a

family B of nonempty subsets of W ∗ converges to some u∗ ∈ W ∗ if for any ε > 0

there exists B ∈ B such that B ⊂ B(u∗, ε). When the members of B are of the form

B := Bα := F(Sα) for some map F : X → W ∗ and some family (Sα)α>0 of subsets of

X indexed by α ∈ (0, +∞) and such that Sα ⊂ Sβ for α < β, the family B converges

to u∗ if, and only if lim inf F(Sα) = lim sup F(Sα) = {u∗}. This situation occurs in

the next statement in which Sα = S(α, u), F(x) = D fx(u), the derivative of fx at u,
the functions fx being supposed to be differentiable at u. Then, conditions (b+) and

(b ′−) above are consequences of condition (b) below, so that the result is a direct

consequence of Corollary 3.4 and Proposition 3.6.

Proposition 4.1 Suppose the following conditions hold for some M ∈ Mu :

(a) for each x ∈ M, fx is differentiable at u;

(b) the family D := {Dα : α > 0} with Dα := {D fx(u) : x ∈ S(u, α) ∩ M}
converges;

(d) f is docile at u with respect to M.

(e) the family ( fx)x∈M is eventually equi-differentiable at u in the sense given in Corol-

lary 3.4;

Then p is Fréchet differentiable at u.

When f is compliant (or just docile) at u, a natural choice for M is M = S(u, θ)

for some θ > 0. Using the methods of the previous proofs, we can obtain a strict

differentiability result using this choice for M.

Proposition 4.2 Suppose the following conditions hold for some θ > 0:

(a) for each x ∈ M := S(u, θ) the function fx is differentiable at u;

(b) the family D := {Dα : α ∈ (0, θ]}, with Dα := {D fx(u) : x ∈ S(u, α)},
converges;

(d) f is docile at u with respect to S(u, θ).
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(es) the family ( fx)x∈M is eventually strictly equi-differentiable at u: for any ε > 0

there exist α ∈ (0, θ], η > 0 such that for any x ∈ S(u, α) one has

| fx(v) − fx(w) − 〈D fx(u), v − w〉| ≤ ε ‖v − w‖ ∀v, w ∈ B(u, η).

Then p is strictly differentiable at u.

Let us note that assumption (es) is a weakened form of the assumption that the

family ( fx)x∈M is strictly equi-differentiable at u in the following sense: for any ε > 0

there exists η > 0 such that for any x ∈ M one has

| fx(v) − fx(w) − 〈D fx(u), v − w〉| ≤ ε ‖v − w‖ ∀v, w ∈ B(u, η).

Proof Let u∗ be the limit of D: given ε > 0 there exists some αε ∈]0, θ] such that

for any x ∈ S(u, αε) one has

‖D fx(u) − u∗‖ ≤ ε/2.

Replacing ε by ε/2 in condition (es), we get some α ∈]0, αε], η > 0 such that for any

x ∈ S(u, α), v, w ∈ B(u, η) we have

| fx(v) − fx(w) − 〈D fx(u), v − w〉| ≤ (ε/2) ‖v − w‖

hence

p(v) ≤ fx(w) + 〈u∗, v − w〉 + ε ‖v − w‖ .

Now, since f is docile at u, we can find δ ∈]0, η] such that for any w ∈ B(u, δ) we have

S(u, α) ∈ Mw. Then, taking the infimum over x ∈ S(u, α), we get for v, w ∈ B(u, δ)

p(v) ≤ p(w) + 〈u∗, v − w〉 + ε ‖v − w‖ .

Since the roles of v and w can be interchanged, we obtain that for v, w ∈ B(u, δ) we

have

|p(v) − p(w) − 〈u∗, v − w〉| ≤ ε ‖v − w‖ .

This proves that p is strictly differentiable at u, with derivative u∗.

Now let us give the announced criterion for strict equi-differentiability.

Lemma 4.3 The following assumptions ensure that condition (es) holds:

(as) there exists some θ > 0 such that, for each x ∈ S(u, θ), fx is differentiable on

B(u, θ);

(e ′
s
) for any ε > 0 there exist α, η ∈ (0, θ) such that for v ∈ B(u, η), x ∈ S(u, α) one

has ‖D fx(v) − D fx(u)‖ ≤ ε.
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Note that if in condition (e ′
s
) the relation x ∈ S(u, α) is replaced by the relation

x ∈ M (where M is a given subset of X) we get that the family ( fx)x∈M is strictly

equi-differentiable at u.

Proof Given ε > 0 we take α, η > 0 as in (e ′
s
). Then, the mean value theorem

applied to the functions w 7→ fx(w) − D fx(u)(w) with x ∈ S(u, α) ensures that for

v, w ∈ B(u, η) one has

| fx(v) − fx(w) − 〈D fx(u), v − w〉| ≤ ε ‖v − w‖ .

Taking into account Corollary 3.1 and this criterion, we get the following corollary.

Corollary 4.4 Suppose that for each x ∈ X the function fx is lower semicontinuous

and bounded below on W , and for some θ > 0 one has

(as) for each x ∈ S(u, θ) the function fx is differentiable on B(u, θ);

(b) the family {D fx(u) : x ∈ S(u, α)}α∈]0,θ] converges as α → 0+;

(e ′
s
) for any ε > 0 there exist α, η ∈ (0, θ) such that for v ∈ B(u, η), x ∈ S(u, α) one

has ‖D fx(v) − D fx(u)‖ ≤ ε.

(f) there exists c ∈ R+ and V ∈ N(u) such that for each v ∈ V and each x ∈ [ fv ≤
p(u) + θ] the function fx is finite and differentiable at v with ‖D fx(v)‖ ≤ c.

Then f is compliant at u and p is strictly differentiable at u.

5 Density and Genericity Results

In order to prove that under appropriate conditions the set of points where the per-

formance function p is strictly differentiable is large enough, we will use a deep result

of [33] and two results of [14]. The first one is similar to [14] Prop. 2.2. Since in this

section the point u is no longer fixed, we use the notation Mu, D
+
u
, D+

u,α instead of the

simplified notation M, D+, D+
α. Recall that D+

u,α := {w∗ ∈ ∂+ fx(u) : x ∈ S(u, α)}.

Lemma 5.1 Let ε ≥ 0 and u ∈ W, u∗ ∈ W ∗ be such that u∗ ∈ ∂−
ε p(u). Suppose

condition (e+) is satisfied for some M ∈ Mu :

(e+) for any γ > 0 there exist η, α > 0 such that for any x ∈ S(u, α) ∩ M, w∗ ∈
∂+ fx(u), one has

(5.1) fx(v) − fx(u) − 〈w∗, v − u〉 ≤ γ ‖v − u‖ ∀v ∈ B(u, η).

Then, for any δ > ε, there exists some β > 0 such that D+
u,β ⊂ B(u∗, δ). In particular,

if u∗ ∈ ∂−p(u) and if (e+) holds, then the family D+
u

:= {D+
u,α : α > 0} converges to

u∗ when D+
u,α is non empty for each α > 0.

Thus, under the assumptions of the last assertion, the set ∂−p(u) is at most a

singleton. As in Corollary 4.4, a natural choice for M is M = S(u, θ) for some θ > 0.

When the set S(u) of minimizers of fu is nonempty, one can take M = {x} for some
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x ∈ S(u) and one gets that ∂+ fx(u) ⊂ B(u∗, δ) for any δ > ε if u∗ ∈ ∂−
ε p(u); thus,

we recover the elementary fact that when S(u) is nonempty and when u∗ ∈ ∂−p(u),
then for any x ∈ S(u) one has ∂+ fx(u) ⊂ {u∗}. More generally, we obtain that when

D+
u,α is non empty for each α > 0 and when (e+) holds, the diameter of ∂−

ε p(u) is

not larger than 2ε.

Proof Let ε ′ ∈ (ε, δ) and let u∗ ∈ ∂−
ε p(u). Let ρ be such that

(5.2) p(v) ≥ p(u) + 〈u∗, v − u〉 − ε ′ ‖v − u‖ ∀v ∈ B(u, ρ).

Let M ∈ Mu be as in condition (e+) and let us take γ < 1
2
(δ − ε ′) in condition

(e+). Then we can find η ∈ (0, ρ], α > 0 such that relation (5.1) holds for any

x ∈ S(u, α) ∩ M, w∗ ∈ ∂+ fx(u). We may assume β := γη < α. Taking into account

relation (5.2), and, for x ∈ S(u, β) ∩ M, v ∈ B(u, η), the inequalities p(v) ≤ fx(v),
fx(u) − β ≤ p(u), we get for any w∗ ∈ ∂+ fx(u),

〈u∗, v − u〉 − ε ′ ‖v − u‖ ≤ fx(v) − ( fx(u) − β) ≤ 〈w∗, v − u〉 + γ ‖v − u‖ + γη

hence ‖u∗ − w∗‖ ≤ ε ′ + 2γ < δ.

The last assertion follows from the fact that when u∗ ∈ ∂−p(u), δ can be arbitrar-

ily small.

We are now in a position to state our first result about strict differentiability. We

recall that a subset G of a metric space is said to be generic if it contains a Gδ subset

i.e., a countable intersection of open subsets) which is dense. We also recall that a

Banach space W is an Asplund space if for any open convex subset W0 of W and

for any convex continuous function f on W0 there exists a generic subset of W0 at

each point of which f is Fréchet differentiable. This class of spaces is large and is of

classical use in nonsmooth analysis: any reflexive Banach space is Asplund and any

separable Banach space whose dual is separable is an Asplund space.

Theorem 5.2 Suppose W is an Asplund space, W0 is an open subset of W, the per-

turbation f : W × X → R is such that for each x ∈ X the function fx is finite and

differentiable on W0 and that for any u ∈ W0 the performance function p is finite at u

and conditions (e ′
s
), (f) of Corollary 4.4 are satisfied. Then, there exists a dense subset

W∞ of W0 such that the performance function p is strictly differentiable at each point

of W∞.

Proof By Corollary 3.1, f is compliant on W0 and p is locally Lipschitzian at each

point of W0. By a result of Preiss [33], the set D of points of W0 where p is Fréchet

differentiable is dense in W0. Given ε > 0, let Du,α := {D fx(u) : x ∈ S(u, α)},

Wε := {u ∈ W0 : ∃u∗ ∈ W ∗, α > 0, Du,α ⊂ B(u∗, ε)}.

By Lemma 5.1, for each ε > 0, D is contained in Wε. Therefore W∞ :=
⋂

n≥1 W1/n

is a dense subset of W0. For each u ∈ W∞ and each n ∈ N\{0}, the family Du :=
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{Du,α : α > 0} has some member Du,α := {D fx(u) : x ∈ S(u, α)} with diameter

at most 2/n. Since W ∗ is complete, this means that Du converges: condition (b) of

Corollary 4.4 is satisfied and strict differentiability of p at u follows.

Remark In the preceding proof, one may replace the use of the Preiss’ theorem by

using the easier fact that in an Asplund space the set of points where a lower semi-

continuous function is subdifferentiable is dense.

A refinement of the preceding method similar to the one in [14] yields a genericity

result. As above, we suppose that for some open subset W0 of W, and for each u ∈ W0

condition (f) of Corollary 4.4 is satisfied and for η, α > 0 small enough we set

Gu,η,α := {D fx(v) : x ∈ S(u, α), v ∈ B(u, η)}.

Lemma 5.3 Let ε ≥ 0, u ∈ W0, u∗ ∈ W ∗ be such that u∗ ∈ ∂−
ε p(u). Assume

conditions (e ′
s
), (f) of Corollary 4.4. Then, for any δ > ε, there exist η, α > 0 such that

Gu,η,α ⊂ B(u∗, δ).

Proof Setting M = S(u, θ), where θ > 0 is as in condition (f) of Corollary 4.4,

the family ( fx)x∈M is eventually strictly equi-differentiable at u i.e., condition (es) of

Proposition 4.2 is satisfied. Let δ > ε and let δ ′ ∈ (ε, δ). By Lemma 5.1 there exists

some β ∈ (0, θ] such that Du,β ⊂ B(u∗, δ ′). Then the equicontinuity assumption (e ′
s
)

provides some α ∈ (0, β), η > 0 such that for each v ∈ B(u, η) and each x ∈ S(u, α)

one has ‖D fx(v) − D fx(u)‖ ≤ δ − δ ′. It follows that Gu,η,α ⊂ B(u∗, δ).

As in [14], given ε > 0 and assuming condition (f) of Corollary 4.4, we set

Tε := {u ∈ W0 : ∃η, α > 0, diam Gu,η,α < ε}.

The following lemma incorporates the contents of [14], Prop. 2.3. It shows the inter-

est of the notion of compliant perturbation.

Lemma 5.4 Suppose condition (f) of Corollary 4.4 holds and let u ∈ Tε for some

ε > 0. If f is compliant at u, then Tε is a neighborhood of u. In particular, if for each

x ∈ X the function fx is lower semicontinuous and condition (f) of Corollary 4.4 holds,

then Tε is a neighborhood of u.

Proof By assumption, there are η, α > 0 such that diam Gu,η,α < ε. Since f is

compliant at u, there are δ ∈ (0, η), β ∈ (0, α) such that S(v, β) ⊂ S(u, α) for each

v ∈ B(u, δ). Let ξ := η − δ. Since B(v, ξ) ⊂ B(u, η) for each v ∈ B(u, δ), we get

Gv,ξ,β ⊂ Gu,η,α and diam Gv,ξ,β < ε. Thus B(u, δ) ⊂ Tε.

Theorem 5.5 Suppose W is an Asplund space, W0 is an open subset of W, the pertur-

bation f : W × X → R is such that for each x ∈ X the function fx is finite and lower

semicontinuous on W0 and that for each u ∈ W0 the performance function p is finite at

u and conditions (e ′
s
), (f) of Corollary 4.4 are satisfied. Then, there exists a generic sub-

set G of W0 such that the performance function p is strictly differentiable at each point

of G.
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Proof By Lemma 5.3, for each ε > 0, the set D− of subdifferentiability points of p

is contained in Tε. Moreover, it is dense. Now, by Lemma 5.4, Tε is open. Therefore

G :=
⋂

n≥1 T1/n is a generic subset of W0. Since for any u ∈ W, α > 0 one has

Du,α ⊂ Gu,η,α, hence Tε ⊂ W2ε for each ε > 0, one has G ⊂
⋂

n≥1 W1/n = W∞, so

that p is strictly differentiable at each point of G.

6 Application to Regularization

Let us show that the preceding results can be applied to a classical regularization

process of Moreau type. Let X be a normed vector space on which some function

k : X → R+ is defined with the following properties:

(r1) k is coercive, Lipschitzian on bounded subsets and k(0) = 0;

(r2) for any c ∈ (0, 1), r > 0 there exists some m ∈ R such that

k(x − w) ≥ ck(x) − m ∀w ∈ B(0, r), ∀x ∈ X;

(r3) k is continuously differentiable on X and either X is complete or the derivative

of k is uniformly continuous on bounded subsets of X.

(r4) k is uniformly convex on bounded subsets: for any r > 0 there exists some

nondecreasing function γ : [0, r] → R such that γ(t) > 0 for t > 0 and

1

2
k(x) +

1

2
k(x ′) − k

( 1

2
x +

1

2
x ′

)
≥ γ(‖x − x ′‖) ∀x, x ′ ∈ B(0, r).

These conditions are satisfied when k( · ) = s−1 ‖ · ‖s
with s > 1 when (X, ‖ · ‖) is

uniformly convex and uniformly smooth (see [44] for instance).

In the sequel we approach a given function g by a more regular function gt by

using an infimal convolution procedure. Since here the parameter t ∈ (0, +∞) is

considered as fixed, we do not mention it in the expression for f , so that the relation-

ships with what precedes are clearer; however, the value function p is now denoted

by gt .

Theorem 6.1 Suppose conditions (r1)–(r4) hold. Suppose g : X → R∪{∞} takes at

least one finite value, and is such that for some a ∈ R+ the function g( · ) + ak( · ) is

convex and bounded below. Then, for t > a, the regularized function gt of g given by

gt (w) = inf
x∈X

f (w, x), where f (w, x) := g(x) + tk(x − w), w ∈ W := X

is of class C1 on W = X and gt ≤ g.

Proof Clearly, by assumption (r1), we have gt ≤ g, and, taking x0 ∈ g−1(R), for

each w ∈ W := X, we have gt (w) ≤ g(x0) + tk(x0 − w) < +∞. Given t > a,

r > 0, we have shown in [32] that gt is Lipschitzian on the ball B(0, r). Here we

focus on differentiability properties. Taking c ∈ (0, 1) such that ct > a and taking
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m associated with c and r as in assumption (r2) above, for w ∈ B(0, r), x ∈ X and

b := inf
(
g( · ) + ak( · )

)
, we have

f (w, x) ≥ b − ak(x) − mt + ctk(x) ≥ b − mt.

Then, gt (w) ≥ b−mt for w ∈ B(0, r) and it follows from the preceding estimate that

for any β ∈ (0, 1], w ∈ B(0, r), x ∈ S(w, β), we have

(ct − a)k(x) + b − mt ≤ f (w, x) ≤ gt (w) + β ≤ g(x0) + tk(x0 − w) + 1,

so that the coercivity of k entails the existence of some r1 > 0 such that S(w, β) ⊂
S(w, 1) ⊂ M := B(0, r1) for any w ∈ B(0, r). The first of the preceding inequalities

also shows that, setting θ := 1, λ := p(u) + θ, increasing r1 if necessary, we may

suppose that [ fw ≤ λ] ⊂ B(0, r1) for any w ∈ B(0, r). Let us first suppose Dk is

uniformly continuous on bounded subsets. Then Dk is bounded on bounded subsets,

and since D fx(w) = −tDk(x − w), conditions (as), (e ′
s
) and (f) of Corollary 4.4 are

satisfied. Let us deal with condition (b).

For u ∈ X, α > 0 and x, x ′ ∈ S(u, α) we have, with x ′ ′ := 1
2
x + 1

2
x ′,

1

2
g(x) +

1

2
tk(u − x) +

1

2
g(x ′) +

1

2
tk(u − x ′) ≤

1

2

(
gt (u) + α

)
+

1

2

(
gt (u) + α

)

= gt (u) + α ≤ g(x ′ ′) + tk(u − x ′ ′) + α

hence, using (r4) and the convexity of g + ak,

(t − a)γ(‖x − x ′‖)

≤ (t − a)
( 1

2
k(u − x) +

1

2
k(u − x ′) − k(u − x ′ ′)

)

≤ g(x ′ ′) + ak(u − x ′ ′) + α −
1

2

(
g(x) + ak(u − x)

)
−

1

2

(
g(x ′) + ak(u − x ′)

)

≤ α.

It follows that the diameter diamS(u, α) of S(u, α) tends to 0 when α → 0. Since Dk

is uniformly continuous on bounded sets and since S(u, α) ⊂ B(0, r1) for α ∈ (0, 1],
we get that diam{Dk(u − x) : x ∈ S(u, α)} → 0 as α → 0. Thus, X∗ being complete,

condition (b) of Corollary 4.4 is satisfied. It follows from this corollary that gt is

strictly differentiable at each point u of X, hence, by a classical result, gt is of class C1.

When k is just of class C1 but X is complete, the family (S(u, α))α>0 converges to

some point P(u) in X. Then, when w → u, α → 0+, we have

sup{‖(w − x) − (u − Pu)‖ : x ∈ S(u, α)} → 0.

Since D fx(w) = −tDk(x − w) is continuous in (w, x) at (u, P(u)), we get that

{D fx(w) : x ∈ S(u, α)} → −tDk(Pu − u)
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and conditions (as), (b) and (e ′
s
) of Corollary 4.4 are satisfied. Let us check condition

(f) of Corollary 4.4, with p = gt , as mentioned above. Given θ ∈ (0, 1], η > 0,
we observed that [ fv ≤ p(u) + θ] is bounded, uniformly for v ∈ B(u, η). If c is the

Lipschitz rate of k on this set, for any x ∈ [ fv ≤ p(u) + θ] we have

g(x) + tk(x − u) ≤ g(x) + tk(x − v) + tc ‖v − u‖ ≤ p(u) + θ + tcη,

hence x ∈ S(u, α) for α := θ + tcη. Let ρ > 0 be such that Dk is bounded

on B(P(u) − u, ρ). When θ and η are small enough, α is so small that we have

‖(v − x) − (u − Pu)‖ < ρ for each v ∈ B(u, η). Thus D fx(v) is bounded for v ∈
B(u, η), x ∈ [ fv ≤ p(u) + θ] and condition (f) of Corollary 4.4 holds. Again, the fact

that g is of class C1 ensues from that corollary.

For other results about regularization processes in Banach spaces, see [8], [9],

[38]. In these references X is complete and g is supposed to be bounded below; on

the other hand, as in the Lasry-Lions method for Hilbert spaces, an iteration of the

regularization process enables one to get rid of the convexity condition made above.
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[7] N. Bourbaki, Variétés différentielles et analytiques. Fascicule de résultats, Hermann, Paris, 1967.
[8] M. Cepedello Boiso, Approximation of Lipschitz functions by ∆-convex functions in Banach spaces.

Israel J. Math. 106(1998), 269–284.
[9] , On regularization in superreflexive Banach spaces by infimal convolution formulas. Studia

Math. 129 (1998), 265–284.
[10] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Research 1(1976), 97–102.
[11] , Optimization and Nonsmooth Analysis. Wiley, New York, 1983.
[12] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Optimal

Control Theory. Springer-Verlag, New York, 1997.
[13] I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc. 1(1979), 443–474.
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