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ABSTRACT 
Machine learning (ML) is a well-established research topic in Industry 4.0 is boosting its adoption. ML 
is also used for manufacturing cost estimation during design. Such approaches are commonly used to 
estimate the cost of mass-produced parts. Many consolidated historical data are available for training 
the regression models. Unfortunately, very often, such a database of data is not available. 
 
The paper defines an ML approach for parametric cost estimation of axisymmetric components. The 
data for training the ML model derives from automatic software for analytically estimating the 
manufacturing cost. With a proper set of simulations, the tool can generate a large amount of data for 
training. The paper presents the steps for developing a parametric cost model using ML. The approach 
is based on CRoss Industry Standard Process for Data Mining method. The proposed method was used 
to develop one cost model (to estimate the total cost that considered raw material and manufacturing 
cost). The obtained Relative Error is 23.52% ± 1.37%, coherent with E2516 − 11, Standard 
Classification for Cost Estimate Classification System. 
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1 INTRODUCTION AND LITERATURE REVIEW 

Machine learning (ML) advances have prompted companies to include intelligent solutions (also for 

cost estimation) in their enterprise software stack. These modern developments have made it possible 

to automate tasks that were previously thought impossible to program. Using decision-making, 

statistical and mathematical models to draw quick conclusions, particularly in the early stages of 

developing complex products and technologies, is an established industry practice. 

The scientific literature on parametric cost modelling has ascertained the effectiveness of data mining, 

machine learning and artificial intelligence approaches for cost estimation during the preliminary 

design phase (Campi et al., 2021). During design, cost drivers are connected to the characteristics of 

CAD models. This is essential for a straightforward interpretation of the cost model. (Verlinden et al., 

2008) proposed a procedure to create cost formulas using regression analysis and neural networks 

through a quick inspection of the CAD model. Through a precise and rapid calculation of the 

production cost of the various pieces of an assembly, it is possible to increase the competitiveness of 

products. Deep learning techniques can automatically learn the complex relationships between part 

characteristics and manufacturing processes within an ever-changing industrial system (Ning et al., 

2020a). The method proposed by CHEN et al. (2021), applied in aviation, uses forecasting models to 

overcome the problem of the optimal choice of the development plan based on costs. 

Machine learning for manufacturing cost prediction has made possible accurate predictions during the 

early product development stage by using little product information (Hennebold et al., 2022). Campi et 

al. (2021) presented a cost estimation methodology by testing parametric cost models based on 

machine learning on nine different sizes of axial compressor disks. Loyer et al. (2016) demonstrated 

the effectiveness of prediction models in the initial design phase, with little data available. They 

developed five statistical models using industrial data to estimate jet engine components' production 

cost. Yoo and Kang (2021) combined the geometric information from 3D CAD models with a 

production cost forecasting process using artificial intelligence. Thus, designers can visualise the 

characteristics that influence production costs. Also, Ning et al. (2020b) proposed a similar method 

that relates the manufacturing cost to the 3D CAD features extracted through deep learning methods. 

Cost estimation can become very complex when a learning model is used for Life Cycle Costing 

(LCC). It requires much product information to coordinate with many different areas, from design to 

production (Kadir et al., 2020). Seo et al. (2002) proposed an estimation technique for LCC to be used 

in preliminary design. It is based on high-level information, generally known in the preliminary stage. 

This method promotes an integrated design process. A preliminary evaluation of production costs and 

energy consumption is necessary to determine the choice of a manufacturing technique. The problem 

is correctly considering all the information in the product life cycle. Kamps et al. (2018) proposed two 

integrated low-volume or high-variant sprocket production cost and life cycle assessment models. 

Bertoni and Bertoni (2020) offered a method to calculate the cost of design alternatives during the 

preliminary design, starting from information from Computer Aided Engineering (CAE). 

Parametric models are usually used to calculate the unit cost of a product (Niazi et al., 2006). In a 

parametric model, the cost is a function of the component characteristics (geometric or non-

geometric). These parameters are known as cost factors. Cavalieri et al. (2004) compared the results 

obtained from parametric and artificial neural network techniques, applying them to evaluate the unit 

production costs of a brake disc. Boothroyd and Reynolds (1989) concluded that designers could use a 

cost model to decide on materials and manufacturing techniques. Their case study is based on a 

parametric costing technique. The cost is estimated considering the volume of turned parts as a cost 

factor. COSYSMO 3.0 is an example of a tool that calculates the engineering costs of parametric 

systems. An open model allows users to numerically understand how its parameters affect cost 

estimates (Alstad, 2019). The literature shows an example of a tool capable of estimating production 

costs. This solution consists of two models. The first predicts different costs at various levels of any 

production plant. The second calculates the unit cost of future integral bladed disc designs used by the 

aerospace industry in gas turbine compressors (Langmaak et al., 2013). Masel et al. (2010) proposed 

an approach that uses process-based CERs (cost estimate reports) that have been created to evaluate 

the cost of jet engine parts. 

Artificial intelligence (AI) is often used as a black box. Input data is provided, and outputs are given 

without understanding the reasons. In literature, indeed, AI is criticised for the impossibility of 
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interpreting the results  (Hihn and Menzies, 2015). Features selection, particularly the Feature 

Permutation Importance (FPI) method, can overcome this problem. The behaviour of a machine 

learning model can be understood using the global explanation approach of the importance of the 

permutation of features. Based on each attribute's influence on the predictions made by the trained 

machine learning model, it calculates and ranks the importance of each feature. The challenges that 

can arise when creating a cost model are related, for example, to the selection of hyperparameters and 

overfitting problems. Statistical learning approaches are often applied during model construction to 

understand the relationship between the main cost drivers and project costs (Elmousalami, 2021). 

The paper presents a parametric cost model based on machine learning techniques for costing 

axisymmetric parts in the preliminary design phase. The method used for developing the cost model is 

based on CRISP-DM: CRoss Industry Standard Process for Data Mining. The approach overcomes the 

limitations highlighted in the literature review addressing the following challenges: 

• Machine learning techniques require a large amount of data for training, which is not always 

available. Often, historical data are not as vast and coherent as requested. Their normalisation, 

when required, is complex but not always possible. In the method presented by the authors, 

training data are retrieved from an automatic cost estimation software tool based on an analytical 

approach. This solution allows for a vast database of coherent data by simulating the cost of 

different combinations (e.g., shapes, dimensions, materials, manufacturing processes). 

• The method presented in this work proposes feature selection techniques that prevent the high 

correlation between parameters. 

• FPI gives designers a list of product features influencing product cost. In this way, the cost model 

is less perceived as a black box. 

2 METHODOLOGY 

The approach is based on CRISP-DM (CRoss Industry Standard Process for Data Mining) method 

because it is an existing methodology for data mining. It comprises six steps, presented in the 

following sections: I. Business understanding; II. Data understanding; III  Data preparation; IV. 

Modelling; V. Evaluation; VI. Deployment. The technical scope of this paper is to verify that, through 

machine learning techniques, it was possible to create a reasonably accurate cost model for 

axisymmetric components based on preliminary stages requirements. 

2.1 Business understanding 

In this phase, the conceptualisation of the objectives and needs takes place. The proposed approach 

aims to calculate the manufacturing cost of axisymmetric parts through machine learning techniques in 

the preliminary design phase. The output of this analysis is the understanding of acceptable model 

performance values and the selection of dependent parameters for prediction. The admissible 

estimation relative error for the model developed in this study is estimated at 30%. At the same time, 

only one output is expected for the cost model. 

2.2 Data understanding 

Data understanding involves identifying, collecting, analysing and verifying data sets to achieve the project 

objectives, translating into studying axisymmetric mechanical components. In detail, this phase is carried 

out through two activities: 

The first task requires identifying all the parts of the specific product family. In this case, the model to be 

generated is very general and will consider only axisymmetric components. 

The second task concerns the collection of data and information, which are: 

• 3D CAD models: 3D CAD models of mechanical components are necessary to assess the cost through 

an analytical software tool (LeanCOST by Hyperlean, Italy). For this study, 73 different models were 

collected (e.g., shafts, discs, pins, flanges, washers). Axisymmetric components are parts with 

rotational symmetry, mainly produced for turning operations. Although it is also possible to identify 

other processes, such as cutting, drilling, and milling, turning is the most crucial manufacturing phase.  

• Technical info: the geometry can be described by several configuration parameters. The parametrises 

chosen must be common and able to describe all the parts analysed. The following geometric and 

product manufacturing information (PMI) have been included: 

https://doi.org/10.1017/pds.2023.249 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.249


2488  ICED23 

– Overall dimensions D1, D2, D3 [mm]. D1 and D2 are the maximum radial extensions, while D3 is 

the axial length; 

– Type of finished [-]: if bulk or hollow; 

– Internal diameter [mm]: ≠0 if hollow, =0 otherwise; 

– Volume [mm³]; 

– Surface [mm²]; 

– Number of surfaces [-]; 

– Minimum tolerance [IT]; 

– Minimum roughness [µm]; 

– General roughness [µm]; 

– Surface with minimum roughness [mm²]; 

– Surface with standard roughness [mm²]; 

– Presence of non-coaxial geometries (e.g., holes non-coaxial to the turning axis) [yes/no]; 

– Presence of general milling geometries (i.e., any surface impossible to realise by turning) [yes/no]; 

– Presence of grooves for rings [yes/no]; 

– Presence of key sets [yes/no]. 

The first two activities provide all the data that can be grouped and sorted in a first database (or code list). 

All the associated configuration parameters describe each part, expressed separately as independent 

parameters. For this work, Microsoft Excel was used to create the database. 

2.3 Data preparation 

Data preparation can be considered the most critical phase of the methodology. Preparing the final data sets 

for modelling means building an extensive, structured data set to obtain accurate algorithms with low error. 

The data preparation phase can be divided into five different activities. In the end, the database will be 

ready for the modelling phase. 

The first activity is to define all the possible geometrical and non-geometrical parameters that can drive the 

cost. In part, they have been described in the data understanding. The geometric parameters are the 

configuration parameters extracted from technical information and 3D CAD models. Non-geometric 

parameters are independent of the geometry (e.g., material and cost per weight, the production batch, and 

country). Thus, all these parameters, if considered, will represent the input to the parametric cost model. 

Therefore, independent parameters linked to non-geometric information are also added to the database 

obtained at the end of the data understanding.  

The second activity is the extension of the independent parameter values. The accuracy and robustness of 

the results obtained by the parametric cost model prediction algorithm can be determined by the 

characteristics of the database used to train the model. The more the records, the better the training. The 

database generated for the axisymmetric pieces currently has 73 records, making it insufficient to conduct 

an appropriate analysis. The difference in values within the same parameter can help reduce the risk of 

overfitting. The currently obtained database does not satisfy this aspect. This activity aims to extend the 

number of records. In this study, it was preferred to focus on the geometric elements to analyse how these 

affect the cost. The non-geometric parameters have been fixed and not used to extend the model. Thus, the 

material (S235JR), production country (Italy), and production batch (one) are the same for all the 

components. To extend the database and focus on the geometric aspects, the parts were scaled by choosing 

the appropriate scaling factor for each. The scaling is done to enlarge the field of applicability of the model. 

The new models are valid (manufacturable) as the original parts. Scaling involves assigning factors to the 

dimensions that govern 3D models. In other words, these factors are values multiplied by all three 

parameters with which the model's measurements in space can be defined. Scaling can be homogeneous if 

all geometric parameters of a given model are multiplied by the same factor or heterogeneous if at least two 

dimensions are multiplied by different factors. It can then be an enlargement or reduction scaling if the 

factor is greater or lower than one. A homogeneous scaling has been applied so that the shape has not 

changed compared to the original models. For tiny models, only magnification factors were used. For large 

models, only reductions were applied. The goal was to achieve a homogenous distribution of parts in 

various sizes. To achieve this, all components have been divided into four clusters based on D1. Two 

different scale factors have been applied for each group (diverse for each category):  
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• First group: 0.05 – 0.25 for the first category of “large” objects, i.e. those with D1 > 250 mm. These 

factors lead to a significant reduction in size; 

• Second group: 0.25 – 2.00 for the second category of “medium-large” objects (i.e. those with D1 > 

100 mm and D1 <=250); 

• Third group: 2.00 – 4.00 for the third category of “medium-small” objects (i.e., those with D1 > 50 

and D1 <= 100 mm); 

• Fourth group: 2.25 – 6.00, which involves the highest magnifications for the fourth category of 

“small” objects (i.e. those having D1 <= 50 mm). 

D1 was chosen because it was considered the most impact dimension for the machining cost. 

Table 1. Scaled parts 

Group Number of original parts D1 range Number of scaled parts 

First 6 From 255 mm to 528 mm  12 

Second 18 From 104 mm to 250 mm 36 

Third 13 From 58 mm to 100 mm 26 

Fourth 36 From 4 mm to 50 mm 72 

 

At the end of this procedure (Table 1), the database has 219 parts (73 originals and 146 scaled parts). 

Figure 1 shows the distribution of records for parameters D1, D2 and D3. In this way, the applicability of 

the cost model's three dimensions (D1, D2, D3) is visible. For sizes larger than those indicated, relevancy is 

not guaranteed. 

 

Figure 1. Distribution of records for parameters D1, D2 and D3 

The third activity is to clarify how many dependent parameters (outputs) must be expected to define the 

number of parametric cost models. This study considers a single model for the total cost (material and 

manufacturing). Taking the database, the dependent parameter to predict is added. Figure 2 shows three 

mechanical components analysed and present in the database.  

 

Figure 2. CAD 3D mechanical components: a) Shaft; b) Transmission coupling; c) Case 

Starting from the extensive databases obtained, the fourth activity means completing the database by 

calculating the dependent parameters' values. The dependent metric is the cost of each component. An 

analytical costing software for mechanical components was used to obtain the cost values of each record. In 
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this study, LeanCOST was used. The automatic analyses started from the 3D CAD models with embedded 

PMIs. LeanCOST evaluates the production cost, considering the material, investment, set-up, machining, 

and other expenses. In addition to the total cost [€], other valuable data were extracted to expand the 

database and to conduct analyses on the factual correctness of the research performed by the analytical 

software: 

• Cost of the raw material [€]: Its value depends on the material specified in the model and the amount 

of material, i.e. by its size; 

• Process cost [€]. Cost for the manufacturing phases (e.g., turning, saw cutting); 

• Unit cost of the material [€/kg]. 

Since there is a single material, the cost per weight is expected to be similar for each component. This 

hypothesis is not confirmed because, for example, the raw material price depends on the stock dimensions 

and type. Of the 219 parts, LeanCOST could not analyse three of these, as it failed to assign the reference 

blank. Thus, these three parts were discarded. 

Before finishing the data preparation phase, validating the results obtained from the analytical software tool 

is necessary for the fifth activity. Outliers must be identified. The methodology for identifying outliers is the 

Numeric Outlier Quartile Method. In this case, the analysis of the outliers consists of verifying that the €/kg 

ratio (total cost to the mass of the finished product) has a linear trend for increasing mass without 

anomalous jumps. Outliers are deleted from the database (Figure 3). From Figure 3 at record 188 (red 

point), there is a jump in the cost-to-mass ratio, which causes the loss of linearity. For this reason, we 

exclude these components from this point onwards. 

 

Figure 3. Outliers  

2.4 Modelling 

Modelling is the stage where various models are built and evaluated using different techniques. Each cost 

model aims to find the best machine-learning algorithm to predict the dependent parameter. For this phase, 

RapidMiner (by Altair Engineering) was used. It is a data science platform with many different algorithms 

for machine learning. In RapidMiner Studio, an extension, Auto Model, accelerates the process of building 

and validating models. The performance is calculated on a 40% hold-out set which has not been used for 

any of the performed model optimisations. This hold-out set is then used as input for a multi-hold-out-set 

validation where we calculate the performance for seven disjoint subsets. The largest and the highest 

performance are removed, and the average of the remaining five performances is reported here. Although 

this validation is not as thorough as full cross-validation, this approach balances runtime and model 

validation quality (RapidMiner Documentation, 2023). The authors chose to use the relative error because 

it is easily interpreted by an engineer and directly comparable with business understanding. The relative 

error is the average absolute deviation of the prediction from the actual value divided by the maximum of 

the real and forecast values. The values of the label attribute are the actual values (RapidMiner 

Documentation, 2023). 

The first activity is to choose the algorithm to test. RapidMiner allows testing and comparing five 

algorithms: Generalised Linear Model, Deep Learning, Decision Tree, Random Forest and Gradient 

Boosted Trees. 

Cost models are generated through RapidMiner in the second activity. Before launching the analysis, 

however, some columns were excluded because containing redundant information and were highly 
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correlated to other parameters (Mass Finished and Mass Raw Material with the relative volumes; Material 

cost and Process cost with the Total cost). The database comprises 188 rows and 20 columns, including the 

dependent parameter. 

In the third activity, the model obtained is evaluated through performance indicators. The result obtained 

will be used to choose the best algorithm. The authors selected for this study the relative error. Namely, it is 

the average absolute deviation of the prediction from the actual value divided by the real value.  

Table 2. Model comparison 

Model Relative Error Standard Deviation 

Deep Learning 64.15% ±10.11% 

Generalized Linear Model 53.41% ±9.87% 

Decision Tree 24.41% ±2.42% 

Random Forest 25.36% ±2.59% 

Gradient Boosted Trees 27.89% ±2.87% 

 

Activities of this phase are repeated for each algorithm to be tested. Through a direct comparison of the 

performance indicators, the algorithm providing the minor error is chosen (Table 2). The decision tree is 

selected for this study. 

A feature selection activity has been envisaged in the fourth activity, which can also lead to the 

confirmation of the independent parameters if the results obtained from the performance indicators satisfy 

the requests. The choice of cost drivers is made to select the most representative parameters. The final 

option is left to the user, but he can receive suggestions through this method. The selection of the features 

can take place simply through the user's choice based on his experience, knowledge and critical sense. To 

support the user in choosing, there are two possible methods: filter and wrapper. Filter methods focus on 

the features' intrinsic properties without involving a model or a classifier (e.g. Pearson analysis). Wrapper 

methods involve a model, and the goal is optimising the predictive performance of a model (e.g. Sequential 

Forward Selection, SFS). For this study, it was decided to use SFS, a wrapper method, because it allows 

obtaining a higher level of accuracy than a filter method. In contrast, it requires a high computational load 

since it involves a prediction model. 

From 19 independent parameters, the problem's dimensionality was reduced to 15. This reduction has 

improved the relative error, now 23.52% ± 1.37%. 

The modelling phase must be repeated as often as the dependent parameters chosen. In this case study, 

there is one dependent parameter, the total cost. Table 3 shows the data collected for the parameters 

preferred by the selection feature for the three components shown in Figure 2. 

Table 3. Cost drivers for some test components 

Part Shaft Transmission coupling Case 

D1 [mm] 50 70 255 

D2 [mm] 50 70 255 

D3 [mm] 200 40 100 

Volume_Finished [mm^3] 98187 62841 1122624 

N_Surface 40 30 70 

Min_Roughness [µm] 1.6 1.6 1.6 

Std_R_Surface [mm^2] 18133 15788 141276 

Milling_Geometry YES YES YES 

Ring_Seat YES NO YES 

Tab_Key_Seat YES NO NO 

D_Internal [mm] 0 25 160 

Total_Surface [mm^2] 20645 17429 195015 

Min_R_Surface [mm^2] 2512 1641 53739 

Finished_Type Full Hollow Hollow 

Std_Roughness [µm] 6.3 3.2 6.3 
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2.5 Evaluation 

The cost model produced shows a higher ability to forecast that dependent parameter. This activity 

determines if the accuracy of the cost model satisfies the criteria set out in the Business Understanding 

phase. The obtained performance of the cost model is compared to that established at the outset. Using 

the cost model is possible if the comparison demonstrates compliance with the standards. The 

requirements are evaluated if the comparison reveals non-conformity with the criteria, which prevents 

the model from being employed. The cost model obtained has a relative error lower than the 

requirements of the business understanding. 

2.6 Deployment 

Users may control the parametric cost model throughout the deployment process and assess the effects 

of each independent parameter on the cost. This action represents the model interpretation. This 

activity aims to deliver a fully interpretable cost model, not a black box. A thorough feature 

importance research is conducted, allowing users to understand the relevance of each independent 

parameter and how it influences the cost. To determine the significance of the characteristic, many 

methods may be employed. The FPI method allows for identifying the factors affecting the cost of the 

product or process and subsequently assists the designer in using the cost model at the preliminary 

stage. This activity is introduced to improve the explainability of the model and not to improve 

performance. The FPI measures the increase in the model's prediction error after it permuted the 

feature’s values, which breaks the relationship between the feature and the true outcome. The results 

of this analysis were calculated by the commercial tool RapidMiner. Figure 4 shows that the volume 

of the raw material (Total_Surface) is a very relevant parameter for obtaining the final cost. A change 

of this parameter during design significantly impacts the price. 

 

Figure 4. Feature permutation importance 

3 RESULTS AND DISCUSSION 

The cost model allows predicting an axisymmetric component's cost with a relative error of 23.52% ± 

1.37%. The error obtained aligns with what the business understanding requires (30%). It falls within 

the Class 3 estimation of the degree of definition of a project as indicated by E2516 − 11, Standard 

Classification for Cost Estimate Classification System. The independent parameters required for the 

prediction are: 

• Total_Surface [mm^2]: is the total surface of the part; 

• Min_R_Surface [mm^2]: indicates the area destined to the minimal roughness; 

• D3 [mm]: is the axial dimension of the part; 

• Tab_Key_Seat: means whether machining has been carried out for the seats of keys and tongues; 

• N_Surface: is the number of surfaces of the finite; 

• Milling_Geometry: indicates if milling operations have been carried out; 

• Std_R_Surface [mm^2]: it is the area destined to the standard roughness; 
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• Std_ Roughness [µm]: means the typical roughness; 

• Ring_Seat: is the number of seats for rings; 

• Volume_Finished [mm^3]: indicates the finished volume; 

• Min_Roughness [µm]: means the minimum roughness; 

• Finished_Type: is the type of the part (full or hollow); 

• D1 [mm] and D2 [mm]: these are the two fundamental dimensions of the axisymmetric 

component; 

• D_internal [mm]: indicates the internal diameter of the part. 

Most cost drivers chosen are information known during the preliminary design phases. Using SFS as a 

feature selection technique made it possible to reduce the problem's dimensionality. This procedure is 

suitable because machine learning models sometimes worsen because they are often overfitted. The 

relative error improvement is a direct consequence. It should be underlined that the reduction of the 

independent parameters leads to an improvement in computational efficiency and an increase in the 

ease of data collection and favours the interpretability of the model. Applying the FPI allows for 

understanding the cost model and the importance of the features. Therefore the cost model is not 

perceived as a black box. LeanCOST, an analytical cost estimation software, has made it possible to 

obtain a robust database for training machine learning algorithms. Its use allowed for overcoming the 

limitations of developing a parametric cost model by using few, fragmented and not-normalised 

historical data. The developed method is not tied to any software tools. The methodology can be 

applied using other analytical cost estimation and data science software. The main limitation of this 

study concerns the limited number of non-geometric attributes (e.g., materials, production batch, 

production country, unitary material price) considered for developing the cost model. Furthermore, the 

database is based on medium-complex axisymmetric parts. It should be extended to manage more 

complex shapes.  

4 CONCLUSIONS 

The proposed method has made it possible to obtain a cost model, including business requests 

(business understanding). Then, in the data understanding, it is analysed the characteristics of the 

product to be assessed. In data preparation, it is created the database which was used in the modelling 

phase to generate the cost model. The evaluation phase made it possible to verify that the model 

obtained was in line with the initial requests. Finally, the interpretation of the accepted model took 

place during the deployment. The cost model coherently predicts the cost of axisymmetric components 

with E2516 − 11, Standard Classification for Cost Estimate Classification System. The problems of 

model overfitting and interpretability have been adequately addressed. Future work aims to improve 

the model by considering more complex components and non-geometrical features. The goal is to 

extend the analysis to other geometries, morphologies and production processes.  
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