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Two Algorithms
for a Moving Frame Construction

Irina A. Kogan

Abstract. The method of moving frames, introduced by Elie Cartan, is a powerful tool for the solution

of various equivalence problems. The practical implementation of Cartan’s method, however, remains

challenging, despite its later significant development and generalization. This paper presents two new

variations on the Fels and Olver algorithm, which under some conditions on the group action, sim-

plify a moving frame construction. In addition, the first algorithm leads to a better understanding of

invariant differential forms on the jet bundles, while the second expresses the differential invariants

for the entire group in terms of the differential invariants of its subgroup.

1 Introduction

Elie Cartan’s method of equivalence [5] is a natural development of the Felix Klein
Erlangen program (1872), which describes geometry as the study of invariants of
group actions on geometric objects. Classically, a moving frame is an equivariant
map from the space of submanifolds (or more rigorously, from the corresponding

jet bundle) to the bundle of frames. Exterior differentiation of this map produces a
number of differential invariants. Differential invariants provide a key to the solu-
tion of many equivalence problems and are also used in the process of reduction of
differential equations and variational problems (see for instance [6], [12], [17], [19],

[2] and [18]).
Considering moving frame constructions on homogeneous spaces, Griffiths [15]

and Green [14] observed that a moving frame can be viewed as an equivariant map

from the space of submanifolds to the group itself. Adopting this observation as a
general definition of a moving frame, Fels and Olver [10], [11] generalized Cartan’s
method to arbitrary, not necessarily transitive, finite-dimensional Lie group actions
on a manifold, introducing a simple algorithm for constructing moving frames and

differential invariants. Following this algorithm, one prolongs the action to a jet space
of sufficiently high order to obtain a system of algebraic equations on the group pa-
rameters, whose solutions lead to a moving frame. This last step might become trivial
or very difficult depending on the group action we consider. In the earlier methods

[15] and [14], however, the moving frame is constructed gradually—at each order of
prolongation one normalizes some of the group parameters, at the end obtaining a
moving frame for the entire group. We combine the advantages of both approaches
in the recursive algorithm presented here. This approach, along with the known re-

sult [23] cited in Proposition 3.8, leads to a description of the structure of invariant
differential forms on the jet bundles, the question raised in [9].
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Not surprisingly, the construction of moving frames and differential invariants is
simpler when the acting group has fewer parameters. Thus, it is desirable to use the

results obtained for a subgroup A ⊂ G to construct a moving frame and differential
invariants for the entire group G. The inductive algorithm presented here allows us,
in the case when the group G factors as a product, to extend a moving frame for a
subgroup to the entire group. As a byproduct one obtains at the same time the re-

lations among the invariants of group G and its subgroup A. It is worth remarking
that, in order to obtain such relations, the algorithm does not require the explicit for-
mulae for the invariants of either G or A, but only the corresponding moving frames
(or normalizations) which lead to these invariants. We illustrate the algorithm by

making an induction from the Euclidean action on plane curves to the special affine
action, and then to the action of the entire projective group, which leads to the ex-
pression of the affine invariants in terms of the Euclidean ones and the projective
invariants in terms of the affine ones. These are classical actions whose differential

invariants are well known (for instance, see [3], [7], [10]). The actions of all three
groups play an important role in computer image processing [8], [22]. We also in-
clude the derivation of the affine invariants in terms of the Euclidean for curves in
R

3.

2 The Method of Moving Frames

Given a manifold M of dimension m and an integer 1 ≤ p ≤ m, we let Jk = Jk(M, p)

denote the k-th order jet bundle, whose fiber over z ∈ M consists of equivalence
classes of p-dimensional submanifolds of M under the equivalence relation of k-th
order contact at z. The infinite jet bundle J∞ = J∞(M, p) is defined as the inverse
limit of the finite jet bundles under the standard projections πk+1

k : Jk+1 → Jk. We

will identify functions and differential forms on Jk with their pull backs to any higher
order jets including J∞.

Let U be a coordinate chart on M. We arbitrarily divide the set of coordinate
functions on U into two subsets: the set of independent variables x1, . . . , xp and the

set of dependent variables u1, . . . , uq, where p + q = m. The k-th jets of all sub-
manifolds S ⊂ U which satisfy the transversality condition dx1 ∧ · · · ∧ dxp|S 6= 0
form a coordinate chart U k ⊂ Jk which can be parameterized by coordinate func-
tions x1, . . . , xp, uα

J , where i = 1, . . . , p, α = 1, . . . , q and J = ( j1, . . . , jk), with

0 ≤ jν ≤ p, is a symmetric multi-index of length | J| = k.
The cotangent bundle over J∞ has a distinguished sub-bundle C, whose sections

are identically zero when restricted to a jet of any p-dimensional submanifold of
M. In local coordinates C is spanned by the forms θα

J = duα
J − ∑p

i uα
J,idxi , α =

1, . . . , q, 0 ≤ | J|. The differential ideal generated by one-forms in C is called contact

ideal. On a local chart we can define a complementary horizontal sub-bundle H

spanned by the forms dx1, . . . , dxp. This splitting induces a bigrading on the algebra
of differential forms

∧

T∗ J∞. For any differential form λ, we let πHλ denote its

purely horizontal component and πV λ denote its purely contact component. There
is also a corresponding splitting of the tangent bundle over J∞. In particular, the
vector fields on J∞, which are annihilated by any contact form, form a sub-bundle
of total (or horizontal) vector fields.
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A smooth action of a Lie group G on M can be uniquely prolonged to a smooth
action on J∞ under the condition that it preserves contact ideal. By definition, a

k-th order differential invariant of G is a function on Jk which is invariant under the
prolonged action.

We will review the basic steps of the moving frame construction presented in [11]
by Fels and Olver.

Definition 2.1 A k-th order (right) moving frame is a smooth right G-equivariant
map ρ(k) from an open subset of Jk to G:

(1) ρ(k)(g · z(k)) = ρ(k)(z(k)) · g−1,

for all g ∈ G such that z(k) and g · z(k) ∈ Jk are in the domain of definition of ρ.

The existence of a moving frame on a jet bundle can be deduced from the follow-
ing two theorems. See [11] for a proof of the first theorem and [21], [20], for a proof

of the second one.

Theorem 2.2 Let a Lie group G act on a manifold N. Then there exists a smooth G-

equivariant map from a neighborhood of each point in N to the group G if and only if G

acts freely and regularly.

The regularity condition in the above theorem means that every point of N has

arbitrarily small neighborhoods whose intersection with each orbit is a connected
subset thereof.

Theorem 2.3 Let G be a Lie group that acts locally effectively on each open subset of

M. Then there is a minimal order n ≤ r = dim G, such that the prolonged action of G

on Jk is locally free on some open and dense subset Vk ⊂ Jk for each k ≥ n.

By definition, local freeness of the action means that the isotropy group of each

point is discrete. The order n in the theorem above is called the order of stabilization

and the subsets Vk are called regular.
We notice that the conclusion of the second theorem is weaker than the assump-

tion of the first one. It guarantees, however, that all orbits on Vn have the same di-

mension r = dim G. Using the Frobenius’ theorem, one can construct a submanifold
Kn, which is transversal the orbits on an open neighborhood of a point z(n) ∈ Vn,
and has complementary dimension. Such manifold is called a cross-section to the or-
bits. (See the proof of Theorem 4.4 for a similar construction.) If the action is regular,

then by shrinking Kn we can make it intersect each orbit no more than once. Let us
assume for a moment that the action is free and regular. Then the moving frame (1)
near Kn is defined by the condition

ρ(z(n)) · z(n) ∈ K
n.

Since each orbit intersects Kn at a unique point,

(2) ρ(z(n)) · z(n)
= ρ(g · z(n)) · (g · z(n))
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and this leads to the right equivariance condition (1) due to the freeness assumption.

The cross-section Kn and the moving frame ρ can be extended to any higher order

regular set Vk, including V∞ ⊂ J∞, by defining Kk = {z(k) | πk
nz(k) ∈ Kn} and

ρ(z(k)) = ρ
(

πk
n(z(k))

)

for k = n, . . . ,∞.

Remark 2.4 For a locally free, not necessarily regular action on Vn, which is guar-
anteed by Theorem (2.3), a moving frame can be defined in a similar fashion. In this
case, however, the equivariant condition (1) will hold only when g belongs to some
open neighborhood of the identity in G which may depend on z(n).

Remark 2.5 Despite the locality of the moving frame definition, we will adopt a
global notation, therefore writing ρ : J∞ → G, while, in fact, the domain and the

range of ρ are some open subsets of J∞ and G respectively.

Moreover, the differential invariants and invariant differential forms which appear
further might be defined only locally, on an open subset of J∞, and be invariant only
with respect to group elements in some open neighborhood of the identity. Such

invariants are often referred as infinitesimal invariants, since they can be defined by
the condition that their Lie derivatives with respect to any infinitesimal generator of
the action vanish.

Given a moving frame, one can define a process of invariantization (see [11], [18])
which will project the space of differential forms (in particular functions) on J∞ onto
the space of invariant differential forms (functions). We start by lifting the prolonged
G action to the space B = G × J∞:

h · (g, z(∞)) = (gh−1, h · z(∞)),

where g, h ∈ G. We also introduce maps w : B → J∞ to be defined by the prolonged
group action: w(g, z(∞)) = g · z(∞), and σ : J∞ → B to be defined via a moving
frame: σ(z(∞)) =

(

ρ(z(∞)), z(∞)
)

. We note that w is a G-invariant map, while σ

is a G-equivariant map. Thus their composition w ◦ σ(z(∞)) = ρ(z(∞)) · z(∞) is a
G-invariant projection J∞ → K∞.

The cotangent bundle T∗B over B is a direct sum of the bundles T∗G and T∗ J∞.
This induces a bigrading on

∧

T∗B. For a differential form λ̃ on B we let πGλ̃ denote
the purely group component of λ̃ and π Jλ̃ its purely jet component. If λ̃ is a one-

form then λ̃ = πGλ̃ + π Jλ̃ = πGλ̃ + πHλ̃ + πV λ̃.

Definition 2.6 The invariantization of a differential form λ on J∞ is the invariant

differential form

(3) ι(λ) = σ∗(π J(w∗λ)
)

.

In the case of functions (zero forms) (3) reduces to

(4) ι( f )(z(∞)) = σ∗w∗( f )(z(∞)) = f
(

ρ(z(∞)) · z(∞)
)

.
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Geometrically, invariantization of a differential form λ (or function f ) is the unique
invariant differential form (function) which agrees with λ (or f ) on the cross-section

K∞. We note also that both w∗λ and π Jw
∗λ are invariant forms on B.

Invariantization of the coordinate functions:

Hi
= ι(xi), i = 1, . . . , p, Iα

J = ι(uα
J ), α = 1, . . . , q,

provide a complete (or fundamental) set of local differential invariants on J∞, in a
sense that every other local differential invariant can be expressed as a function of
these invariants.

Invariantization of the basis one-forms dx1, . . . , dxp, θα
J :

$i
= ι(dxi) = σ∗d Jw

∗(xi), i = 1, . . . , p,

ϑα
J = ι(θα

J ) = σ∗π Jw
∗(θα

J ), α = 1, . . . , q

produces an invariant coframe on J∞. We note that invariantization preserves the

contact sub-bundle C of T∗ J∞, but the horizontal sub-bundle H is not generally
preserved under invariantization. We can decompose $i = ι(dxi) = ωi + ηi , i =

1, . . . , p, where the non-zero horizontal forms

(5) ωi
= σ∗πHw∗(dxi) = σ∗dHw∗(xi)

are invariant up to a contact form, that is, g∗ωi = ωi+Θi , for some contact one-forms
Θi . Forms with such transformation property are called contact invariant. By adding

contact forms ηi to ωi one obtains fully invariant forms $i . Forms ωi , i = 1, . . . , p

are linearly independent. The total vector fields Di , i = 1, . . . , p, dual to ωi , form
a complete set of invariant differential operators, which map differential invariants to
differential invariants of higher order. See [19] for further details.

Example 2.7 Let us consider the action of the special Euclidean group SE(2) =

SO(2) n R2 on plane curves u = u(x). Its first prolongation, given by

x 7→ cos(φ)x − sin(φ)u + a,

u 7→ sin(φ)x + cos(φ)u + b,

ux 7→
sin(φ) + cos(φ)ux

cos(φ) − sin(φ)ux

(6)

defines a free action on J1(R
2, 1). A moving frame on J1(R

2, 1) can be obtained
by choosing a cross-section {x = 0, u = 0, ux = 0}. Then an equivariant map
J1(R

2, 1) → SE(2) is found by setting expressions (6) equal to zero and solving for

the groups parameters:

(7) φ = − arctan(ux), a = − uxu + x
√

1 + u2
x

, b =
uxx − u
√

1 + u2
x

.
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The corresponding element of the special Euclidean group can be written in a matrix
form:

ρ =







1√
1+u2

x

ux√
1+u2

x

− uux+x√
1+u2

x

− ux√
1+u2

x

1√
1+u2

x

xux−u√
1+u2

x

0 0 1






.

A fundamental set of k-th order differential invariants can be obtained by prolonging
the action to Jk and normalizing the group parameters, that is by substituting (7)
into the formulae. For instance, the forth order prolongation is given by:

uxx 7→
uxx

∆3
,

uxxx 7→
∆uxxx + 3 sin(φ)u2

xx

∆5
,

uxxxx 7→
∆2uxxxx + 10 sin(φ)∆uxxuxxx + 15 sin2(φ)u3

xx

∆7
,

(8)

where ∆ = cos(φ) − sin(φ)ux . Substitution of (7) into (8) produces fourth order
differential invariants:

Ie
2 =

uxx

(1 + u2
x)3/2

,

Ie
3 =

(1 + u2
x)uxxx − 3uxu2

xx

(1 + u2
x)3

,

Ie
4 =

(1 + u2
x)2uxxxx − 10uxuxxuxxx(1 + u2

x) + 15u2
xu3

xx

(1 + u2
x)9/2

.

(9)

We note that Ie
2 = κ, the Euclidean curvature, Ie

3 = κs =
dκ
ds

, where ds =
√

1 + u2
x dx is infinitesimal arc length, but Ie

4 = κss + 3κ3 (instead of just κss), ac-
cording to recurrence formula (13.4) in [11]. The contact invariant differential form
equals to ω = σ∗(dHw∗x) =

√

1 + u2
x dx = ds. The dual total vector field D =

1√
1+u2

x

Dx =
d
ds

provide an invariant differential operator, such that any other invari-

ant can be expressed as a function of κ and its derivatives with respect to D.

Remark 2.8 Lack of space precludes a detailed comparison of the classical method
of moving frames as presented, for instance, in [5] and [16], with its generaliza-
tion [11] described above. We note, however, that all classical moving frames lead

to equivariant maps from a jet bundle to the group under consideration, while cer-
tainly not every such map can be described as an invariant section of a frame bundle.
Classical differential invariants are obtained by pulling back the invariant coframe on
G under this equivariant map, which may lead to a different (but equivalent) set of

fundamental invariants.
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3 Recursive Construction of Moving Frames

Assume that a smooth action of G on M is regular but not free. Using Frobenius’
theorem, one can still find a local cross-section K to the orbits of G and define a local

map ρ0 : M → G by the condition ρ0(z) · z ∈ K for z ∈ M. Then the non-constant
coordinates of ρ0(z)·z provide a complete set of zero order differentials invariants. We
remind the reader that despite our global notation, the whole construction is in fact
local (see Remark 2.5). At the next stage we would like to obtain invariants of strictly

higher order and also to use the map ρ0 as a building block for the moving frame.
The recursive algorithm presented here allows us to do so, provided we require each
point of K have the same isotropy group. The obvious necessary condition for the
existence of such cross-section in a neighborhood U of z0 ∈ M is that the isotropy

groups of any two points in U are conjugate by an element of G, or in other words,
all orbits are of the same type. There is a simple counterexample of this phenomenon
([24], Example 1, Section 7).

Example 3.1 Let R
2 act on R

2 by

x → x + au + b, u → u.

The isotropy group of a point (x0, u0) is defined by the condition au0 +b = 0. The or-
bits are lines parallel to the x-axis. All the points that lie on the same orbit have equal
isotropy groups. On the other hand the isotropy groups of two points from different
orbits are not equal and they are not conjugate because the group is commutative.

In the case when all orbits are of the same type, the cross-section K with the same
isotropy group at each point, satisfies a more general definition of slice (see Bredon
[4] Definition 4.1 and Theorem 4.4). For this reason we will call K an isotypic slice.
When G is a compact Lie group, Theorem 5.4 in [4] implies the existence of a slice.

It can be generalized to the case of a proper action of a non-compact group [13].

Definition 3.2 The action of G is called proper if the map θ : G × M → M × M

defined by θ(g, z) = (g · z, z) is proper. In other words if K ⊂ M × M is compact
then so is θ−1(K) ⊂ G × M.

It is not difficult to prove that any continuous action of a compact group is proper.
Since θ−1(z, z) = (H, z) where H is an isotropy group of z, if the action is proper,
then the isotropy group of each point is compact. The following proposition can be
deduced from Theorems 4.4 and 0.9 in [4].

Proposition 3.3 Let the action of G on M be proper with all orbits of the same type.

Then a slice exists and is isotypic. In other words, a slice provides a local cross-section K

with the same isotropy group at each point.

We assume further that an isotypic slice exists at each order of prolongation. Our
algorithm is based on the following observation.
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Proposition 3.4 Let G act regularly on a manifold M and let K be a slice. Then the

condition ρ(z)·z ∈ K for z ∈ M defines a smooth G-equivariant map [ρ] : M → H\G.

Proof Let group elements g1 and g2 be such that g1 · z ∈ K and g2 · z ∈ K. Since each
orbit intersects the slice K at one point, g1 · z = g2 · z and so g−1

2 g1 belongs to the
isotropy group Gz of z. On the other hand, since H is the isotropy group of g2 ·z ∈ K,

Gz = g−1
2 Hg2. Thus g−1

2 g1 ∈ g−1
2 Hg2. Hence g1 ∈ Hg2, or equivalently [g1] = [g2].

We have proved that the map [ρ] is well defined. The smoothness of [ρ] follows from
the smoothness of the group action and the smoothness of the standard projection G

−→ H \ G.

To show the equivariance of [ρ] we need to prove that [ρ](g · z) = [ρ](z)g−1. Let
us choose q1 ∈ [ρ](z) and q2 ∈ [ρ](g · z). By construction of [ρ] one has

q2 · (g · z) = q1 · z ∈ K.

It follows that q−1
1 q2g ∈ Gz = q−1

1 Hq1, or equivalently

q2 ∈ Hq1g−1.

Since [ρ](z) = Hq1 and [ρ](g · z) = Hq2 we have proved that [ρ](g · z) = [ρ](z)g−1.

Note that we can extend [ρ] to a G-equivariant map on Jk for any k by [ρ](z(k)) =

[ρ]
(

πk
0(z(k))

)

.

Algorithm 3.5 On the zeroth step we consider the action of the group G on M, such

that there is an isotypic slice K0 with a constant isotropy group H0. According to
Proposition 3.4, the condition ρ0(z) · z ∈ K0 defines a smooth G-equivariant map
[ρ0] from M to the right cosets H0 \ G. The non-constant coordinates of ρ0(z) · z

provide a complete set of the zeroth order invariants. The first prolongation of the

H0-action on J1 can be restricted to the set K1
0 = {z(1) | π1

0(z(1)) ∈ K0} ⊂ J1.
On the first step we look for a cross-section K1 ⊂ K1

0 for the H0-action on K1
0

with a constant isotropy group H1 ⊂ H0. We use this cross-section to define an
H0-equivariant map [τ1] : K1

0 → H1 \ H0, by the condition τ1(z(1)) · z(1) ∈ K1 for

z(1) ∈ K1
0. Then the map

(10) [ρ1](z(1)) =
[

τ1

(

ρ0(z(1)) · z(1)
)

ρ0(z(1))
]

is a G-equivariant map from J1 to H1 \ G. Here τ1 and ρ0 denote representatives of
the cosets [τ1] ∈ H1\H0 and [ρ0] ∈ H0\G respectively, multiplied as elements of the
group G. Since K1 is a isotypic slice for the first prolongation of the G-action with
the isotropy group H1, then ρ1(z) = τ1

(

ρ0(z(1)) · z(1)
)

ρ0(z(1)) satisfies the conditions

of the Proposition 3.4 and thus the map [ρ1] is well defined (does not depend on
the choice of representatives τ and ρ) and G-equivariant. One can also verify the
correctness of definition (10) directly. It is clear that the coset [ρ1] ∈ H1 \G does not
depend on the choice the representative τ1 ∈ H1 \ H0. Let h0ρ0(z(1)), where h0 ∈ H0,
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be another representative of the coset [ρ0] ∈ H0 \ G. Due to the H0-equivariance of
τ1 we have

τ1

(

h0ρ0(z(1)) · z(1)
)

h0ρ0(z(1)) = τ1

(

ρ0(z(1)) · z(1)
)

h−1
0 h0ρ0(z(1))

= τ1

(

ρ0(z(1)) · z(1)
)

ρ0(z(1)).

The non-constant coordinates of ρ1(z(1)) ·z(1) provide a complete set of the first order

invariants.
We continue by prolonging the action of H1 to the next order, or we may prolong

by several orders at once if we wish. Thus we start the k-th step with a G-equivariant
smooth map [ρk−1] : Jk−1 −→ Hk−1\G which projects Jk−1 to the cross-section Kk−1

with a constant isotropy group Hk−1. We prolong the action of Hk−1 to Jk and then
restrict it to the Hk−1-invariant set Kk

k−1 = {z(k) | πk
k−1(z(k)) ∈ Kk−1} ⊂ Jk. For this

restricted action of Hk−1 we find an isotypic slice Kk ⊂ Kk
k−1 with a constant isotropy

group Hk. This isotypic slice furnishes a smooth Hk−1 equivariant map [τk] : Kk
k−1

−→ Hk \ Hk−1. The map

(11) [ρk](z(k)) =
[

τk

(

ρk−1(z(k)) · z(k)
)

ρk−1(z(k))
]

is a G-equivariant map from Jk to Hk \ G. The non-constant coordinates of

(12) ρk(z(k)) · z(k)

provide a complete set of k-th order differential invariants.
The algorithm terminates at the order where the isotropy group becomes trivial

(or at least discrete). The next propostion shows that for regular jets this happens at
the order n of stabilization.

Proposition 3.6 Let n be the order of stabilization. Then on the n-th step of the above

algorithm we will be able to find a local cross-section Kn with a discrete isotropy group.

As before let Vn ⊂ Jn denote an open dense subset of regular jets. This means that
the prolonged action is locally free on Vn. In order to find a desired cross-section Kn

it sufficient to show that the set Kn
n−1 = {z(n) | πn

n−1(z(n)) ∈ Kn−1} ∩ Vn 6= ∅. We

first note that since all points on the same orbit have isomorphic isotropy groups, the
sets Vn and Jn \ Vn are G-invariant. Thus, if the intersection above is empty, then
Kn

n−1 ⊂ Jn \ Vn, and hence G · Kn
n−1 = {g · z(n) | z(n) ∈ Kn

n−1, g ∈ G} ⊂ Jn \ Vn.
On the other hand, πn

n−1(G ·Kn
n−1) = G · (πn

n−1K
n
n−1) = G ·Kn−1 is an open subset

of Jn−1. Since πn
n−1 is continuous it follows that G ·Kn

n−1 is an open subset of Jn that
belongs to Jn \ Vn. We arrive to a contradiction because Vn is dense.

The algorithm resembles in many ways the one presented by M. Green [14] for

constructing moving frames for curves in homogeneous spaces. However, taking
advantage of the generalized approach by Fels and Olver [11], we can apply our algo-
rithm to construct a moving frame for submanifolds of any dimension under more
general (not necessarily transitive) group actions.

https://doi.org/10.4153/CJM-2003-013-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-013-2


Two Algorithms for a Moving Frame Construction 275

The algorithm produces a descending chain of the isotropy groups: H0 ⊃ H1 ⊃
· · · ⊃ Hn, where Hn is at most discrete and the sequence of cross-section Ki , i =

1, . . . , n, such that πk
k−1Kk is an open dense subset of Kk−1. Moreover, Jk locally

splits into the product of the cross-section Kk and the homogeneous space Hk \ G.
This splitting commutes with projections to the lower jets:

M (H0 \ G) × K0
-

([ρ0], ι0)

J1 (H1 \ G) × K1
-([ρ1], ι1)

?
π1

0 ?
δ1

0

J2 (H2 \ G) × K2
-([ρ2], ι2)

?
π2

1 ?
δ2

1

? ?

...
...

Jn (Hn \ G) × Kn
-([ρn], ιn)

?
πn

n−1

?
δn

n−1

,

where πk
k−1 are the usual jet projections, the maps ιk(z(k)) = ρk(z(k)) · z(k) and

δk
k−1([g]k, z(k)) =

(

[g]k−1, π
k
k−1(z(k))

)

. Here by [g]k we mean the image of g un-
der the standard projection G −→ Hk \ G. Since Hk−1 ⊃ Hk the maps δ are well
defined.

It turns out that the above splitting induces a splitting of the space of invariant
differential forms on Jk. Note that invariant differential forms on Jk form a module
over the ring of k-th order differential invariants.

Proposition 3.7 Let G be a group acting regularly on a manifold M, let K be an

isotypic slice, that is, a cross-section with the same isotropy group H at each point,

and let [ρ] be a G-equivariant map M −→ H \ G defined by the condition ι(z) =

ρ(z) · z ∈ K, where z ∈ M and ρ(z) belongs to the coset [ρ(z)]. Then the module of

invariant differential one-forms on M splits into a direct sum of the submodule ΩG
1,0 =

ι∗(T∗K) of the pull-backs of differential one-forms on K under ι and submodule ΩG
0,1 =

[ρ]∗(T∗H \ G)G of the pull-backs of invariant differential one-forms on the homo-

geneous space H \ G under [ρ]. This induces the following splitting in the space of

invariant k forms: (
∧k

T∗M)G =
⊕

ΩG
s,t , where s, t ≥ 0, s + t = k and ΩG

s,t =
∧s

ΩG
1,0

⊗

[ρ]∗(
∧t

T∗H \ G)G.

Proof We first note that the map ι : M −→ K is G-invariant and the map [ρ] : M

−→ H \ G is G-equivariant. Thus ι∗(ω), where ω is any form on K, and [ρ]∗(µ),
where µ is an invariant form on H \ G, produce invariant forms on M. We conclude
that forms in ΩG

1,0 and ΩG
0,1 are indeed invariant.
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Let Ω1,0 = ι∗(T∗K) be the subspace of the cotangent bundle T∗M spanned over
the ring of all differentiable functions on M by the forms ι∗(ω), where ω ∈ T∗K.

Similarly, let Ω0,1 = [ρ]∗(T∗H \ G) be the subspace of T∗M spanned [ρ]∗(µ), where
µ is any one-form on H \G. Note that ι is a projection from M onto K, whose fibers
are the orbits, so the restriction of any form from Ω1,0 to an orbit is zero. On the
other hand, the map [ρ] restricts to a local diffeomorphism between an orbit O and

H \ G and hence it induces ismorphism between the space of forms on O and on
H \ G. Thus the restriction of the [ρ]∗(µ) to O is non-zero, unless µ ∈ T∗(H \ G)
is a zero form. It follows that Ω1,0 and Ω0,1 have trivial intersection. By dimension
count we conclude that T∗M = Ω1,0 ⊕ Ω0,1. Since ΩG

1,0 is a subset of Ω1,0 and ΩG
0,1

is a subset of Ω0,1 their intersection is also trivial. As a side remark, we notice that,
since the map [ρ] is constant along the leaves of the foliation {g · K | g ∈ G}, then
the forms from Ω0,1 annihilate the tangent spaces to this foliation.

We now prove that any invariant form λ on M is in ΩG
1,0 ⊕ ΩG

0,1. Any one-form λ
can be uniquely decomposed into two components λ = λ1 + λ2, where λ1 ∈ Ω1,0

and λ2 ∈ Ω0,1. Moreover, the subspaces Ω1,0 and Ω0,1 are preserved under the action
of G because ι is G-invariant and [ρ] is G-equivariant. Thus if λ is invariant, then
λ = g∗λ = g∗λ1 + g∗λ2, where g∗λ1 ∈ Ω1,0 and g∗λ2 ∈ Ω0,1. From the uniqueness

of the decomposition it follows that g∗λ1 = λ1 ∈ ΩG
1,0 and g∗λ2 = λ2 ∈ ΩG

0,1.
We are now turning to the description of the invariant k-forms on M. We first

note that the G-invariant splitting of T∗M = Ω1,0 ⊕ Ω0,1 induces a G-invariant
bigrading

∧

T∗M =
⊕

s,t≥0 Ωs,t of the algebra of differential forms on M, where

Ωs,t = (
∧s

Ω1,0)
⊗

(
∧t

Ω0,1). Since the above bigrading is G-invariant, it induces a

bigrading of the ring of invariant k-forms: (
∧

T∗M)G =
⊕

s,t≥0 ΩG
s,t , where ΩG

s,t =

(
∧s

Ω1,0)G
⊗

(
∧t

Ω0,1)G ⊂ Ωs,t . Since ΩG
1,0 is spanned by the differentials of the

complete set of independent invariant functions on M and has the same dimension
over the ring of invariant functions as Ω1,0 over the ring of all functions on M, then
(
∧s

Ω1,0)G =
∧s

ΩG
1,0. The space (

∧t
Ω0,1)G is obtained by pulling back the space of

G-invariant t forms on H \ G under a G-invariant map [ρ].

Invariant forms on H\G are described by the following proposition in [23], Chap-
ter 13.

Proposition 3.8 If π : G −→ H \G is the natural projection, then the map ω −→ π∗ω
is a one-to-one correspondence between the invariant k-forms on H \ G and the right-

invariant, Ad(H) invariant k-forms on G, which annihilate the Lie algebra h of H.

Returning to the jet bundles Jk we can describe, in the case when the group ac-

tion admits isotypic slices Kk with the isotropy group Hk, the structure of invariant
differential forms, answering the question raised in [9]. Indeed, the maps ιk and [ρk]
defined by (12) and (11) satisfy Proposition 3.7. Note also that once the action be-
comes locally free on Jn, then Hn \ G is locally diffeomorphic to G and so admits an

invariant coframe. The pull-back of this coframe under [ρn]∗ along with ι∗n (T∗Kn)
form a local coframe on Jn in agreement with more general result of the existence
of maximal number of relative invariants for locally free actions ([19], Theorem 3.36
and [9]).
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Example 3.9 Let the special rotation group G = SO(3, R) act on M = R
3 \ {0} ×

R by rotations on the independent variables x, y, z and the trivial action on the

dependent variable u.
The action of SO(3, R) on R

3 is not free. The isotropy group of every point on
the positive half of the z-axis consists of the rotations around the z-axis. On the other
hand, each orbit of SO(3, R) intersects the positive half of the z-axis at a unique point,

and hence it can serve as an isotypic slice K0 with the isotropy group H0 w SO(2, R).
We note that the quotient H0 \ G = SO(3, R) \ SO(2, R) is diffeomorphic to a two
dimensional sphere.

We start by constructing a map [ρ0] : M → H0 \G such that ρ0(z) ·z ∈ K0 for any

z ∈ M. Each coset G \ H0 can be represented as a product of two rotations: Rx(α)
with respect to the x-axis and Ry(β) with respect to the y-axis. In matrix form this
can be written as





cos β 0 − sin β
0 1 0

sin β 0 cos β









1 0 0
0 cos α − sin α
0 sin α cos α





=





cos β − sin β sin α − sin β cos α
0 cos α − sin α

sin β cos β sin α cos β cos α



 .

(13)

We choose the first rotation Rx(α) so that it brings an arbitrary point z = (x, y, z) to
the upper xz-plane. It can be achieved by choosing the angle α, such that cos(α) =

z√
y2+z2

and sin(α) =
y√

y2+z2
with 0 ≤ α ≤ π when y ≥ 0, and π < α ≤ 2π when

y < 0. Then Rx(α) · z = (x, 0,
√

z2 + y2). The latter point can moved to the positive
z-axis by the rotation Ry(β), where β = arctan( x√

z2+y2
). Then the only non-constant

coordinate of Ry(β)Rx(α) · z = (0, 0,
√

z2 + y2 + x2) and the coordinate function u

provide a fundamental set of zero order invariants. In the matrix form

(14) ρ0(z) = RyRx =











√
z2+y2

r
− yx

r
√

z2+y2
− zx

r
√

z2+y2

0 z√
z2+y2

− y√
z2+y2

x
r

y
r

z
r











,

where r =
√

z2 + y2 + x2. We note that the above matrix provide a local description

of the map [ρ0] : M → H0 \ G on the coordinate chart which does not include the
x-axis. On the complementary coordinate chart that excludes the y-axis, the same
map is described by the matrix:









z√
x2+z2

0 − x√
x2+z2

− yx

r
√

x2+z2

√
x2+z2

r
− yz

r
√

x2+z2

x
r

y
r

z
r









,

which belongs to the same coset of H0 as (14).
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Since it will be useful for the next step, we compute the first jet coordinates of
ρ0(z(1)) · z(1) by prolonging the action (13) to the first order and then substituting

elements of (14):

Ux =

√

z2 + y2

r
ux −

yx

r
√

z2 + y2
uy −

zx

r
√

z2 + y2
uz ;

U y =
zuy − yuz
√

z2 + y2
;

Uz =
x

r
ux +

y

r
uy +

z

r
uz.

(15)

On the next step we consider the action of the isotropy group H0 on the set K1
0 =

{z(1) | x = 0, y = 0, z > 0} ⊂ J1. We note that on K1
0 the expressions r, u, Ux, U y ,

Uz are equal to z, u, ux, uy , uz repectively. Thus the former set can be considered as a

coordinate set on K1
0 and will be used to describe the action of H0 on K1

0:

(16)
r 7→ r; u 7→ u; Uz 7→ Uz;

Ux 7→ cos γUx − sin γU y ; U y 7→ sin γUx + cos γU y ,

obtained by prolonging the action of




cos γ − sin γ 0
sin γ cos γ 0

0 0 1





to the first order and then restricting it to K1
0. We observe that H0 acts freely on

K1
0 and choose the cross-section K1 = {z(1) ∈ K1

0 | Ux = 0}. This yields a map
τ1 : K1

0 → H0 defined by the equation tan γ =
Ux

U y
and the first order invariants:

(17) u, r, Iy =

√

U 2
x + U 2

y , Iz = Uz;

Substitution of (15) into (17) is equivalent to computing the coordinates of

ρ1(z(1)) = τ1

(

ρ0(z(1)) · z(1)
)

ρ0(z(1)) · z(1)

and thus yields four fundamental first order invariants of SO(3, R):
√

z2 + y2 + x2 = r, u,
√

(yuz − zuy)2 + (zux − xuz)2 + (xuy − yux)2, x
r
ux + y

r
uy + z

r
uz.

The corresponding local moving frame ρ1 : J1 → SO(3, R), defined where Iy is
non-zero, is given by the product

τ1ρ0 =











U y√
U 2

x +U 2
y

− Ux√
U 2

x +U 2
y

0

Ux√
U 2

x +U 2
y

U y√
U 2

x +U 2
y

0

0 0 1























√
z2+y2

r
− yx

r
√

z2+y2
− zx

r
√

z2+y2

0 z√
z2+y2

− y√
z2+y2

x
r

y
r

z
r













,
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where Ux, U y and r should be replaced by their expressions in terms of the initial
coordinates.

Let us now look at the invariant differential forms, first on M = R
4, and then

on the jet spaces. From Proposition 3.7 we know that the module of invariant one-
forms on M is a direct sum of the submodules ΩG

1 of the pull-backs of one-forms

on K0 under the map ι0(z) = ρ0(z) · z, and ΩG
2 of the pull-backs of invariant one-

forms on H0 \ G under the map [ρ0]. Thus ΩG
1 is spanned by dr and du which are

the differentials of the fundamental zero order invariants. These forms actually span
the whole module of invariant one-forms on M, because there is no invariant one-

form on H0 \ G, which is isomorphic to the two-dimensional sphere S2, and so ΩG
2

is empty. There is however a non-trivial invariant two-form cos β dβ ∧ dα on S2.

Its pull-back under [ρ0] produces an invariant two-form ω =
z dx∧dy+y dz∧dx+x dy∧dz

r3

on M = R
3 \ {0} × R, which along with the form dr ∧ du spans the submodule of

invariant two-forms on M. The basis for invariant three-forms is given by ω ∧ dr,

which is invariantly proportional to dx ∧ dy ∧ dz, and ω ∧ du. Invariant four-forms
are spanned by ω∧dr∧du, which is invariantly proportional to dx∧dy∧dz∧du. The
action is free on Jk, for all k > 0 and hence Jk admits an invariant coframe spanned by
the differentials of fundamental invariants and the pull-backs of invariant coframes

on G.

4 A Moving Frame Construction for a Group that Factors as a Product

We say that a group G factors as a product of its subgroups A and B if G = A · B, that

is, for any g ∈ G there are a ∈ A and b ∈ B such that g = ab. We reproduce two
useful statements from [13].

Theorem 4.1 Let G be a group, and let A and B be two subgroups of G. Then the

following conditions are equivalent:

(a) the reduction of the natural action of G on G/B to A is transitive,

(b) G = A · B,

(c) G = B · A,

(d) the reduction of the natural action of G on G/A to B is transitive.

Corollary 4.2 The reduction of the natural action of G on G/B to A is free and transi-

tive if and only if G = A · B (or G = B · A) and A ∩ B = e.

Remark 4.3 If G = A · B and A ∩ B = e, then for each g ∈ G there are unique

elements a ∈ A and b ∈ B such that g = ab. In this case the manifolds A × B and
G are diffeomorphic (although they are not in general isomorphic as groups). In the
case when A ∩ B is discrete then A × B is locally diffeomorphic to G.

The following theorem plays a central role in our construction.

Theorem 4.4 Let A and B act regularly on a manifold M, and assume that in a neigh-

borhood U of a point z0 ∈ M the infinitesimal generators of the A-action are linearly
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independent from the generators of the B-action. Then locally there exists a submani-

fold KA through the point z0 which is transverse to the orbits of the subgroup A and is

invariant under the action of the subgroup B.

Proof Let a be the dimension of the A-orbits, b be the dimension of the B-orbits
on U and m = dim M. By Frobenius’ theorem we can locally rectify the orbits of
B, that is, we can introduce coordinates {y1, . . . , yb, x1, . . . , xm−b} on an open chart

U ⊂ M such that the intersection of the B-orbits with U are defined by the equations
xi = ki , i = 1, . . . , m − b, where ki are some constants. The orbits of B are integral
manifolds for the distribution { ∂

∂y1
, . . . , ∂

∂yb
}. The functions xi are invariant under

the B-action. Let vector fields X1, . . . , Xa and Y1, . . . ,Yb be a basis for infinitesimal

generators of the action of A and B respectively in a neighborhood U containing z0.
The vector fields Yi , i = 1, . . . , b and ∂

∂x j
, j = 1, . . . , m − b are linearly indepen-

dent by the choice of coordinates, and their union forms a basis in TU . We can
choose c = m−b−a vector fields ∂

∂x j1
, . . . , ∂

∂x jc
which are linearly independent from

X1, . . . , Xa in TU . Let K be an integral manifold through the point z0 for the involu-
tive distribution ∆ = { ∂

∂x j1
, . . . , ∂

∂x jc
, ∂

∂y1
, . . . , ∂

∂yb
}. By construction KA is a union

of orbits of B and thus is invariant under the action of B. On the other hand, the dis-
tribution ∆ is transverse to the infinitesimal generators X1, . . . , Xa of the A-action,

and so is transverse to the orbits of A.

With this result we construct a moving frame for a product of groups A and B as
follows.

Algorithm 4.5 Let G = A · B and let A ∩ B be discrete.

Then, as a manifold, G is locally diffeomorphic to A × B. Let n be the order of
stabilization of the G-action. Since both A and B act locally freely on Vn ⊂ Jn and

their intersection is discrete then the infinitesimal generators of the A-action and
the B-action are linearly independent at each point of Vn and hence they satisfy the
conditions of Theorem 4.4. Thus there exists a local cross-section Kn

A ⊂ Vn for the
action of A which is invariant under the action of B. We use this cross-section to

construct a moving frame ρA for A. The map ρA(z(n)) · z(n) projects Vn on the cross-
section Kn

A, which is invariant under the action of B. Moreover the action of B on
Kn

A is locally free, and hence we can choose a cross-section Kn ⊂ Kn
A that defines a

moving frame ρB : Kn
A → B. We can extend ρB to a map ρ̃B : Vn → B by the formula

(18) ρ̃B(z(n)) = ρB

(

ρA(z(n)) · z(n)
)

.

The map ρ̃B is A-invariant but, in contrast to ρB, it is not B-equivariant. The cross-
section Kn is transversal to the orbits of G, and the map ρG defined by

(19) ρG(z(n)) = ρ̃B(z(n))ρA(z(n)) = ρB

(

ρA(z(n)) · z(n)
)

ρA(z(n))

satisfies the condition ρG(z(n)) · z(n) ∈ Kn, and hence is a moving frame for the G-
action.
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Remark 4.6 We emphasize that G-equivariance of the map ρG, claimed above,
follows from the correspondence between cross-sections to the orbits of G and

G-equivariant maps from Jn to G, discussed on page 3. On the other hand, it can be
established explicitly using B-equivariance of the map ρB and the following lemma.

Lemma 4.7 Let G = A·B act freely on a manifold N and let KA be a local cross-section

for the action of A, invariant under the B-action. Then the map ρA : N → A ⊂ G

defined by the condition ρA(z) · z ∈ KA is G-equivariant up to the action of B, that is,

for any g ∈ G there exists b ∈ B such that

ρA(g · z) = bρA(z)g−1.

Proof Let z1 = ρA(z) · z and z2 = ρA(g · z)g · z. By the definition of ρA, both
z1 and z2 belong to KA, and hence from the freeness of the action it follows that
ρA(z1) = ρA(z2) = e ∈ G. Let

(20) h = ρA(g · z)gρA(z)−1 ∈ G,

then z2 = h · z1. Since G = A ·B, there exist a ∈ A and b ∈ B, such that h = ab. Then

(21) e = ρA(z2) = ρA(ab · z1) = ρA(b · z1)a−1.

The last equality follows from A-equivariance of ρA. On the other hand, b · z1 ∈ KA,
since KA is invariant under the action of B, and thus ρA(b · z1) = e. We conclude
from (21) that a = e and hence h = b. The lemma now follows from (20).

The cross-section Kn
A and Kn and the maps ρA and ρB can be extended to higher

order jet bundles as was done in Section 2. The non-constant coordinate functions
of

(22) ρG(z(k)) · z(k)
= ρB

(

ρA(z(k)) · z(k)
)

ρA(z(k)) · z(k), k ≥ n

provide a complete set of k-th order differential invariants for G.

Remark 4.8 We notice that the coordinates of ρA(z(k)) · z(k) are invariant under the
A-action and thus the formula above expresses the invariants of the G-action in terms
of the invariants of its subgroup A.

We can summarize our construction in the following commutative diagram, re-
minding the reader again that although all maps are written as if they were global,
they might be defined only on open subsets of the manifolds appearing in (23).
(23)

J∞ B × J∞-σB B × A × J∞-σA B × J∞-wA J∞-wB

G × J∞

σG

������������:
wG

XXXXXXXXXXXXz?

6
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where the maps w are defined by the prolonged group action:

wA(b, a, z(∞)) = (b, a · z(∞)),

wB(b, z(∞)) = b · z(∞),

wG(g, z(∞)) = g · z(∞)
= wB ◦ wA(b, a, z(∞)) when g = ba.

The maps σ are defined using the moving frames for A, B and G:

σA(b, z(∞)) =
(

b, ρA(z(∞)), z(∞)
)

,

σB(z(∞)) =
(

ρ̃B(z(∞)), z(∞)
)

=

(

ρB

(

ρA(z(∞)) · z(∞)
)

, z(∞)
)

,

σG(z(∞)) =
(

ρG(z(∞)), z(∞)
)

= σA ◦ σB(z(∞)).

The maps wA and wG are A-invariant, whence the maps σA and σB are A-equivariant,
with respect to the A-actions on B×A× J∞, B× J∞ and G× J∞ defined respectively
by:

ã · (b, a, z(∞)) = (b, aã−1, ã · z(∞)),

ã · (b, z(∞)) = (b, ã · z(∞)),

ã · (g, z(∞)) = (gã−1, ã · z(∞)).

The manifolds B × A × Jk and G × Jk are locally diffeomorphic, and this diffeomor-
phism is A-equivariant. We note that neither σA nor σB are B-equivariant, but their

composition is. As it has been discussed in the previous section (see formula (5)) the
forms

(24) ωi
G = σ∗

G dHw∗
G(xi), i = 1, . . . , p,

produce a contact G-invariant coframe on J∞. Since A is a subgroup of G, the forms
ωi

G retain their invariant properties under the action of A. On the other hand, the

moving frame ρA provides us with another horizontal coframe which is contact in-
variant under the action of A:

ωi
A = σ∗

A dHw∗
A(xi), i = 1, . . . , p.

These two coframes are related by a linear transformation wi
G =

∑p
j=1 Li

jw
j
A, where

Li
j are functions on J∞ invariant under the A-action. In fact, Li

j can be explicitly
expressed in terms of the fundamental invariants of A:

(25) ωi
G = σ∗

Bσ∗
A dHw∗

Aw∗
B(xi) = σ∗

Bσ∗
AπHw∗

AdHχi(b1, . . . , bl, x1, . . . , xp, uα
J ),

where χi = w∗
Bxi is a function on B × J∞, written in local coordinates b1, . . . , bl,

x1, . . . , xp, uα
J . The forms σ∗

AπHw∗
A dHχi are obtained from dHχi by replacing forms
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dx j with ω
j
A and coordinate functions x1, . . . , xp, uα

J with their invariantizations

H(A)1, . . . , H(A)p, I(A)α
J . These forms provide a horizontal coframe on B × J∞ which

is contact invariant with respect to the action of A. The final pull-back σ∗
B is equiva-

lent to the replacement of parameters b1, . . . , bl with the corresponding coordinates

of ρB(ρA(z(∞)) · z(∞)). The latter are expressed in terms of invariants of the A-action.

In many situations the following reformulation of Theorem 4.1 enables us to en-
large a moving frame for a transformation group A to a moving frame for a larger

group containing A.

Theorem 4.9 Let O ⊂ M be an orbit of G and let A be a subgroup which acts transi-

tively on O. Then G = B ·A, where B is the isotropy group of a point in O. If in addition

A acts locally freely on O then A ∩ B is discrete.

Let nA be the order of stabilization for A, then the action of A is (locally) free on a
subset VA ⊂ JnA (M, p). Assume that the action of A can be extended to the action of
a group G containing A, so that there is a point z0 ∈ VA such that the orbits of A and

G through z0 coincide. If this is the case, then let B be the isotropy group of the point
z0. Due to the theorem above, G = B · A and A ∩ B is discrete, and so Algorithm 4.5
can be applied. An especially favorable case is when the action of A on the regular
set VA ⊂ JnA (M, p) is transitive. Then a moving frame for A can be extended to a

moving frame for any group G containing A.

5 Examples: Euclidean, Affine and Projective Actions on the Plane

The group of Euclidean motions on the plane is a factor of the group of special affine
motions. In turn, the group of special affine motions is a factor of the group of
projective transformations on the plane. Applying the Inductive Algorithm 4.5 we

express projective invariants in terms of affine, and affine invariants in terms of Eu-
clidean. We also obtain the relations among the Euclidean, affine and projective arc-
lengths, and the corresponding invariant differential operators.

Example 5.1 Let us use the moving frame for the special Euclidean group SE(2, R)
acting on curves in R

2 obtained in Example 2.7 to build a moving frame for the spe-
cial affine group. We recall that the moving frame for SE(2, R) has been obtained on

the first jet space by choosing the cross-section {x = 0, u = 0, ux = 0}. The special
Euclidean group acts transitively on J1(R

2, 1), and the first invariant, the Euclidean
curvature κ, appears on the second order of prolongation. The normalization of uxxx

and uxxxx yields the third and the fourth order invariants Ie
3 = κs and Ie

4 = κss + 3κ3.

The special affine transformation SA(2, R) on the plane is the semi-direct product
of the special linear group SL(2, R) and translations in R

2. We prolong it to the
first jet bundle and notice that the isotropy group B of the point z(1)

0 = {x = 0,
u = 0, ux = 0} is given by all linear transformations of the form

(

τ λ
0 1

τ

)

.
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Due to Theorem 4.9 we obtain a product decomposition: SA(2, R) = B · SE(2, R)
and B∩ SE(2, R) is finite. In fact B∩ SE(2, R) = {I,−I}. Now we prolong the action

of B up to fourth order:

x → τx + λu,

u → 1

τ
u,

ux →
ux

τ (τ + λux)
,

uxx →
uxx

(τ + λux)3
,

uxxx →
(τ + λux)uxxx − 3λu2

xx

(τ + λux)5
,

uxxxx →
(τ + λux)2uxxxx − 10(τ + λux)λuxxuxxx + 15λ2u3

xx

(τ + λux)7
.

and restrict these transformations to the Euclidean cross-section

K
4
E = {z(4) | π4

1(z(4)) = z(1)
0 } = {z(4) | x = 0, u = 0, ux = 0},

obtaining

uxx →
uxx

τ 3
,

uxxx →
τuxxx − 3λu2

xx

τ 5
,

uxxxx →
τ 2uxxxx − 10τλuxxuxxx + 15λ2u3

xx

τ 7
.

The above action is free on the open subset {z(4) ∈ K4
E | uxx 6= 0}, where we choose

a cross-section
K

(4)
= {z(4) ∈ K

4
E | uxx = 1, uxxx = 0}

to the orbits of B on K4
E. This produces a moving frame ρB : K4

E → B:

τ = (uxx)1/3 and λ =
uxxx

3(uxx)5/3
.

The corresponding fourth order invariant for the action of B on K4
E is

(26) Ib
4 =

uxxuxxxx − 5
3
(uxxx)2

(uxx)8/3
.

We note that K4 can be viewed as a cross-section to the orbits of the entire group
SA(2, R) on the open subset of J4 where uxx 6= 0, and that due to formula (22)
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the fourth order special affine invariant can be obtained by invariantization of Ib
4

with respect to Euclidean action, that is, by substitution of the normalized Euclidean

invariants (9) into (26). Thus we obtain the expression of the lowest order special
affine invariant µ in terms of Euclidean invariants:

(27) µ = Ia
4 =

Ie
2Ie

4 − 5
3
(Ie

3)2

(Ie
2)8/3

.

One can rewrite the normalized Euclidean invariants in terms of the Euclidean cur-
vature and its derivatives: Ie

2 = κ, Ie
3 = κs and Ie

4 = κss + 3κ3, which leads to the
expression:

µ =
κ(κss + 3κ3) − 5

3
κ2

s

κ8/3
.

Remark 5.2 The reader might notice that the affine invariant obtained above differs

by a factor of 3 from the classical affine curvature (see, for instance, [3] p. 14). The
appearance of this factor can be predicted from the recurrence formulae (13.4) in
[11].

In accordance with (19) the moving frame for the special affine group correspond-
ing to the cross-section K4 is the product of two matrices:





κ1/3 1
3

κs

κ5/3 0

0 1
κ1/3 0

0 0 1











1√
1+u2

x

ux√
1+u2

x

− uux+x√
1+u2

x

− ux√
1+u2

x

1√
1+u2

x

xux−u√
1+u2

x

0 0 1






.

Using formula (25), one can obtain an affine contact invariant horizontal form dα in
terms of the Euclidean arc-length ds:

dα = σ∗
Bσ∗

EπHw∗
E dHw∗

B(x),

where the Euclidean invariantization of dHw∗
B(x) = (τ + λux) dx equals to τ ds and

hence

(28) dα = σ∗
B(τ ds) = (Ie

2)1/3ds = κ1/3ds.

The form dα is called the affine arc-length. Written in the standard coordinates,

dα = u
1/3
xx dx. The relation (28) between the affine and the Euclidean arc-lengths

provide a natural explanation for the affine curve evolution equation in [22]. The
relation between invariant differential operators follows immediately:

d

dα
=

1

κ1/3

d

ds
,

which enables us to obtain all higher order affine invariants in terms of the Euclidean

ones.
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Example 5.3 Let us now use the moving frame for the special affine group to build
a moving frame for the projective group PSL(3, R), whose local action on the plane

is given by the transformations:

x 7→ αx + βu + γ

δx + εu + ζ
,

u 7→ λx + νu + τ

δx + εu + ζ
,

where the determinant of the corresponding 3 × 3 matrix equals one. The affine

moving frame above corresponds to the cross-section

z(3)
0 = {x = 0, u = 0, u1 = 0, u2 = 1, u3 = 0} ∈ J3.

The isotropy group B of z(3)
0 for the prolonged action of PSL(3, R) consists of the

transformations:




1 ab 0
0 a 0
b c 1

a



 .

Due to Theorem 4.9 we obtain a product decomposition: PSL(3, R) = B · SA(2, R)
and B ∩ SA(2, R) is finite. The affine cross-section

K
7
A = {z(7) | π7

3(z(7)) = z(3)
0 } = {z(7) | x = 0, u = 0, ux = 0, uxx = 1, uxxx = 0}

is invariant under the action of B. The seventh order prolongation of the B-action on

J7 has been computed using the MAPLE package Vessiot [1]. The restriction of this
action to K7

A is given by

u4 →
u4 − 3a2b2 + 6ac

a2
,

u5 →
u5

a3
,

u6 →
u6 + 3abu5 + 30u4(2ac − a2b2) + 180a2c(c − ab2) + 45a2b2

a4
,

u7 →
u7 + 7abu6 + u5(105ac − 42b2a2) − 35(u4)2ab

a5
.

The above action is free on the open subset {z(7) ∈ K7
A | u5 6= 0}, where we choose a

cross-section

K
7
= {z(7) ∈ K

7
A | u4 = 0, u5 = 1, u6 = 0}

to the orbits of B on K7
A. This produces a moving frame ρB : K7

A → B given by

a = (u5)1/3,

b =
5(u4)2 − u6

3(u5)4/3
,

c =
(u6)2 − 10u6(u4)2 − 3u4(u5)2 + 25(u4)4

18(u5)7/3
.
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The corresponding seventh order differential invariant (for the B-action on K7
A) is

(29) Ib
7 =

6u7u5 − 7(u6)2 + 70(u4)2u6 − 105u4(u5)2 − 175(u4)4

6(u5)8/3
.

We note that K7 can be viewed as a cross-section to the orbits of the entire group
PSL(3, R) on the open subset J7, where u5 6= 0. Due to formula (22) the lowest order
projective invariant can be obtained by invariantization of Ib

7 with respect to the affine

action, that is, by substitution of the normalized affine invariants Ia
4 = µ, Ia

5Ia
6 and Ia

7

in (29). Note that we do not need the explicit formulae for these invariants. Thus we
obtain a seventh order projective invariant η in terms of the special affine invariants:

η = I
p
7 =

6Ia
7Ia

5 − 7(Ia
6)2 + 70(Ia

4)2Ia
6 − 105Ia

4(Ia
5 )2 − 175(Ia

4)4

6(Ia
5)8/3

.

Using the recursion formulae from [11] we can express the higher order affine invari-

ants in terms of µ and its derivatives with respect to affine arc-length dα = u
1/3
xx dx.

Thus

Ia
4 = µ, Ia

5 = µα,

Ia
6 = µαα + 5µ2, Ia

7 = µααα + 17µµα.

This leads to the formula:

η =
−7µ2

αα + 6µαµααα − 3µµ2
α

6µ
8/3
α

.

Remark 5.4 The above expression can be compared with analogous formula (61)
in [8]. Keeping in mind that the affine curvature used there differs from µ by a factor
1
3
, we notice that η differs from the classical projective curvature by a factor of 6−5/3.

The moving frame for the projective group is the product of the matrices:







1 − 1
3

µαα

µα
0

0 µ
1/3
α 0

− 1
3

µαα

µ
4/3
α

1
18

µ2
αα−3µµ2

α

µ
7/3
α

1

µ
1/3
α











κ1/3 1
3

κs

κ5/3 0

0 1
κ1/3 0

0 0 1











1√
1+u2

x

ux√
1+u2

x

− uux+x√
1+u2

x

− ux√
1+u2

x

1√
1+u2

x

xux−u√
1+u2

x

0 0 1






.

We can express the projective arc-length (that is, a horizontal form which is con-

tact invariant with respect to the projective action) in terms of the affine arc-length
dα. We first lift the coordinate function x to B× J∞ by w∗

B(x) =
x+abu

bx+cu+1/a
. The affine

invariantization of dHw∗
B(x) produces a horizontal form a dα on B × J∞, where dα

is the affine arc-length (28). The projective arc-length equals to

d% = σ∗
Ba dα = (Ia

5 )1/3 dα = µ1/3
α dα.

The relation between invariant derivatives, d
d% =

1

µ
1/3
α

d
dα , allows us to obtain all higher

order projective invariants in terms of the affine ones.
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6 Euclidean and Affine Actions on Curves in R
3

More generally, the Euclidean group SE(n, R) of orientation preserving rigid mo-
tions in R

n is a factor of the n-dimensional special affine group SA(n, R). In turn,
the special affine group is a factor of the projective group PSL(n + 1, R). Thus, the

above procedure can be carried out in higher dimensions (computations become
quite difficult, however). In this section we use the moving frames and invariants for
the Euclidean action on curves in R

3 to build up the moving frame and differential
invariants for the affine action.

Example 6.1 The classical (left) moving frame for a curve in R
3 consists of a point

on a curve with coordinates (x, u, v), the tangent vector at this point, the normal and
the binormal vectors. It is not difficult to verify that the cross-section K2

E = {z(2) |
x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0} ⊂ J2 gives rise to the corresponding
right moving frame. The latter produces normalized differential invariants, which
can be rewritten in terms of the classical Euclidean curvature and torsion, and their
derivatives with respect to the arc-length ds, using recurrence formulae [11]:

I
u,e
2 = κ,

I
u,e
3 = κs,

I
v,e
3 = κτ,

I
u,e
4 = κss + 3κ3 − κτ 2,

I
v,e
4 = 2κsτ + κτs,

I
u,e
5 = κsss + 19κsκ

2 − 3τ 2κs − 3κττs,

Iv,e
5 = τssκ + 3τκss + 9κ3τ − κτ 3 + 3κsτs.

(30)

The isotropy group B of K2
E consists of upper triangular special linear transforma-

tions:




a b c

0 f g

0 0 1
a f



 .

Due to Theorem 4.9 we obtain a product decomposition: SA(3, R) = B · SE(3, R)
and B ∩ SA(3, R) = I. We prolong the action of B to the fifth order and then re-
strict it to the Euclidean cross-section K5

E = {z(5) | x = 0, u = 0, v = 0, ux = 0,
vx = 0, vxx = 0} ⊂ J5, which is invariant under the action of B. The action of B on
K5

E is given by

u2 → f u2

a2
,

u3 → f

a5
(a2u3 + ga2v3 − 3b f au2

2),

v3 →
v3

a4 f
,
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u4 → 1

a7
(−4u2v3c f a2 + u4 f a3 + v4ga3 + 15b2u3

2 f a − 10u2u3 f a2 − 6u2v3ga2b),

v4 →
1

a8 f
(−6u2v3a2b + v4a3),

u5 → 1

a8 f
(45b2u2

2v3 − 10bu2v4a − 10bv3u3a − 10v2
3ac + v5a2),

v5 →
1

a8
(45u2

2v3gab2 + 105u2
2u3a f b2 + 60u2

2v3c f ab − 15bu2 f u4a2

− 10u2v4ga2b − 5u2v4c f a2 − 105b3u4
2 f − 10u3a2v3gb

− 10u2
3a2 f b − 10u3a2v3c f − 10v2

3a2gc + f u5a3 + gv5a3).

The above action is free on an open subset {z(5) ∈ K5
E | u2v3 6= 0}. On the open

subset where u2v3 > 0, one can choose the cross-section

K
5
= {z(5) ∈ K

7
A | u2 = 1, u3 = 0, v3 = 1, u4 = 0, v4 = 0}

to the orbits of B on K5
E. Assuming further that u2v3 > 0 (equivalently τ > 0),

we note, however, that the cross-section {z(5) ∈ K7
A | u2 = 1, u3 = 0, v3 = −1,

u4 = 0, v4 = 0} can be chosen on the subset where u2v3 < 0 and similar computa-
tions can be conducted.

The cross-section K5 leads to the moving frame ρB : K5
E → B, given by

a = (u2v3)1/6,

b =
1

6

v4

(u2v3)5/6
,

c =
1

48

(v2u3)1/6(12u4u2
3 + 5v2

4u2 − 20u3v3v4)

u2v3
3

,

f =
v3

(u2v3)2/3
,

g =
1

2

−2u3v3 + v4u2

v3(u2v3)2/3
.

The corresponding fifth order differential invariants (for the B-action on K5
E) are

found by substitution of the group parameters in the transformation formulae for u5

and v5.

(31)

I
u,b
5 =

90v4v3(u3v4 − v3u4) − 25v3
4u2 + 36v2

3(v3u5 − u3v5) + 18v5v3u2v4

36u
3/2
2 v

7/2
3

,

Iv,b
5 =

−35v2
4u2 + 60u3v4v3 − 60u4v2

3 + 24v5v3u2

24u
4/3
2 v

7/3
3

.

We note that K5 can be viewed as a cross-section to the orbits of the entire group
SA(3, R) on an open subset J5, where u2v3 > 0. Due to formula (22) the two lowest
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order affine invariants can be obtained by invariantization of I
u,b
5 and I

v,b
5 with respect

to Euclidean action, that is, by substitution of the normalized Euclidean invariants

I
u,e
j for u j and I

v,e
j for v j , j = 1, . . . , 5 in (31). Using formulae (30), we obtain two

fifth order affine invariants I
u,a
5 and I

v,a
5 in terms of the Euclidean curvature, torsion

and their derivatives with respect to the Euclidean arc-length ds:

I
u,a
5 =

1

36
κ−4τ−7/2

(

36κ2τ 2(τκsss − κssτs + 4κ2τκs − κτ 2τs − 3κ3τs + 2τ 3κs)

+ 60τ 2κ(κ2
s τs − 3τκssκ) − 6κ2τ (τ 2

s κs − 3κτssτs) + 160κ3
s τ

3 − 25κ3τ 3
s

)

,

I
v,a
5 =

36κ2τ 2(κ2 + τ 2) − 20κ2
s τ

2 − 8κτκsτs − 35κ2τ 2
s + 12κτ (τκss + 2κτss)

24κ8/3τ 7/3
.

As before, one can express the affine arc-length in terms of the Euclidean arc-
length:

dα = σ∗
Ba ds = (Iu,e

2 Iv,e
3 )1/6 ds = (κ2τ )1/6 ds,

and thus obtain all higher order affine invariants in terms of the Euclidean ones.
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