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Abstract

In this paper, we consider contact metric three-manifolds (M; η, g, ϕ, ξ) which satisfy the condition
∇ξh = µhϕ + νh for some smooth functions µ and ν, where 2h = £ξϕ. We prove that if M is conformally
flat and if µ is constant, then M is either a flat manifold or a Sasakian manifold of constant curvature +1.
We cannot extend this result for a smooth function µ. Indeed, we give such an example of a conformally
flat contact three-manifold which is not of constant curvature.
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1. Introduction

First, we briefly review several of the results on conformally flat contact metric
manifolds. In 1962, Okumura [10] proved that a conformally flat Sasakian manifold
of dimension greater than or equal to five is of constant curvature +1. Tanno [13]
extended the result to the K-contact case and to the three-dimensional case. Around
30 years later, a remarkable development was achieved by Calvaruso et al. [4]. They
showed that a conformally flat H-contact three-manifold is of constant curvature 0 or
+1. Here, an H-contact structure means that the Reeb vector field ξ is a harmonic
vector field. Perrone [12] introduced the notion and proved that such a structure is
characterized by the property that ξ is an eigenvector of the Ricci operator. Recently,
Gouli-Andreou and Tsolakidou [8], and Bang and Blair [1] independently proved that a
conformally flat H-contact manifold is of constant curvature +1 for dimensions greater
than or equal to five. Integrating these results, gives the following theorem.

Theorem 1. A conformally flat H-contact manifold is either a three-dimensional and
flat manifold or a space of constant curvature +1.
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At least in dimension three, we cannot remove the H-contact condition in the above
result. Indeed, Blair [2] shows an example of a three-dimensional conformally flat
contact metric space which is not of constant curvature.

On the other hand, for a contact metric structure (η, g, ϕ, ξ), we have another
fundamental structure tensor field h = 1

2 £ξϕ, where £ξ denotes the Lie differentiation
along Reeb flow ξ. We first prove that a non-Sasakian contact metric three-manifold
satisfies the condition ∇ξh = µhϕ + νh for some smooth functions µ and ν, where h , 0
(Lemma 5). Then, we consider a class of contact metric three-manifolds (M; η, g, ϕ, ξ)
that satisfy the following condition:

(∗) ∇ξh = µhϕ + νh for a constant µ and a smooth function ν on M.

Then we prove the following theorem.

Theorem 2. A conformally flat contact metric three-manifold M which satisfies the
condition (∗) is either a flat manifold or a Sasakian manifold of constant curvature
+1.

Also, it is notable that we cannot extend our result for a smooth function µ. In
fact, Blair’s example mentioned above satisfies ∇ξh = µhϕ for a smooth function µ.
In Remark 1, we examine relationships between the H-contact condition and our
condition (∗). Then we remark that there are examples satisfying (∗), but they are not
H-contact. Finally, we note that our result extends Calvaruso’s result [3, Theorem 3].
Indeed, his result corresponds to the case µ , 4 and ν = 0.

Recently, Ghosh and Sharma [7] introduced the so-called Jacobi (k, µ)-contact
manifolds whose characteristic Jacobi operator ` satisfies

` = −kϕ2 + µh (1)

for (k, µ) ∈ R2. Then we find ∇ξh = µhϕ, and deduce the following corollary.

Corollary 3. A conformally flat Jacobi (k, µ)-contact three-manifold is either a flat
manifold or a Sasakian manifold of constant curvature +1.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class C∞.
First, we briefly review conformal flatness in three-dimensional Riemannian manifolds
(M3, g). A Riemannian manifold is said to be conformally flat if it is conformally
related to the Euclidean metric in the local sense. Denote by R its Riemannian
curvature tensor defined by

R(X,Y)Z = ∇X(∇YZ) − ∇Y (∇XZ) − ∇[X,Y]Z

for any vector fields X,Y,Z on M. The Schouten tensor of type (1, 1) is defined by

LX = S X −
r
4

X
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for any vector fields X on M, where S denotes the Ricci operator and r the scalar
curvature. Then it is well known that the manifold is conformally flat if and only if the
Schouten tensor L is a Codazzi tensor, that is, if

(∇XL)Y = (∇Y L)X

for any vector fields X,Y on M.
Next, we review contact Riemannian three-manifolds. A three-dimensional

manifold M3 is said to be a contact manifold if it admits a global 1-form η such that
η ∧ (dη) , 0 everywhere. Given a contact form η, there is a unique vector field ξ, which
is called the Reeb vector field or the characteristic vector field, satisfying η(ξ) = 1 and
dη(ξ, X) = 0 for any vector field X. It is well known that there exist a Riemannian
metric g and a (1, 1)-tensor field ϕ such that

η(X) = g(X, ξ), dη(X,Y) = g(X, ϕY), ϕ2X = −X + η(X)ξ, (2)

where X and Y are vector fields on M. From (2), it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX, ϕY) = g(X,Y) − η(X)η(Y).

A Riemannian manifold M3 equipped with structure tensors (η, g, ϕ, ξ) satisfying (2)
is said to be a contact metric three-manifold or a contact Riemannian three-manifold
and is denoted by M = (M3; η, g, ϕ, ξ). Given a contact Riemannian manifold M, we
define a (1, 1)-tensor field h by h = 1

2 £ξϕ, where £ξ denotes Lie differentiation for ξ.
Then we may observe that h is a self-adjoint operator and satisfies

hξ = 0 and hϕ = −ϕh, (3)

∇Xξ = −ϕX − ϕhX, (4)

where ∇ is the Levi-Civita connection. From (3) and (4), we see that each trajectory of
ξ is a geodesic. Along a trajectory of ξ, the Jacobi operator ` = R(·, ξ)ξ is a symmetrical
(1, 1)-tensor field.

ϕ`ϕ − ` = 2(h2 + ϕ2), (5)

∇ξh = ϕ − ϕ` − ϕh2. (6)

A contact Riemannian manifold for which ξ is Killing is called a K-contact manifold.
It is easy to see that a contact Riemannian manifold is K-contact if and only if h = 0.
For a contact Riemannian manifold M, one may define naturally an almost complex
structure J on M × R: that is,

J
(
X, f

d
dt

)
=

(
ϕX − f ξ, η(X)

d
dt

)
,

where X is a vector field tangential to M, t is the coordinate of R and f is a function
on M × R. If the almost complex structure J is integrable, M is said to be normal or
Sasakian. It is known that M is normal if and only if M satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0,
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where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is characterized by a
condition

(∇Xϕ)Y = g(X,Y)ξ − η(Y)X (7)

for all vector fields X and Y on the manifold. For more details about contact
Riemannian manifolds, we refer the reader to [2].

3. Conformally flat contact three-manifolds

In this section, we prove our main theorem. For contact metric three-manifolds M,
the associated CR-structure is integrable. Then we know that M always satisfies

(∇Xϕ)Y = g(X + hX,Y)ξ − η(Y)(X + hX). (8)

The following lemma is immediate from (7) and (8).

Lemma 4. A three-dimensional contact Riemannian manifold is Sasakian if and only if
h = 0.

Proof of Theorem 2. Let M = (M3; η, g, ϕ, ξ) be a contact metric three-manifold.
Then the curvature tensor R is expressed by

R(Y, X)Z = ρ(X,Z)Y − ρ(Y,Z)X + g(X,Z)S Y − g(Y,Z)S X

−
r
2
{g(X,Z)Y − g(Y,Z)X} (9)

for all vector fields X, Y, Z on the manifold. If h = 0 on M, then, from Lemma 4,
we see that M is Sasakian. Then, by a theorem due to Tanno [13], we see that a
conformally flat M is of constant curvature one. So we consider on M the maximal
open subset U1 on which h , 0 and the maximal open subset U2 on which h is
identically zero. (U2 is the union of all points p in M such that h = 0 in a neighborhood
of p). U1 ∪ U2 is open and dense in M. Suppose that M is non-Sasakian. Then U1 is
nonempty and there is a local orthonormal frame field {e1 = e, e2 = ϕe, e3 = ξ} on U1

such that he1 = λe1, he2 = −λe2 for some positive function λ.

Lemma 5. On U1,
∇ξh = µhϕ + νh (10)

for some smooth functions µ and ν on M, where ξ(λ) = νλ.

Proof. We compute on U1

(∇ξh)e1 = (ξλ)e1 + (λ − h)∇ξe1 = (ξλ)e1 − λµe2,

(∇ξh)e2 = −(ξλ)e2 + (λ − h)∇ξe2 = −(ξλ)e2 − λµe1,

where we have put µ = −2g(∇ξe1, e2). If we put ν = ξ(λ)/λ, then we obtain (10). Thus,
we have proved Lemma 5. �
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Lemma 6. On U1,

∇ξe1 = −
µ

2
e2, ∇ξe2 =

µ

2
e1,

∇e1ξ = −(λ + 1)e2, ∇e2ξ = −(λ − 1)e1,

∇e1 e1 =
1

2λ
{e2(λ) + ρ13}e2, ∇e2 e2 =

1
2λ
{e1(λ) + ρ23}e1,

∇e1 e2 = −
1

2λ
{e2(λ) + ρ13}e1 + (λ + 1)ξ,

∇e2 e1 = −
1

2λ
{e1(λ) + ρ23}e2 + (λ − 1)ξ.

(11)

Proof. The proof is in [4]. �

From (11), we have the Ricci operator S , where

S e1 =

( r
2
− 1 + λ2 + µλ

)
e1 + (ξλ)e2 + ρ13ξ,

S e2 = (ξλ)e1 +

( r
2
− 1 + λ2 − µλ

)
e2 + ρ23ξ,

S ξ = ρ13e1 + ρ23e2 + 2(1 − λ2)ξ,

(12)

and where we denote ρi j = ρ(ei, e j) for i, j = 1, 2, 3.
Using (11) and ξ(λ) = νλ,

ξ(e1(λ)) = [ξ, e1](λ) + e1(ξλ) =

(
−
µ

2
+ λ + 1

)
e2(λ) + ν(e1λ) + λ(e1ν),

ξ(e2(λ)) = [ξ, e2](λ) + e2(ξλ) =

(
µ

2
+ λ − 1

)
e1(λ) + ν(e2λ) + λ(e2ν).

(13)

We compute the Jacobi identity

[e1, [e2, ξ]] + [e2, [ξ, e1]] + [ξ, [e1, e2]] = 0.

Using (11), first we find that [e1, [e2, ξ]] = [e2, [ξ, e1]] = 0, and then, together with (13),
we compute

0 = 2λ[ξ, [e1, e2]]

=

{(
µ

2
+ λ − 1

)
ρ23 + νρ13 − λ(e2ν) − ξ(ρ13)

}
e1

+

{(
−
µ

2
+ λ + 1

)
ρ13 + νρ23 − λ(e1ν) − ξ(ρ23)

}
e2,

from which
ξ(ρ13) =

(
µ

2
+ λ − 1

)
ρ23 + νρ13 − λ(e2ν) (14)

and
ξ(ρ23) =

(
−
µ

2
+ λ + 1

)
ρ13 + νρ23 − λ(e1ν). (15)

Now, we suppose that M is conformally flat. As stated in Section 2, a three-
dimensional Riemannian manifold is conformally flat if and only if its Schouten tensor
L is a Codazzi tensor. Hence, we get the following lemma.
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Lemma 7. On U1,
∇kρi j − ∇iρk j = 1

4 (δi j∇kr − δk j∇ir), (16)

where we have used ∇iρ jk = (∇eiρ)(e j, ek), ∇ir = ∇ei r, i = 1, 2, 3.

Using (11) and (12), we compute

∇1ρ22 = 1
2 (e1r) + (2λ − µ)(e1λ) − 2(λ + 1)ρ23 + ν(e2λ + ρ13) − λ(e1µ),

∇2ρ12 = ν(e2λ) + λ(e2ν) − µ(e1λ) + (−µ − λ + 1)ρ23.
(17)

By Lemma 7,
∇1ρ22 − ∇2ρ12 = 1

4 (e1r). (18)

From (17) and (18),

1
4 (e1r) = λ(e2ν) − 2λ(e1λ) + (−µ + λ + 3)ρ23 − νρ13 + λ(e1µ). (19)

This time, we compute

∇1ρ33 = −4λ(e1λ) + 2(λ + 1)ρ23,

∇3ρ13 = (µ + λ − 1)ρ23 + νρ13 − λ(e2ν),

and then, using ∇1ρ33 − ∇3ρ13 = 1
4 (e1r),

1
4 (e1r) = λ(e2ν) − 4λ(e1λ) + (−µ + λ + 3)ρ23 − νρ13. (20)

From (19) and (20),
2(e1λ) + e1(µ) = 0. (21)

In a similar way, using ∇2ρ11 − ∇1ρ12 = 1
4 (e2r),

1
4 (e2r) = λ(e1ν) − 2λ(e2λ) + (µ + λ − 3)ρ13 − νρ23 − λ(e2µ) (22)

and, using ∇2ρ33 − ∇3ρ23 = 1
4 (e2r),

1
4 (e2r) = −4λ(e2λ) + (µ + λ − 3)ρ13 − νρ23 + λ(e1ν). (23)

From (22) and (23),
2(e2λ) − e2(µ) = 0. (24)

Assume that µ is constant. Then, from (21) and (24), e1(λ) = e2(λ) = 0. Moreover,
using (11),

0 = [e1, e2](λ) = 2(ξλ).

Since M is connected, we get the following lemma.

Lemma 8. λ is constant and ν = 0 on M.
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Then, from (14) and (15), respectively,

ξ(ρ13) =

(
µ

2
+ λ − 1

)
ρ23,

ξ(ρ23) =

(
−
µ

2
+ λ + 1

)
ρ13.

(25)

From (19) and (22), respectively,

e1(r) = 4(−µ + λ + 3)ρ23,

e2(r) = 4(µ + λ − 3)ρ13.
(26)

Equation (11) in Lemma 6 simplifies to

∇ξe1 = −
µ

2
e2, ∇ξe2 =

µ

2
e1,

∇e1ξ = −(λ + 1)e2, ∇e2ξ = −(λ − 1)e1,

∇e1 e1 =
1

2λ
ρ13e2, ∇e2 e2 =

1
2λ
ρ23e1,

∇e1 e2 = −
1

2λ
ρ13e1 + (λ + 1)ξ,

∇e2 e1 = −
1

2λ
ρ23e2 + (λ − 1)ξ.

(27)

Similarly, equation (12) simplifies to

S e1 =

( r
2
− 1 + λ2 + µλ

)
e1 + ρ13ξ,

S e2 =

( r
2
− 1 + λ2 − µλ

)
e2 + ρ23ξ,

S ξ = ρ13e1 + ρ23e2 + 2(1 − λ2)ξ.

(28)

A straightforward computation using (25), (27), (28) and Lemma 8 yields

∇1ρ11 = 1
2 (e1r),

∇1ρ12 =∇1ρ21 = (µ − λ − 1)ρ13,

∇1ρ13 =∇1ρ31 = e1(ρ13) −
1

2λ
ρ13ρ23,

∇1ρ22 = 1
2 (e1r) − 2(λ + 1)ρ23,

∇1ρ23 =∇1ρ32 = e1(ρ23) +
1

2λ
(ρ13)2 + (λ + 1)

( r
2
− µλ − 3(1 − λ2)

)
,

∇1ρ33 = 2(λ + 1)ρ23,

∇2ρ11 = 1
2 (e2r) − 2(λ − 1)ρ13,

∇2ρ12 =∇2ρ21 = (−µ − λ + 1)ρ23,

∇2ρ13 =∇2ρ31 = e2(ρ13) +
1

2λ
(ρ23)2 + (λ − 1)

( r
2

+ µλ − 3(1 − λ2)
)
,
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∇2ρ22 = 1
2 (e2r),

∇2ρ23 =∇2ρ32 = e2(ρ23) − 1
2λρ23ρ13,

∇2ρ33 = 2(λ − 1)ρ13,

∇3ρ11 =∇3ρ22 = 1
2 (ξr),

∇3ρ12 =∇3ρ21 = −µ2λ,

∇3ρ13 =∇3ρ31 = (µ + λ − 1)ρ23,

∇3ρ23 =∇3ρ32 = (−µ + λ + 1)ρ13,

∇3ρ33 = 0.

From (16) in Lemma 7, we compute the equations

∇1ρ13 − ∇3ρ11 = 1
4 {(e1r)g13 − (ξr)g11},

∇2ρ23 − ∇3ρ22 = 1
4 {(e2r)g23 − (ξr)g22},

∇3ρ12 − ∇1ρ23 = 1
4 {(ξr)g12 − (e1r)g23},

∇3ρ12 − ∇2ρ13 = 1
4 {(ξr)g12 − (e2r)g13}.

Then

e1(ρ13) = e2(ρ23) =
1

2λ
ρ13ρ23 +

1
4
ξ(r), (29)

e1(ρ23) =−µ2λ −
1

2λ
(ρ13)2 − (λ + 1)

( r
2
− µλ − 3(1 − λ2)

)
, (30)

e2(ρ13) =−µ2λ −
1

2λ
(ρ23)2 − (λ − 1)

( r
2

+ µλ − 3(1 − λ2)
)
. (31)

We compute [e1, e2](r) in two ways and compare them. First, using (26) and (27),

[e1, e2](r) = (∇e1 e2 − ∇e2e1)(r)

=
4
λ

(µ − 3)ρ13ρ23 + 2ξ(r). (32)

Next, we compute

[e1, e2](r) = e1(e2r) − e2(e1r)

=
4
λ

(µ − 3)ρ13ρ23 + 2(µ − 3)ξ(r), (33)

where we have used (26) and (29). Comparing (32) and (33) gives

µ = 4 or ξ(r) = 0. (34)

On the one hand, using (27), we compute

R(e1, e2)e1 =∇e1 (∇e2 e1) − ∇e2 (∇e1 e1) − ∇[e1,e2]e1

=
1

2λ2 {(ρ13)2 + (ρ23)2 + λ2r − 4(1 − λ2)λ2 + 2µ2λ2}e2 − ρ23ξ. (35)
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But, from (9) and (28),

R(e1, e2)e1 =

(
−

r
2

+ 2 − 2λ2
)
e2 − ρ23ξ. (36)

Comparing (35) and (36) gives

(ρ13)2 + (ρ23)2 + 2λ2r − 8λ2(1 − λ2) + 2µ2λ2 = 0. (37)

Differentiating (37) in the direction ξ and using (25) gives

ξ(r) = −
2
λ
ρ13ρ23. (38)

Now, we consider two possible open sets: (I) ξ(r) = 0 or (II) ξ(r) , 0.

Case I. From (38), we see that ρ13 = 0 or ρ23 = 0. If both ρ13 = 0 and ρ23 = 0, then
we find that ξ is an eigenvector of the Ricci operator S . Then, by a theorem due to
Calvaruso et al. [4] we know that M is of constant curvature zero. So we suppose that
ρ13 = 0 and ρ23 , 0. Then, from (25), it follows that

µ = 2(1 − λ). (39)

Also, from (31),

(ρ23)2 = −2µ2λ2 − 2λ(λ − 1)
( r
2

+ µλ − 3(1 − λ2)
)
.

Differentiating the last equation with respect to e1, then using (26), gives

e1(ρ23) = 2λ(1 − λ)(−µ + λ + 3). (40)

Comparing (30) and (40) gives

(λ + 1)r = 2(1 − λ)(3λ2 + 2λ + 3),

where we have used (39). Since λ > 0, from the last equation,

r =
2(1 − λ)(3λ2 + 2λ + 3)

λ + 1
,

and hence the scalar curvature r is constant. Then, from (26), λ = − 1
3 , which is a

contradiction. Similarly, in the case when ρ23 = 0 and ρ13 , 0, µ = 2(1 + λ) and

(ρ13)2 = −2µ2λ2 − 2λ(λ + 1)
( r
2
− µλ − 3(1 − λ2)

)
. (41)

Differentiating the last equation with respect to e2, then using (26), gives

e2(ρ13) = −2λ(1 + λ)(µ + λ − 3). (42)

Comparing (31) and (42) gives

(λ − 1)r = −2(1 + λ)(3λ2 − 2λ + 3).
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From this we are aware that λ , 1. So

r =
−2(1 + λ)(3λ2 − 2λ + 3)

λ − 1
.

Then, from (26), λ = 1
3 and r = 32

3 . But, from (41),

(ρ13)2 = −
256
81

< 0,

which is a contradiction.

Case II. Suppose that ξ(r) , 0. Then, from (34), µ = 4. Also, from (38), both ρ13 , 0
and ρ23 , 0. Combining (29) with (38) gives

e1(ρ13) = e2(ρ23) = 0. (43)

From (30) and (31), using (26) and (43),

e2(e2ρ13) =2(1 − λ2)ρ13, (44)

e1(e1ρ23) =2(1 − λ2)ρ23, (45)

e2(e1ρ23) =

{
−2(1 + λ)2 −

1
λ

e2(ρ13)
}
ρ13, (46)

e1(e2ρ13) =

{
−2(1 − λ)2 −

1
λ

e1(ρ23)
}
ρ23. (47)

On the other hand, using (25) and (27),

e2(e1ρ23) = [e2, e1](ρ23) + e1(e2ρ23)
= (∇e2 e1 − ∇e1 e2)(ρ23)

=

{ 1
2λ

e1ρ23 + 2(1 − λ)
}
ρ13, (48)

e1(e2ρ13) = [e1, e2](ρ13) + e2(e1ρ13)
= (∇e1 e2 − ∇e2 e1)(ρ13)

=

{ 1
2λ

e2ρ13 + 2(1 + λ)
}
ρ23. (49)

Comparing (46) and (48) gives

1
2λ

e1(ρ23) + 2(1 − λ) = −2(1 + λ)2 −
1
λ

e2(ρ13). (50)

Differentiating (50) with respect to e1, then using (45), gives

e1(e2ρ13) = −(1 − λ2)ρ23.

This, together with (47), gives

e1(ρ23) = λ(1 − λ)(3λ − 1).
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Similarly, comparing (47) and (49),

e2(ρ13) = −λ(1 + λ)(3λ + 1). (51)

Hence, e1(e1ρ23) = e2(e2ρ13) = 0. Thus, from (44) (or (45)), λ = 1. But, if λ = 1, from
(31) using (51),

(ρ23)2 = −2µ2λ2 − 2λ(λ − 1)
( r
2

+ µλ − 3(1 − λ2)
)
− 2λe2(ρ13) = −16,

which is a contradiction. That is, we see that the case µ = 4 cannot occur.
All in all, we conclude that M is either a Sasakian manifold of constant curvature

+1 or a flat manifold. Thus, we have completed the proof. �
Let M be a Jacobi (k, µ)-contact manifold with characteristic Jacobi operator

` = −kϕ2 + µh for (k, µ) ∈ R2. Then, from (1) and (5), h2 = (k − 1)ϕ2. Moreover,
from (6), ∇ξh = µhϕ. This leads to Corollary 3.

The following example due to Blair [2] gives a conformally flat contact three-
manifold with ` = −kϕ2 + µh for smooth functions k and µ.

Example 9. We consider R3 with cylindrical coordinates (r, θ, z). Let η = 1
2 (βr dθ +

γ dz) be a contact form on R3 such that both β and γ are smooth functions depending
only on r that satisfy

1
r
β + β′ = γ

√
β2 + γ2, −γ′ = β

√
β2 + γ2. (52)

Indeed, Blair proved the existence of a regular solution of the system of ordinary
differential equations (52) in [0,∞). Then dη = 1

2 {(β + rβ′) dr ∧ dθ + γ′dr ∧ dz}.
Assume that the metric g is conformally flat. Then we may write it as

ds2 = 1
4 exp(2σ)(dr2 + r2dθ2 + dz2).

If g is also an associated metric to the contact form η, then, from g(X, ξ) = η(X), the
characteristic vector field is given by

ξ = 2 exp(−2σ)
(
β

1
r
∂θ + γ∂z

)
,

where ∂θ = ∂/∂θ, ∂z = ∂/∂z. Also, from η(ξ) = 1, exp(2σ) = β2 + γ2. Moreover, using
(52), dη(·, ξ) = 0. Compute

ϕ = g−1dη= exp(−2σ)

1 0 0
0 1

r2 0
0 0 1


 0 β + rβ′ γ′

−β − rβ′ 0 0
−γ′ 0 0


= exp(−2σ)

 0 β + rβ′ γ′

− 1
r2 (β + rβ′) 0 0
−γ′ 0 0

 . (53)

Then, from ϕ2 = −I + η ⊗ ξ using (53), it follows that (γ′/β)2 = exp(2σ), where β , 0.
Indeed, from η ∧ dη , 0, we see that β , 0 and γ , 0. Assume that exp(σ) = −γ′/β
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and let X = 2 exp(−2σ)(γ/r∂θ − β∂z). Then ϕX = 2 exp(−σ)∂r and {X, ϕX, ξ} is an
orthonormal frame field. Moreover, X is an eigenvector of h = 1

2 £ξϕ, that is, hX = λX,
where λ = (2βγ/r exp(3σ)) − 1. Then, ∇ξh = 2(λ + 1)hϕ. By computing `, we find
that X and ϕX are also eigenvectors of ` = R(·, ξ)ξ, that is, `(X) = (λ + 1)2X and
`(ϕX) = (−3λ2 − 2λ + 1)ϕX. These data give

` = −(1 − λ2)ϕ2 + 2(1 + λ)h.

That is, it is a so-called generalized Jacobi (k, µ)-contact space [5] for k = 1 − λ2 and
µ = 2(1 + λ), which is not a Jacobi (k, µ)-contact space. In addition, by using a tedious
computation, we can show that η(S X) = (4β3γ/r2 exp(6σ)) , 0, where we have used
(52). Hence, it is not an H-contact space.

Remark 10. H-contact spaces and contact metric spaces satisfying (∗) ∇ξh = µhϕ + νh
with a constant µ are considered as two natural generalizations of K-contact spaces.
It is interesting to examine their relationships. At least for dimension three, we have
no inclusion relationship between them. There are some examples that share both
properties. Indeed, unimodular Lie groups with left-invariant contact metric structure
are H-contact and at the same time they satisfy (∗) with ν = 0 (compare with [6]).
Also, [9, Example 4.3] shows such an example that is nonhomogeneous and satisfies
(∗) (with a smooth function ν). However, Examples 4.1 and 4.2 in the same paper [9]
are H-contact, but their µ is not a constant. On the contrary, nonunimodular Lie groups
and Perrone’s nonhomogeneous example in [11] satisfy (∗) (with ν = 0), but they are
not H-contact (see Example 12).

Example 11. Let M be a three-dimensional nonunimodular Lie group with left-
invariant contact metric structure. Then we know that (compare with [12]) there exists
an orthonormal basis {e1, e2 = ϕe1, e3 = ξ} ∈ m such that

[e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = γe2, (54)

where α , 0. Moreover, M is Sasakian if and only if γ = 0. From (54), h =

γ/2(ω1 ⊗ e1 − ω
2 ⊗ e2) and ∇ξh = (2 − γ)hϕ, where ωi is the dual 1-form of ei, i = 1, 2.

M is not an H-contact manifold. Indeed, we compute η(S e2) = αγ , 0.

Example 12 (Perrone’s example in [11]). Let M be the open submanifold {(x, y, z) ∈
R3 | x , 0} of Cartesian three-space together with a contact form η = xy dx + dz. The
characteristic vector field of this contact three-manifold is ξ = ∂/∂z. Take a global
frame field

e1 = −
2
x
∂

∂y
, e2 =

∂

∂x
−

4z
x
∂

∂y
− xy

∂

∂z
, e3 = ξ

and define a Riemannian metric g with respect to {e1, e2, e3} to be an orthonormal
frame. Moreover, we define an endomorphism field ϕ by ϕe1 = e2, ϕe2 = −e1 and
ϕξ = 0. Then (g, ϕ, ξ) is an associated almost contact metric structure for η. In addition,
h = ω1 ⊗ e1 − ω

2 ⊗ e2 and ∇ξh = 4hϕ (µ = 4). We compute η(S e1) = −2/x , 0, which
implies that M is not H-contact.
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