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Residue: A Geometric Construction
Fernando Sancho de Salas

Abstract. A new construction of the ordinary residue of differential forms is given. This construction
is intrinsic, i.e., it is defined without local coordinates, and it is geometric: it is constructed out of
the geometric structure of the local and global cohomology groups of the differentials. The Residue
Theorem and the local calculation then follow from geometric reasons.

Introduction

Residue theory is very old, and has largely been developed—usually in relation to
duality theory—from different points of view. Here we take the point of view of
cohomological residues, developed by J. Lipman, E. Kunz, R. Hubl and others (see
[Li1], [Li2], [HK], [Hu]). Moreover, we deal with the most basic case: the residue
theory for smooth schemes. Whenever one desires to establish basic residue theory
one faces certain problems: if one defines the local residue taking a system of param-
eters, one then has two problems: first, to prove the independence of the choice of
parameters (which is non-trivial, even in the case of curves), and second, to prove
the Residue Theorem (see for example [Se] for the case of curves). By contrast, if one
gives an intrinsic definition of the local residue (for example, the one of [Ta] in the
case of curves), then it is usually easier to prove the Residue Theorem but the local
computation, in terms of a local system of parameters, becomes difficult (see [Ha1,
pp. 247–8], for some comments about these problems in the case of curves).

The aim of this paper is to show that in conceptual terms the residue map and its
main properties are a consequence of the geometry of the local and global cohomol-
ogy groups of the differentials (the Hodge intersection ring). That is, assuming that
one has defined and constructed the cohomology classes and the cup product in this
ring and has proved their basic properties, then one can give an intrinsic construc-
tion of the residue map and prove its main properties (Residue Theorem and local
computation).

Let X be a smooth scheme over an algebraically closed field k. For each closed
point p, we shall intrinsically define a morphism of Op ⊗

k
Op-modules

φp : Hn
p(X,Ωn

X)→ Hn
p(X,Ωn

X)⊗
k

Hn
p(X,Ωn

X),

which is essentially the cup multiplication with the cohomology class of the diago-
nal in X × X. We shall construct the residue at p as the only k-linear map Resp :
Hn

p(X,Ωn
X)→ k such that:
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1. Resp

(
cX(p)

)
6= 0, where cX(p) denotes the cohomology class of p in X.

2. Resp = (Resp ⊗Resp) ◦ φp. We can state this by saying that the residue map is
“compatible with products”.

In other words, the Hodge intersection ring allows us to construct a co-product
structure in Hn

p(X,Ωn
X) (that is, a product in Hn

p(X,Ωn
X)∗), and the residue map is

characterized as the co-unity. This can be translated from the local to the global case:
we construct a morphism of Γ(X × X,OX×X)-modules

φ : Hn(X,Ωn
X)→ Hn(X,Ωn

X)⊗
k

Hn(X,Ωn
X),

which is compatible with φp for any p ∈ X; that is, (hp ⊗ hp) ◦ φp = φ ◦ hp,
hp : Hn

p(X,Ωn
X) → Hn(X,Ωn

X) being the natural morphism. The global residue (X
proper) is the only (non-zero) k-linear map Hn(X,Ωn

X) → k which is “compatible
with products”: Res = (Res⊗Res) ◦ φ. The compatibility of φp with φ gives the
compatibility of the local and global residue; that is, Res ◦hp = Resp. This compati-
bility yields the Residue Theorem.

Usually, if one defines the residue in an intrinsic way one encounters difficulties
in the explicit computation. We shall see that in our case the explicit computation
follows easily from the given construction for geometric reasons. More concretely:
let t1, . . . , tn be local parameters at p.

1. Resp

(
d t1∧···∧d tn

t1· ··· ·tn

)
= 1. This follows from the following facts:

a) d t1∧···∧d tn
t1· ··· ·tn

is the cohomology class of p,

b) φp

(
cX(p)

)
= cX(p) ⊗ cX(p), as follows from the construction of φp and the

basic properties of cohomology classes, and

c) Resp is “compatible with products”.

2. Resp

(
d t1∧···∧d tn

t
k1
1 · ··· ·t

kn
n

)
= 0, for ki positive integers, some of them greater than 1. This

follows from the invariance of Resp under automorphisms (the group of auto-

morphisms of the completion Ô at p acts naturally on Hn
p(X,Ωn

X)).

Let us denote by G the group of automorphisms of the completion Ô at p. The
action of G at Hn

p(X,Ωn
X) is essential. For example, Hn

p(X,Ωn
X) and Hn

p(X,OX) are
isomorphic as Op-modules, but not as G-modules. This is why Hn

p(X,Ωn
X) has a

canonical residue map but Hn
p(X,OX) does not.

In Section 0 we give the elementary results of local cohomology that we require
for the rest of the work.

0 Basic Results of Local Cohomology Hd
Y (X,Ωd

X)

Let X be a k-scheme and j : Y ↪→ X a locally complete intersection closed subscheme
of codimension d of ideal I. There are canonical morphisms

(1) HomOX

(
Λd(I/I2), j∗Ωd

X/k

)
= Extd

OX
(OY ,Ωd

X/k) ↪→ Hd
Y (X,Ωd

X/k).
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The first map is obtained via the Koszul complex (see [Gro1]). For the second
one, see [Gro2].

The natural map I/I2 → j∗ΩX/k induces a map Λd(I/I2)→ j∗Ωd
X/k that defines,

via (1), an element cX(Y ) ∈ Hd
Y (X,Ωd

X/k), which is called the cohomology class of Y
in X.

The main facts that we need are (see [Gro1] for a proof):

Theorem 0.1

(a) Let Y , Z be two closed subschemes of X, locally complete intersections of codimen-
sion d, d ′ respectively. If Y and Z meet transversally, then:

cX(Y ) · cX(Z) = cX(Y ∩ Z),

where cX(Y ) · cX(Z) denotes the cup product:

Hd
Y (X,Ωd

X/k)×Hd ′

Z (X,Ωd ′

X/k)→ Hd+d ′

Y∩Z (X,Ωd+d ′

X/k ).

(b) If π : X × T → X is the natural projection, then

π∗cX(Y ) = cX×T(Y × T)

where π∗ : Hd
Y (X,Ωd

X/k)→ Hd
Y×T(X × T,Ωd

X×T/k) is the inverse image.

Local computations Assume X is affine, X = Spec O. Set Y = Spec O/I, with
I = ( f1, . . . , fd) and f1, . . . , fd a regular sequence.

Notation For eachω ∈ Ωd
X/k, we shall denote by

[ ω
f1,..., fd

]
the element of Hd

Y (X,Ωd
X/k)

which corresponds, via (1), to the morphism:

Λd(I/I2)→ j∗Ωd
X/k

f 1 ∧ · · · ∧ f d 7→ ω

The following Proposition is elementary from the definitions (only 2. requires
something further: the functoriality of the morphisms of (1) with respect to Y ).

Proposition 0.2

(1) cX(Y ) =
[

d f1∧···∧d fd

f1,..., fd

]
.

(2) Let (g1, . . . , gd) ⊂ ( f1, . . . , fd) be two ideals with the same radical, and set gi =∑
ai j · f j . Then: [

det(ai j) · ω
f1, . . . , fd

]
=
[

ω
g1, . . . , gd

]
.

(3) If ω ∈ I · Ωd
X/k, then

[ ω
f1,..., fd

]
= 0.
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For each f ∈ O, let us denote by U f the affine subset U f = X − ( f )0. Then,
U = X − Y is covered by U f1 , . . . ,U fd

. The exact sequence of local cohomology
defines an epimorphism (isomorphism for d > 0)

(2) Hd−1(U ,Ωd
X/k)→ Hd

Y (X,Ωd
X/k)

and the Cech cohomology defines an epimorphism:

(3) H0(U f1 ∩ · · · ∩U fd
,Ωd

X/k)→ Hd−1(U ,Ωd
X/k).

We shall denote by
[

ω
f1··· fd

]
the image of (−1)d ω

f1··· fd
∈ H0(U f1 ∩ · · · ∩ U fd

,Ωd
X/k)

in Hd
Y (X,Ωd

X/k) via the composition of (2) and (3). We then have (see, for example,

[Li1, p. 61, (7.2.1)], although the sign (−1)d was missing there):

Proposition 0.3 One has
[ ω

f1,..., fd

]
=
[

ω
f1··· fd

]
, and hence the properties of Proposi-

tion 0.2 may be translated to the symbol
[ ]

.

Dualizing Modules Let O be a local and rational k-algebra with maximal ideal m (it
would be enough that k → O/m were finite and separable, if k is not algebraically
closed). The closed point will be denoted by p. For each O-module M supported at
p we define:

F(M) = Homk(M, k)

which is a functor in M in the natural way.

Definition We say that E is a dualizing module if it is supported at p and there exists
an isomorphism of functors:

F ' HomO( , E).

It is well known (Yoneda’s Lemma) that a morphism of functors HomO( , E) → F
is equivalent to an element of F(E), a linear form on E. In fact, given a linear form,
w : E→ k, the corresponding morphism of functors is:

w∗ : HomO(M, E)→ Homk(M, k)

f 7→ w ◦ f .

We wish to know what conditions w must satisfy for w∗ to be an isomorphism; that
is, when the pair (E,w) represents the functor.

From the Matlis theory it is known that EndO(E) = Ô; that is, any O-endomorph-

ism of E is the multiplication by a unique element of Ô. Consequently, if w : E → k
is a linear form representing the functor F (that is, w∗ is an isomorphism), then for

each linear form w ′ : E → k, there exists a unique f ∈ Ô such that w ′ = w · f .
Moreover w ′ represents the functor F if and only if f is invertible.
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Definition The m-torsion of E is the set of elements of E annihilated by m:

Em = { j ∈ E such that a · j = 0 for any a ∈ m}.

One has that Em = HomO(O/m, E) ' Homk(O/m, k), and hence Em is a 1-dimen-
sional vectorial subspace of E.

Proposition 0.4 A linear form w : E → k represents the functor F (that is, w∗ is an
isomorphism) if and only if w is not zero on the m-torsion of E.

Proof Assume that w : E→ k represents the functor. Then, the composition

k = Homk(O/m, k)
w∗== HomO(O/m, E) ↪→ E

w−→ k

is the identity and therefore w is not null on the m-torsion. Conversely, let w ′ : E→ k

be a linear form that is non-zero on the m-torsion. There exists a unique f ∈ Ô such
that w ′ = w · f . Then, if j belongs to the m-torsion, we have that:

w ′( j) = (w · f )( j) = w( f · j) = w( f · j) = f · w( j)

f being the class of f in O/m. Since w ′ is not null on the m-torsion, it follows that
f 6= 0; that is, f is invertible and hence w ′ represents the functor.

A basic result of local duality theory is the following:

Proposition 0.5 If O is regular, then Hn
p(Ωn) is a dualizing module and cX(p) is a

basis of the m-torsion.

1 The Residue Map

Let X be a smooth scheme over an algebraically closed field k (a perfect field would be
sufficient). Let X = X × X, π2 : X → X be the second projection and ∆ the diagonal
of X × X.

Let p be a closed point of X. Consider the inverse image:

(1) π∗ : Hn
p(X,Ωn

X)→ Hn
X×p(X,Ωn

X),

and the cup multiplication with cX(∆)

(2)
Hn

X×p(X,Ωn
X) −→ H2n

p×p(X,Ω2n
X )

a 7−→ a · cX(∆).

Moreover, there is a natural isomorphism:

(3)
Hn

p(X,Ωn
X)⊗

k
Hn

p(X,Ωn
X)

π∗1 ⊗π
∗
2=== H2n

p×p(X,Ω2n
X )

a⊗ b 7−→ π∗1 (a) · π∗2 (b)
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with π1, π2 : X → X as the natural projections.

Definition We shall denote by φp the morphism:

φp : Hn
p(X,Ωn

X)→ Hn
p(X,Ωn

X)⊗
k

Hn
p(X,Ωn

X),

which is the composition of (1), (2) and (3). Notice that φp is a morphism of O⊗
k

O-

modules, where Hn
p(X,Ωn

X) is an O⊗
k
O-module via the diagonal morphism O⊗

k
O→

O, a⊗ b 7→ ab.

Lemma 1.1 (Fundamental) Let p be a closed point of X. Then:

φp

(
cX(p)

)
= cX(p)⊗ cX(p).

Proof This follows from the equalities (Theorem 0.1):

cX(X × p) · cX(∆) = cX(p × p) = cX(X × p) · cX(p × X) = cX(p)⊗ cX(p),

where the last equality is via π∗1 ⊗ π∗2 .

Local and Global Residue: Compatibility Let O be a local, regular and rational k-
algebra of dimension n. Set X = Spec O and let us take p as the closed point. Let us
denote Ωn = Ωn

X/k.

Theorem 1.2 (Local Residue) There exists a unique non-zero k-linear map:

Resp : Hn
p(Ωn)→ k,

representing the functor F and compatible with products (i.e., (Resp ⊗Resp) ◦ φp =
Resp).

Proof Let w : Hn
p(Ωn) → k be a linear map representing the functor F. Then, w

is not null on cX(p) and hence (w ⊗ w) ◦ ψ is not null either, since φp

(
cX(p)

)
=

cX(p)⊗ cX(p). Therefore, (w⊗w) ◦ φp represents the functor and hence there exists

a unique invertible f ∈ Ô such that (w⊗w)◦ψ = w · f . Taking w · 1
f , one concludes.

Unicity: Given a linear map w, there exists a unique f ∈ Ô such that w = Resp · f .
Now, if w = (w ⊗ w) ◦ φp, then:

Resp · f = (Resp · f ⊗ Resp · f ) ◦ φp = Resp · f 2,

and hence f = 0 or f = 1. If w represents the functor, then f 6= 0 and one concludes.

Lemma 1.3 Resp

(
cX(p)

)
= 1.

https://doi.org/10.4153/CMB-2002-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-032-4


290 Fernando Sancho de Salas

Proof Since φp

(
cX(p)

)
= cX(p)⊗ cX(p), one has:

Resp

(
cX(p)

)
=
(

(Resp ⊗Resp) ◦ φp

)(
cX(p)

)
= Resp

(
cX(p)

) 2
,

and hence Resp

(
cX(p)

)
= 0 or 1. Since Resp is not null on the m-torsion, one

concludes.

Invariance under Automorphisms Let G = Autk−alg Ô be the group of automor-

phisms of the completion Ô. Note that there is a natural action of G in Hn
p(Ωn). In

fact, let Ω̂n be the completion of Ωn. The natural morphism Hn
p(Ωn) → Hn

p(Ω̂n) is

an isomorphism, and it therefore suffices to see that G acts on Ω̂n. This follows from
the following equalities. Set Oi = O/mi , then:

G = lim←−
i

Autk−alg Oi , Ω̂n = lim←−
i

Ωn
Oi/k.

The natural action of Autk−alg Oi in Ωn
Oi/k induces the action of G in Ω̂n.

For any g ∈ G, we shall denote by g∗ : Hn
p(Ωn) → Hn

p(Ωn) the action of g in
Hn

p(Ωn). From the very construction of φp, it follows that it is invariant under auto-
morphisms; that is, for any g ∈ G the diagram:

Hn
p(Ωn)

φp−−−−→ Hn
p(Ωn)⊗

k
Hn

p(Ωn)

g∗
y y g∗⊗g∗

Hn
p(Ωn)

φp−−−−→ Hn
p(Ωn)⊗

k
Hn

p(Ωn)

is commutative. Then, by the unicity of the residue, it is also invariant: for any g ∈ G,
one has Resp ◦g∗ = Resp.

Global Residue Let X be a proper and smooth scheme over k. We shall construct a
canonical isomorphism:

Res : Hn(X,Ωn
X)→ k

with the same idea as for the local residue; that is, imposing the condition of com-
patibility with products.

Theorem 1.4 There is a canonical morphism

φ : Hn(X,Ωn
X)→ Hn(X,Ωn

X)⊗
k

Hn(X,Ωn
X)

such that for any closed point p ∈ X the diagram:

Hn
p(Ωn)

φp−−−−→ Hn
p(Ωn)⊗

k
Hn

p(Ωn)y y
Hn(X,Ωn

X)
φ−−−−→ Hn(X,Ωn

X)⊗
k

Hn(X,Ωn
X)
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is commutative (compatibility of φp and φ).

Proof φ is constructed as in the local case. Set X = X × X, π2 : X → X the sec-
ond projection and cX(∆) the cohomology class of the diagonal. One has canonical
morphisms:

Hn(X,Ωn
X)

π∗2−→ Hn(X,Ωn
X)
·cX (∆)−→ H2n(X,Ω2n

X ) = Hn(X,Ωn
X)⊗Hn(X,Ωn

X),

whose composition is φ. The commutativity of the diagram follows from the con-
structions.

Proposition 1.5 Let p be a closed point of X. The cohomology class cX(p) is a genera-
tor of Hn(X,Ωn

X). Moreover φ
(

cX(p)
)

= cX(p)⊗ cX(p) (this property characterizes the
cohomology class of a point and it proves, in particular, that the cohomology class does
not depend on the point).

Proof For the first part, it suffices to prove that the morphism:

Extn
OX

(
k(p),Ωn

X

)
→ Hn(X,Ωn

X) = Extn
OX

(OX,Ωn
X)

is an isomorphism. Now, the cokernel is Extn
OX

(mp,Ωn
X), with mp the sheaf of ideals

of the point p, and by duality Extn
OX

(mp,Ωn
X) ' H0(X,mp) = 0.

The second part follows from the compatibility of φp and φ and from the funda-
mental lemma 1.1.

Theorem 1.6 (Global Residue) There exists a unique non-zero morphism (and hence
isomorphism):

Res : Hn(X,Ωn
X)→ k

that is compatible with products: (Res ◦Res) ◦ φ = Res.

Proof Existence: Let w : Hn(X,Ωn
X) → k be a non-zero linear map. Then, w does

not vanish on cX(p), with p any closed point of X, and hence (w ⊗ w) ◦ φ does not
vanish on cX(p) either, since φ

(
cX(p)

)
= cX(p)⊗cX(p). There exists a unique λ ∈ k∗

such that (w ⊗ w) ◦ φ = λ · w. Taking Res = 1
λ · w one concludes.

Unicity: if w were another morphism, then w = λ · Res, with λ ∈ k∗, and hence:

w = (w ⊗ w) ◦ φ = λ2(Res⊗Res) ◦ φ = λ2 · Res = λ · w.

Therefore, λ = 1.

Theorem 1.7 (Compatibility of Local and Global Residue) Let p be a closed point
of X. If hp : Hn

p(X,Ωn
X)→ Hn(X,Ωn

X) is the natural map, one has that Res ◦hp = Resp.

In particular, Res
(

cX(p)
)

= 1 for any closed point p.

Proof This follows from the compatibility of φp and φ and from the unicity of Resp.
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2 Residue Theorem and Computation

Let O be the local ring at a closed point p and Ωn = Ωn
O/k. Let f1, . . . , fn ∈ m be a

regular sequence. For each n-form ω ∈ Ωn, we define Resp

(
ω

f1··· fn

)
= Resp

[
ω

f1··· fn

]
.

Let X be a proper variety, and let D1, . . . ,Dn be effective divisors with intersection
D1 ∩ · · · ∩ Dn a finite number of points. Set D = D1 + · · · + Dn and let

θ ∈ H0
(

X,Ωn(D)
)

be a meromorphic n-form with pole divisor D. For each p ∈ D1 ∩ · · · ∩ Dn, we take
the local ring at p and we can define the residue Resp θ.

Theorem 2.1 (Residue Theorem) With the preceding hypothesis, one has that:∑
p

Resp θ = 0.

Proof Let U = X − (D1 ∩ · · · ∩ Dn) = U1 ∪ · · · ∪Un, with Ui = X − Di . Then,
θ belongs to H0(U1 ∩ · · · ∩Un,Ωn

X) and defines, by Cech cohomology, an element of
Hn−1(U ,Ωn

X). Now, the local cohomology exact sequence

Hn−1(U ,Ωn
X)→ ⊕

p
Hn

p(Ωn
X)→ Hn(X,Ωn

X)
Res=== k

and the compatibility of the local and global residue allow us to conclude.

Proposition 2.2 (Explicit Calculation of the Residue) Let t1, . . . , tn be a system of
parameters at p. Then

(a) If k1, . . . , kn are positive integers, and k1 · · · · · kn > 1, then we have that:

Resp

(
d t1 ∧ · · · ∧ d tn

tk1
1 · · · t

kn
n

)
= 0.

(b) Resp

(
d t1∧···∧d tn

t1···tn

)
= 1.

(c) Let ω = g · d t1 ∧ · · · ∧ d tn be an n-form regular at p and f1, . . . , fn a reg-
ular sequence. For each i there exists ki such that tki

i ∈ ( f1, . . . , fn) and hence

tki
i =

∑
ai j f j . Then Resp

(
ω

f1··· fn

)
is the coefficient of tk1−1

1 · · · tkn−1
n in the Taylor

expansion of the function g · det(ai j).

Proof (a) Let us consider the automorphism of Ô given by t ′i = λ · ti , with λ ∈ k.
Since the residue is invariant under automorphisms:

Resp

(
d t1 ∧ · · · ∧ d tn

tk1
1 · · · t

kn
n

)
= Resp

(
d t ′1 ∧ · · · ∧ d t ′n

t ′k1
1 · · · t ′

kn
n

)

= λn−(k1+···+kn) Resp

(
d t1 ∧ · · · ∧ d tn

tk1
1 · · · t

kn
n

)
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and one concludes.
(b) By Proposition 0.3,

Resp

(
d t1 ∧ · · · ∧ d tn

t1 · · · tn

)
= Resp

[
d t1 ∧ · · · ∧ d tn

t1, . . . , tn

]
.

But
[

d t1∧···∧d tn
t1,...,tn

]
= cX(p) (Proposition 0.2, part (1)) and hence one concludes by

Lemma 1.3.
(c) By Propositions 0.2 and 0.3,

Resp

(
ω

f1 · · · fn

)
= Resp

(
g · det(ai j) d t1 ∧ · · · ∧ d tn

tk1−1
1 · · · tkn−1

n

)
.

One concludes then by (a), (b), and (3) of Proposition 0.2.
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