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Degenerate p-Laplacian Operators and
Hardy Type Inequalities on
H-Type Groups

Yongyang Jin and Genkai Zhang

Abstract. Let G be a step-two nilpotent group of H-type with Lie algebra G = V ⊕ t. We define

a class of vector fields X = {X j} on G depending on a real parameter k ≥ 1, and we consider

the corresponding p-Laplacian operator Lp,ku = divX(|∇Xu|p−2∇Xu). For k = 1 the vector fields

X = {X j} are the left invariant vector fields corresponding to an orthonormal basis of V ; for G being

the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental

solution for the operator Lp,k and as an application, we get a Hardy type inequality associated with X.

1 Introduction

The study of partial differential operators constructed from non-commutative vector

fields satisfying the Hörmander condition [14] has had much development. An im-

portant class of such fields, serving as local models, is that of generating left-invariant

vector fields on stratified, nilpotent Lie groups with their associated sub-Laplacians

defined by the square-sums of the vector fields. One of the main tools in the study

of the regularity theory of the sub-Laplacian equation is the fundamental solution;

this has been developed by Folland [5, 6], Folland and Stein [7], Nagel, Stein, and

Wainger [18], Rothschild and Stein [20], and Sanchez Calle [21]. In [2, 13], the au-

thors studied a class of subelliptic p-Laplacians on H-type groups associated with the

left-invariant vector fields and found the corresponding fundamental solution.

Recently there has been considerable interest in studying the sub-Laplacians as

square-sums of vector fields that are not invariant or do not satisfy the Hörmander

condition. They turn out to be rather difficult; among the examples of such sub-

Laplacians are the Grushin operators and the sub-Laplacian constructed by Kohn

[17]. Those sub-Laplacians also appear naturally in complex analysis. Beals, Gaveau,

and Greiner considered the CR operators {Z j , Z̄ j}
n
j=1 on R

2n+1 as boundary of the

complex domain

{

(z1, . . . , zn+1) ∈ C
n+1 : Im zn+1 >

(

n
∑

j=1

|z j |
2
) k}

,
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where Z j =
1
2
(X j − iY j),

(1.1) X j = ∂/∂x j + 2ky j |z|
2k−2∂/∂t, Y j = ∂/∂y j − 2kx j |z|

2k−2∂/∂t.

and k is a positive integer [1]. The space R
2n+1 has a natural structure of a Heisenberg

group, but the vector fields are not left- or right-invariant. The fundamental solution

for their square sum
∑n

j=1 Z j Z̄ j + Z̄ jZ j was studied in [1]. As is well known, the

explicit formula of the fundamental solution is of substantial importance in the study

of boundary ∂̄-problems; see [22]. Zhang and Niu [23] studied the Greiner vector

fields on R
2n+1 for general parameter k ≥ 1 and found the fundamental solution

for the degenerate p-subelliptic operators Lp,k; see Section 2 below. Note that for

non-integral k these vector fields do not satisfy the Hörmander condition and are

not smooth.

Heisenberg groups have natural generalizations, namely Carnot groups, which are

the nilpotent stratified Lie groups G having Lie algebras G = V1 ⊕V2 ⊕· · ·⊕Vl with

[Vi ,V j] ⊂ Vi+ j , with the sub-Riemannian structure defined by the generating sub-

space V1. One can define p-sub-Laplacians on Carnot groups. The p-sub-Laplacian

in this setting plays an important role in the study of quasiregular maps [13]. The

general theory in this setup is still not fully developed.

An important subclass of Carnot groups is that of H-type groups which were

introduced by Kaplan [16] as direct generalizations of Heisenberg groups. In the

present paper we will define a class of vector fields X (see (2.2) below) on H-type

groups generalizing the vector fields (1.1) considered in [1, 23], and we find the fun-

damental solution of the corresponding p-Laplacian with singularity at the identity

element. As application we prove a Hardy type inequality associated with X.

Here is a brief review and comparison of our results with those in the literature.

The case of Heisenberg groups with general parameter k was studied in [23]. The case

when G is a general Carnot group with the invariant sub-Laplacian a Hardy type in-

equality has been proved by D’Ambrosio [4]; see also [3] where Hardy type inequal-

ities on Heisenberg groups are studied. Our vector fields are, however, not invariant,

and our techniques are slightly different from theirs. In particular the computations

in our case are rather involved and we use some fine structure of H-type groups.

The paper is organized as follows. In Section 2 we recall some basic facts of H-type

groups and introduce the degenerate p-Laplacian operator Lp,k generalizing the in-

variant sub-Laplacian; Section 3 is devoted to the proof of the fundamental solution

for Lp,k. In Section 4 we prove a Hardy type inequality associated with X.

2 H-Type Groups and a Family of Vector Fields

We recall that a simply connected nilpotent group G is of Heisenberg type, or simply

H-type, if its Lie algebra G = V ⊕ t is of step-two, [V,V ] ⊂ t, and if there is an

inner product 〈 · , · 〉 in G such that the linear map J : t → End(V ), defined by the

relation 〈 Jt (u), v〉 = 〈t, [u, v]〉 satisfies J2
t = −|t|2Id for all t ∈ t, u, v ∈ V . We

denote m = dim V and q = dim t.

We identify G with its Lie algebra G via the exponential map exp : V ⊕ t → G.
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The Lie group product is given by

(2.1) (u, t)(v, s) =

(

u + v, t + s +
1

2
[u, v]

)

.

Each vector X ∈ G defines a tangent vector at any g by differentiating along

g · exp(tX), namely a left-invariant vector field, denoted also by X. The sub-Laplacian

on G is

∆G =

m
∑

j=1

X2
j ,

where {X j} is an orthonormal basis of V .

For g ∈ G, we write g = (z(g), t(g)) ∈ V ⊕t, and let K(g) = (|z(g)|4 +16|t(g)|2)
1
4 .

Kaplan [16] proved that there exists a constant C > 0 such that the function

Φ(g) = C · K(g)2−(m+2q)

is a fundamental solution for the operator ∆G with singularity at the identity ele-

ment. We note that m + 2q is the homogeneous dimension of G.

In [2] the authors considered the following subelliptic p-Laplacian

∆pu =

m
∑

j=1

X∗
j (|∇Gu|p−2X ju)

on H-type group G, where {X j}
m
1 is an orthogonal basis of V , X∗

j is the formal adjoint

of X j , and ∇G = (X1, . . . , Xm). For p = 2 it is the sub-Laplacian above. They

obtained a remarkable explicit formula for the fundamental solution of ∆p,

Γp =

{

C pK
p−Q
p−1 p 6= Q,

CQ log 1
K

p = Q.

As an application, the authors obtained some regularity results for a class of nonlinear

subelliptic equations.

Motivated by the work of Beals, Gaveau, and Greiner [1], Zhang and Niu [23]

considered the following degenerate p-subelliptic operators on the Heisenberg group

R
2n+1: Lp,ku = divL(|∇Lu|p−2∇Lu). Here

∇Lu = (X1u, . . . , Xnu,Y1u, . . . ,Ynu), divL(u1, . . . , u2n) =

n
∑

j=1

(X ju j + Y jun+ j),

{X j ,Y j} j=1,...,n are the Greiner type vector fields (1.1) for general k ≥ 1. They ob-

tained a fundamental solution for Lp,k at the origin for 1 < p < ∞,

Γp =

{

C p,kρ
p−Q
p−1 p 6= Q,

CQ,k log 1
ρ p = Q,

where ρ(z, t) = (|z|4k + t2)1/4k, Q = 2n + 2k.
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Remark 2.1 Note that when p = 2 and k = 1, Lp,k becomes the sub-Laplacian

∆Hn on the Heisenberg group H
n. If p = 2 and k = 2, 3, . . . , Lp,k is a Greiner

operator (see [1, 12]). Also we note that vector fields in (1.1) do not possess the

translation invariance and they do not satisfy Hörmander’s condition for k > 1, k /∈
Z. Finally we mention that Lp,ku = 0 is the Euler–Lagrange equation associated with

the functional
∫

|∇Lu|p, p > 1 for functions u satisfying u,∇Lu ∈ Lp.

In the present paper we introduce a family of the vector fields X = {X1, . . . , Xm}
and the corresponding p-sub-Laplacian on H-type groups generalizing both of the

works above. We fix k ≥ 1 throughout the rest of the paper. We let

(2.2) X j = ∂ j +
1

2
k|z|2k−2∂[z,e j ], j = 1, 2, . . . , m,

where ∂ j = ∂e j
, ∂[z,e j ] are the directional derivatives, and {e j} j=1,...,m is an orthonor-

mal basis of V . We consider the corresponding degenerate p-Laplacian operator

Lp,ku = divX(|∇Xu|p−2∇Xu),

where

∇Xu = (X1u, . . . , Xmu), divX(u1, . . . , um) =

m
∑

j=1

X ju j .

A natural family of anisotropic dilations attached to Lp,k is

δλ : (z, t) 7→ (w, s) := (λz, λ2kt), λ > 0, (z, t) ∈ G = R
m+q.

It is easy to verify that the volume is transformed by δ via dwds = λQdzdt , where

Q := m + 2kq,

which we may call the degree of homogeneity and is the homogeneous dimension in

the case k = 1. We define a corresponding homogeneous norm by

(2.3) d(z, t) := (|z|4k + 16|t|2)1/4k.

3 Fundamental Solutions

The main result of this section is the following

Theorem 3.1 Let G be an H-type group identified with its Lie algebra G as in (2.1).

For k ≥ 1 let {X j} and Lp,k be the vector fields and p-Laplacian defined above. Then

for 1 < p < ∞,

Γp =

{

C pd
p−Q
p−1 p 6= Q,

CQ log 1
d

p = Q,
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is a fundamental solution of Lp,k with singularity at the identity element 0 ∈ G. Here

d(z, t) is defined in (2.3),

C p =
p − 1

p − Q
(σp)−

1
p−1 , CQ = −(σQ)−

1
Q−1 ,

and

σp =

( 1

4

) q−1/2 π
q+m

2 Γ(
(2k−1)p+m

4k
)

Γ( m
2

)Γ(
(2k−1)p+Q

4k
)
.

We prove first some technical identities, which might be of independent interest.

Lemma 3.2 Let ǫ > 0 and dε = (d4k + ε4k)
1
4k . Then we have

|∇Xdε|
2
=

m
∑

j=1

|X j(dε)|2 =
d4k

d8k−2
ε

|z|4k−2,

L2,kd4k
ε =

m
∑

j=1

X2
j (d4k

ε ) = 4k(4k − 2 + Q)|z|4k−2,

L2,kdε =

m
∑

j=1

X2
j dε = |∇Xdε|

2 d4k−1
ε

d4k
{4k + Q − 2 − (4k − 1)d−4k

ε d4k}.

Proof By direct computations,

X j(dε) =
1

4k
d1−4k

ε X j(d4k
ε ) =

1

4k
d1−4k

ε

[

4k|z|4k−2〈z, e j〉 + 16k|z|2k−2〈t, [z, e j]〉
]

= d1−4k
ε

[

|z|4k−2〈z, e j〉 + 4|z|2k−2〈 Jt (z), e j〉
]

.

However, 〈 Jt (z), z〉 = 〈t, [z, z]〉 = 0, and 〈 Jt (z), Jt (z)〉 = |t|2|z|2, thus

m
∑

j=1

〈z, e j〉〈 Jt (z), e j〉 = 〈 Jt (z), z〉 = 0.

Consequently,

|∇Xdǫ|
2
=

m
∑

j=1

|X j(dε)|2 = d2−8k
ε

[

|z|8k−4|z|2 + 16|z|4k−4|t|2|z|2
]

=
d4k

d8k−2
ε

|z|4k−2,
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proving the first identity. Continuing the previous computation of X jdǫ, we find

m
∑

j=1

X2
j (d4k

ε ) =

m
∑

j=1

X j[X j(d4k)]

=

m
∑

j=1

X j[4k(|z|4k−2〈z, e j〉 + 4|z|2k−2〈 Jt (z), e j〉)]

= 4k

m
∑

j=1

{

(2k − 1)|z|4k−42〈z, e j〉
2 + |z|4k−2

+ 8(k − 1)|z|2k−4〈z, e j〉〈 Jt (z), e j〉 + 2k|z|4k−4〈 J[z,e j ](z), e j〉
}

.

(3.1)

To compute the last term in (3.1), we choose an orthonormal basis {ti}i=1,...,q of t.

Then

m
∑

j=1

〈 J[z,e j ](z), e j〉 =

m
∑

j=1

|[z, e j]|
2
=

m
∑

j=1

q
∑

i=1

〈ti , [z, e j]〉
2
=

q
∑

i=1

m
∑

j=1

〈 Jti
(z), e j〉

2

=

q
∑

i=1

|ti |
2|z|2 = q|z|2.

Therefore,

m
∑

j=1

X2
j (d4k

ε ) = 4k
{

(4k − 2)|z|4k−2 + m|z|4k−2 + 2k|z|4k−4 · q|z|2
}

= 4k(4k − 2 + Q)|z|4k−2,

where Q = m + 2kq. We can find X2
j dǫ in terms of X2

j d
4k
ǫ and |X2

j dǫ|
2. Indeed

X2
j (d4k

ε ) = X j(4kd4k−1
ε X jdε) = 4kd4k−1

ε X2
j dε + 4k(k − 1)d4k−2

ε |X jdε|
2.

Thus

m
∑

j=1

X2
j dε =

1

4k
d1−4k

ε

{

m
∑

j=1

X2
j (d4k

ε ) − 4k(k − 1)d4k−2
ε

m
∑

j=1

|X jdε|
2
}

=
1

4k
d1−4k

ε

{

4k(4k + Q − 2)|z|4k−2 − 4k(4k − 1)d−4k
ε d4k|z|4k−2

}

= d1−4k
ε |z|4k−2{4k + Q − 2 − (4k − 1)d−4k

ε d4k}

= |∇Xdε|
2 d4k−1

ε

d4k
{4k + Q − 2 − (4k − 1)d−4k

ε d4k},

by using the first identity.
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Proof of Theorem 3.1 We consider the case 1 < p < Q first. Let dε be as in

Lemma 3.2. We compute Lp,k(d
(p−Q)/(p−1)
ε ). The function v = d

(p−Q)/(p−1)
ε is of

the form v = f ◦ dε with f (x) = x
p−Q
p−1 . For f ∈ C2(R

+), we have

Lp,k( f ◦ dε) = f ′| f ′|p−2|∇Xdε|
p−2

m
∑

j=1

X2
j dε + |∇Xdε|

p−2

m
∑

j=1

X jdε · X j( f ′| f ′|p−2)

+ f ′| f ′|p−2

m
∑

j=1

X jdε · X j(|∇Xdε|
p−2)

= I1 + I2 + I3.

I1 and I2 can be found by using Lemma 3.2,

I1 = f ′| f ′|p−2|∇Xdε|
p−2|∇Xdε|

2 d4k−1
ε

d4k
{4k + Q − 2 − (4k − 1)d−4k

ε d4k}

= f ′| f ′|p−2|∇Xdε|
p
{

(4k + Q − 2)
d4k−1

ε

d4k
−

(4k − 1)

dε

}

,

I2 = |∇Xdε|
p−2

m
∑

j=1

X jdε · { f ′ ′| f ′|p−2X jdε + (p − 2)| f ′|p−2 f ′ ′X jdε}

= |∇Xdε|
p{ f ′ ′| f ′|p−2 + (p − 2)| f ′|p−2 f ′ ′}

= | f ′|p−2|∇Xdε|
p{(p − 1) f ′ ′}.

Using X j |∇Xdǫ|
p−2

=
p−2

2
|∇Xdǫ|

p−4X j |∇Xdǫ|
2 and Lemma 3.2, we find

I3 = f ′| f ′|p−2

m
∑

j=1

X jdε ·
p − 2

2
|∇Xdε|

p−4X j(|∇Xdε|
2)

=
p − 2

2
f ′| f ′|p−2|∇Xdε|

p−4

m
∑

j=1

X jdε · X j(d2−8k
ε d4k|z|4k−2)

=
p − 2

2
f ′| f ′|p−2|∇Xdε|

p−4

m
∑

j=1

X jdε ·
{

(2 − 8k)d1−8k
ε d4k|z|4k−2X jdε

+ 4kd2−8k
ε d4k−1|z|4k−2X jd + (4k − 2)d2−8k

ε d4k|z|4k−4〈z, e j〉
}

=
p − 2

2
f ′| f ′|p−2|∇Xdε|

p−4
{

(2 − 8k)d3−16k
ε d8k|z|8k−4 + 4kd3−12k

ε d4k|z|8k−4

+ (4k − 2)d3−12k
ε d4k|z|8k−4

}

= (p − 2)(4k − 1) f ′| f ′|p−2|∇Xdε|
p ε4k

dε d4k
.
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Hence,

Lp,k( f ◦ dε)

= I1 + I2 + I3

= | f ′|p−2|∇Xdε|
p
{

(p − 1) f ′ ′ + f ′
[ (Q − 1)d4k + (4kp − 4k + Q − p)ε4k

dεd4k

]}

.

Taking f (x) = x(p−Q)/(p−1), (x > 0), the above is

Lp,k

(

d
p−Q
p−1
ε

)

=

∣

∣

∣

p − Q

p − 1
d

1−Q
p−1
ε

∣

∣

∣

p−2( d2k|z|2k−1

d4k−1
ε

) p{ p − Q

p − 1
(1 − Q)d

2−p−Q
p−1

ε

+
p − Q

p − 1
d

1−Q
p−1
ε

[ (Q − 1)d4k + (4kp − 4k + Q − p)ε4k

dεd4k

]}

= −
( Q − p

p − 1

) p−1

d1−Q
ε

( d2k|z|2k−1

d4k−1
ε

) p{

(4kp − 4k + Q − p)
ε4k

d4kdε

}

= −
( Q − p

p − 1

) p−1

(4kp − 4k + Q − p)
d2kp−4k|z|(2k−1)pε4k

d
(4k−1)p+Q
ε

= ε−Qψ(δ1/ε(z, t)),

where

ψ(z, t) := −

(

Q − p

p − 1

)p−1

(4kp − 4k + Q − p)
d2kp−4k|z|(2k−1)p

(1 + d4k)(4kp−p+Q)/4k
.

Now for any ϕ ∈ C∞
0 (G), it follows that

〈Lp,k(d
p−Q
p−1 ), ϕ〉 = lim

ε→0

∫

G

Lp,k(d
p−Q
p−1
ε )ϕ = lim

ε→0
ε−Q

∫

G

ψ(δ1/ε(z, t))ϕ(z, t)

= lim
ε→0

∫

G

ψ(z, t)ϕ(εz, ε2kt) = ϕ(0)

∫

G

ψ(z, t).

Finally we evaluate the integral
∫

G
ψ(z, t). We use the polar coordinates z = rz∗

with r = d and z∗ ∈ S := {g ∈ G : d(g) = 1} being the sphere with respect to d.

By a general integral formula on homogeneous groups (see [7, Proposition 1.15]) we

have

−

∫

G

ψ(z, t) = (4kp − 4k + Q − p)

∫

G

d2kp−4k|z|(2k−1)p

(1 + d4k)(4kp−p+Q)/4k

= (4kp − 4k + Q − p)

∫

S

|z∗|(2k−1)p

∫ ∞

0

r−4k−1

(1 + r−4k)(4kp−p+Q)/4k
drdσ
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= (4kp − 4k + Q − p)

∫

S

|z∗|(2k−1)pdσ
1

4k

∫ ∞

1

t
p−Q−4kp

4k dt

=

∫

S

|z∗|(2k−1)pdσ,

Denote temporarily γ = (2k − 1)p. We use the usual trick to evaluate the integral

on the sphere, replacing it by an integral on the ball,

∫

S

|z∗|γdσ = (Q + γ)

∫ 1

0

rγ+Q−1dr

∫

S

|z∗|γdσ

= (Q + γ)

∫

S

∫ 1

0

|rz∗|γrQ−1 drdσ = (Q + γ)

∫

d<1

|z|γ ,

and furthermore

∫

d<1

|z|γ =

∫

|t|< 1
4

∫

|z|<(1−16|t|2)
1
4k

|z|γ dzdt

= ωm−1

∫

|t|< 1
4

∫ (1−16|t|2)
1
4k

0

rγ+m−1drdt

=
ωm−1ωq−1

γ + m

∫ 1
4

0

(1 − 16s2)
γ+m

4k sq−1 ds

=
ωm−1ωq−1

2(γ + m)

( 1

4

) q
∫ 1

0

(1 − ρ)
γ+m

4k ρ
q−2

2 dρ

=
ωm−1ωq−1

2(γ + m)

( 1

4

) q Γ( γ+m+4k
4k

) · Γ(
q
2
)

Γ(
γ+m+4k+2kq

4k
)

=
1

2(γ + Q)

( 1

4

) q−1 π
q+m

2 · Γ( γ+m
4k

)

Γ( m
2

) · Γ( γ+Q
4k

)
.

Thus,
∫

S

|z∗|(2k−1)pdσ =

( 1

4

) q− 1
2 π

q+m
2 · Γ(

(2k−1)p+m
4k

)

Γ( m
2

) · Γ(
(2k−1)p+Q

4k
)
,

and substituting this into the previous formula for −
∫

G
ψ(z, t) we find

∫

G

ψ(z, t) = −
( Q − p

p − 1

) p−1( 1

4

) q− 1
2 π

q+m
2 · Γ(

(2k−1)p+m
4k

)

Γ( m
2

) · Γ(
(2k−1)p+Q

4k
)

proving Theorem 3.1 for 1 < p < Q.

A direct examination shows that the formula also holds for p > Q, and the critical

case p = Q can be treated similarly, we omit the details.
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By a similar method as in Theorem 3.1, we can also obtain a fundamental solution

for a class of weighted p-Laplacian operators on the H-type group G = R
m ⊕ R

q,

Lp,k,w = divX(|∇Xu|p−2w∇Xu),(3.2)

w = dα|∇Xd|β , α > −m − 2kq, β > max
{ 1 − Q

4k − 1
,−

m

2k − 1
− 1

}

,

where {X j} j=1,...,m is taken from (2.2) and d(z, t) from (2.3).

Theorem 3.3 Let G be the H-type group above and Lp,k,w the p-sub-Laplacian defined

as in (3.2). Then for 1 < p < ∞,

Γp,w =

{

C p,w d
p−Q−α

p−1 p 6= Q + α.

CQ+α,w log 1
d

p = Q + α,

is a fundamental solution of Lp,k,w with singularity at the identity element 0 ∈ G, where

C p,w =
p − 1

p − Q − α
(σp,β)−

1
p−1 , CQ+α,w = −(σQ+α,β)−

1
Q+α−1 ,

and

σp,β =

( 1

4

) q− 1
2 π

q+m
2

Γ( m
2

)

Γ(
(2k−1)(p+β)+m

4k
)

Γ(
(2k−1)(p+β)+Q

4k
)
.

4 Hardy Type Inequality

We recall that the classical Hardy inequality states that for n ≥ 3

∫

Rn

|∇Φ(x)|2dx ≥
( n − 2

2

) 2
∫

Rn

|Φ(x)|2

|x|2
dx,

where Φ ∈ C∞
0 (R

n \ {0}). It can also be rewritten in terms of a certain Schrödinger

operator. The inequality and their generalizations are of interest in the study of spec-

tral theory of linear and nonlinear partial differential equations (see [8, 10, 11]).

Garofalo and Lanconelli [9] established the following Hardy inequality on the

Heisenberg group H = H
n associated with left-invariant horizontal gradient ∇H,

(4.1)

∫

H

|∇HΦ|2dzdt ≥
( Q − 2

2

) 2
∫

H

( |z|2

|z|4 + t2

)

|Φ|2dzdt,

where Φ ∈ C∞
0 (H \ {0}), Q = 2n + 2 is the homogeneous dimension of H, and

∇HΦ = (X1Φ, X2Φ, . . . , XnΦ,Y1Φ, . . . ,YnΦ), X j =
∂

∂x j
+ 2y j

∂
∂t

, Y j =
∂

∂y j
− 2x j

∂
∂t

,

for (z, t) ∈ H, z = (x, y) ∈ R
n × R

n, t ∈ R. The Lp version of the inequality (4.1)

has been obtained by Niu, Zhang, and Wang [19], among others, which states that

for 1 < p < Q:

∫

H

|∇HΦ|p ≥
( Q − p

p

) p
∫

H

( |z|

d

) p |Φ|p

dp
.
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In this section we obtain a Hardy type inequality associated with the non-invariant

vector fields X = {X j} in (2.2) on the H-type groups by applying the result in Sec-

tion 3. The inequality in the present paper might be useful in eigenvalue problems

and Liouville type theorems for weighted p-Laplacian equations, which we plan to

pursue in some subsequent work. Recall the norm d in (2.3).

Theorem 4.1 Let X be the vector fields in (2.2) on G. Suppose α ∈ R, 1 < p < Q+α.

Then the following inequality holds for Φ ∈ C∞
0 (G\{0}),

(4.2)

∫

G

dα|∇XΦ|p ≥
( Q + α − p

p

) p
∫

G

dα
( |z|

d

) (2k−1)p∣
∣

∣

Φ

d

∣

∣

∣

p

.

Moreover, the constant (
Q+α−p

p
)p is sharp.

In view of the first equality in Lemma 3.2 (for ǫ = 0), namely |∇Xd| = (
|z|
d

)2k−1,

the above inequality can also be written as

∫

G

dα|∇XΦ|p ≥
( Q + α − p

p

) p
∫

G

dα−p|∇Xd|p|Φ|p.

Remark 4.2 If q = 1 and α = 0, then our Theorem 4.1 is actually Theorem 3.1 in

[23].

For the proof of Theorem 4.1, we need the following lemma; see also [19] for the

case w = 1.

Lemma 4.3 Let w ≥ 0 be a weight function in Ω ⊂ G and

Lp,k,wu = divX(|∇Xu|p−2w∇Xu).

Suppose that for some λ > 0 there exists v ∈ C∞(Ω), v > 0 such that

(4.3) −Lp,k,wv ≥ λgvp−1

for some g ≥ 0 in the sense of distribution acting on non-negative test functions. Then

for any u ∈ HW
1,p
0 (Ω, w), it holds that

∫

Ω

|∇Xu|pw ≥ λ

∫

Ω

g|u|p,

where HW
1,p
0 (Ω, w) denote the closure of C∞

0 (Ω) in the norm (
∫

Ω
|∇Xu|pw)1/p.

Proof We take ϕp

vp−1 as a test function in (4.3), where ϕ ∈ C∞
0 (Ω), ϕ ≥ 0,

I :=

∫

Ω

w|∇Xv|p−2∇Xv · ∇X

(

ϕp

vp−1

)

≥ λ

∫

Ω

gϕp.
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We shall prove

(4.4)

∫

Ω

w|∇Xϕ|p − I ≥ 0

which, together with the previous inequality, implies Lemma 4.3 for u = ϕ ∈
C∞

0 (Ω). Now the above is an integration with integrand (disregarding the common

factor w),

|∇Xϕ|p − |∇Xv|p−2∇X

( ϕp

vp−1

)

· ∇Xv

= |∇Xϕ|p − p
ϕp−1

vp−1
|∇Xv|p−2∇Xϕ · ∇Xv + (p − 1)

ϕp

vp
|∇Xv|p

=
1

vp

(

vp|∇Xϕ|p + (p − 1)ϕp|∇Xv|p − pvϕp−1|∇Xv|p−2∇Xϕ · ∇Xv
)

.

We estimate the last term from above using Young’s inequality

ab ≤
1

p
ap +

(

1 −
1

p

)

b
p

p−1 ,

and we get

pvϕp−1|∇Xv|p−2∇Xϕ · ∇Xv ≤ pv|∇Xϕ| · ϕp−1|∇Xv|p−1

≤ p
[ vp|∇Xϕ|p

p
+

p − 1

p
ϕp|∇Xv|p

]

= vp|∇Xϕ|p + (p − 1)ϕp|∇Xv|p.

Hence (4.4) follows.

We now prove Theorem 4.1.

Proof Case (i): p 6= Q. We claim that the conditions in Lemma 4.3 are satisfied with

w = dα, v = d
p−Q−α

p , g = dα |z|
(2k−1)p

d2kp
, λ =

( Q + α − p

p

) p

, Ω = G\{0},

which then proves the theorem. Indeed, for any ϕ ∈ C∞
0 (G\{0}) we have

〈−Lp,k,wv, ϕ〉 = −
( Q + α − p

p

) p−1
∫

G

(d
Q+α

p
−Q|∇Xd|p−2∇Xd) · ∇Xϕ

= −
( Q + α − p

p

) p−1
∫

G

(d1−Q|∇Xd|p−2∇Xd) · d
Q+α−p

p ∇Xϕ

= −
( Q + α − p

p

) p−1
∫

G

(d1−Q|∇Xd|p−2∇Xd) · ∇X(ϕ · d
Q+α−p

p )

+
( Q + α − p

p

) p−1
∫

G

(d1−Q|∇Xd|p−2∇Xd) · ∇X(d
Q+α−p

p )ϕ.

(4.5)
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Denoting C p,Q =
∣

∣

p−1
p−Q

∣

∣

p−2 p−1
p−Q

and rewriting

d1−Q|∇Xd|p−2∇Xd = C p,Q

∣

∣

∣
∇X

(

d
p−Q
p−1

)

∣

∣

∣

p−2

∇X

(

d
p−Q
p−1

)

,

we see that (4.5) is

〈−Lp,k,wv, ϕ〉

= −C p,Q

( Q + α − p

p

) p−1
∫

G

∣

∣∇X(d
p−Q
p−1 )

∣

∣

p−2
∇X(d

p−Q
p−1 ) · ∇X(ϕd

Q+α−p
p )

+
( Q + α − p

p

) p−1
∫

G

(d1−Q|∇Xd|p−2∇Xd) · ∇X(d
Q+α−p

p )ϕ.

(4.6)

However the first integral in (4.6) is zero by Theorem 3.3, since φ is supported away

from 0, and we find

〈−Lp,k,wv, ϕ〉 =

( Q + α − p

p

) p−1
∫

G

d1−Q|∇Xd|p−2∇Xd · ∇X(d
Q+α−p

p )ϕ

=

( Q + α − p

p

) p
∫

G

d
Q+α

p
−1−Q|∇Xd|pϕ

=

( Q + α − p

p

) p
∫

G

dαd
p−Q−α

p
(p−1) |z|

(2k−1)p

d2kp
ϕ

=

( Q + α − p

p

) p
∫

G

dα |z|
(2k−1)p

d2kp
vp−1ϕ,

where in the second last equality we have used Lemma 3.2 to get that |∇Xd|p
=

( |z|
d

) (2k−1)p
. This proves our claim.

Case (ii): p = Q. The proof is almost the same as the above once we notice the

following fact: CQ log 1
d

is a fundamental solution of LQ,k on G, and

d1−Q|∇Xd|Q−2∇Xd = −|∇X log(d−1)|Q−2∇X log(d−1).

It remains to show the sharpness of the constant (
Q+α−p

p
)p. This is equivalent to

showing that any constant B > 0 for which the inequality

(4.7)

∫

G

dα|∇XΦ|p ≥ B

∫

G

dα−p|∇Xd|p|Φ|p

holds must satisfy B ≤ (
Q+α−p

p
)p. We shall construct a sequence {u j}

∞
j=1 of func-

tions so that the inequality (4.2) approximates to an identity up to the order O(1)

in j. Given any positive integer j, it is elementary that there exists ψ j in C∞
0 (0,∞)

such that supp ψ j = [2− j−1, 2], ψ j(x) = 1 on [2− j , 1], and |ψ ′
j (x)| ≤ C2 j on

[2− j−1, 2− j], where C is a constant independent of j. Let

u j(z, t) = d(z, t)
p−Q−α

p
− 1

j ψ j(d(z, t)).
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Clearly u j ∈ C∞(G\{0}) and is radial. Its gradient is

∇Xu j =







0 0 ≤ d < 2− j−1 or d > 2,

−(
Q+α−p

p
+ 1

j
)d−

Q+α+
p
j

p ∇Xd 2− j < d < 1.

The left-hand side of the above inequality is

LHS =

∫

G

=

∫

2− j<d<1

+

∫

2− j−1<d≤2− j

+

∫

1≤d<2

=

∫

2− j<d<1

+ I + II.

The first integration is
∫

2− j<d<1

dα|∇Xu j |
p

=

( Q + α − p

p
+

1

j

) p
∫

2− j<d<1

d−Q− p
j |∇Xd|p

which can be evaluated by using the formula ∇Xd in Lemma 3.2 and the last compu-

tations in the proof of Theorem 3.1, and is
( Q + α − p

p
+

1

j

) p

C0 j,

where C0 =
(2p−1)

p

∫

S
|z|p(2k+1) (and is evaluated in the proof of Theorem 3.1). Simi-

larly,

RHS = B

∫

2− j<d<1

+ III + IV.

The first term is precisely the same as above and is

B

∫

2− j<d<1

= B C0 j.

It is easy to estimate the error terms and they are all bounded

I, II, III, IV ≤ C.

The inequality (4.7) now becomes
( Q + α − p

p
+

1

j

) p

C0(2p − 1) j + I + II ≥ BC0(2p − 1) j + III + IV.

Dividing both sides by j and letting j → ∞ proves our claim.

An immediate consequence of Theorem 4.1 is the following corollary, known also

as the uncertainty principle; this can be proved by estimating the left-hand side using

Hölder’s inequality together with inequality (4.2) for α = 0.

Corollary 4.4 Let G be the H-type group with the vector fields {X j} as above. Let

1 < s < Q and 1
s

+ 1
t

= 1 Then the inequality

(

∫

G

|z|t |u|t
)

1
t
(

∫

G

|∇Xu|s
)

1
s

≥
Q − s

s

∫

G

|z|2k

d2k
|u|2

holds for u ∈ C∞
0 (G\{0}).

Based on the approach in this paper, some similar generalizations of the Hardy

inequality have been done [15].
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Göteborg, Sweden
e-mail: genkai@chalmers.se

https://doi.org/10.4153/CJM-2010-033-9 Published online by Cambridge University Press

http://dx.doi.org/10.1353/ajm.1996.0046
http://dx.doi.org/10.1090/S0002-9904-1973-13171-4
http://dx.doi.org/10.1007/BF02386204
http://dx.doi.org/10.1006/jdeq.1997.3375
http://dx.doi.org/10.1006/jfan.2001.3792
http://dx.doi.org/10.1007/BF02392081
http://dx.doi.org/10.2307/1998286
http://dx.doi.org/10.4007/annals.2005.162.943
http://dx.doi.org/10.1007/BF02392539
http://dx.doi.org/10.1090/S0002-9939-01-06011-7
http://dx.doi.org/10.1007/BF02392419
http://dx.doi.org/10.1007/BF01388721
http://dx.doi.org/10.1016/S0362-546X(03)00062-2
https://doi.org/10.4153/CJM-2010-033-9

