INVERSE LIMITS IN THE CATEGORY OF COMPACT HAUSDORFF SPACES AND UPPER SEMICONTINUOUS FUNCTIONS

IZTOK BANIČ ${ }^{\boxtimes}$ and TINA SOVIČ

(Received 23 October 2012; accepted 23 January 2013; first published online 22 March 2013)

Abstract

We investigate inverse limits in the category $\mathcal{C H U}$ of compact Hausdorff spaces with upper semicontinuous functions. We introduce the notion of weak inverse limits in this category and show that the inverse limits with upper semicontinuous set-valued bonding functions (as they were defined by Ingram and Mahavier ['Inverse limits of upper semi-continuous set valued functions', Houston J. Math. 32 (2006), 119-130]) together with the projections are not necessarily inverse limits in $\mathrm{CH} \mathcal{U}$ but they are always weak inverse limits in this category. This is a realisation of our categorical approach to solving a problem stated by Ingram [An Introduction to Inverse Limits with Set-Valued Functions (Springer, New York, 2012)].

2010 Mathematics subject classification: primary 54C60; secondary 54B30.
Keywords and phrases: upper semi-continuous functions, inverse limits, weak inverse limits.

1. Introduction

Ingram in his book [13] states the following problem:
Problem 6.63. What can be said about inverse limits with set-valued functions if the underlying directed set is not a sequence of integers?

In this paper we present a categorical approach to solving the above problem.
Consider an inverse system ($A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}$) of compact Hausdorff spaces and continuous bonding functions. It is a well-known fact that the space

$$
\begin{aligned}
\lim _{\longleftarrow} & \left.A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right) \\
& =\left\{\left(x_{\gamma}\right)_{\gamma \in A} \in \prod_{\gamma \in A} X_{\alpha} \mid \text { for all } \alpha, \beta \in A, \alpha<\beta, x_{\alpha}=f_{\alpha \beta}\left(x_{\beta}\right)\right\},
\end{aligned}
$$

together with the projection mappings

$$
p_{\gamma}: \lim _{\leftrightarrows}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right) \rightarrow X_{\gamma}, \quad p_{\gamma}\left(\left(x_{\alpha}\right)_{\alpha \in A}\right)=x_{\gamma},
$$

This work was supported in part by the Slovenian Research Agency, under Grant P1-0285.
(C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00
is in fact an inverse limit in the category $C \mathcal{H C}$ of compact Hausdorff spaces with continuous functions.

In the present paper we extend the category $C \mathcal{H C}$ to the category $C \mathcal{H U}$ of compact Hausdorff spaces with upper semicontinuous (usc) functions in such a way that $C \mathcal{H C}$ is interpreted as a proper subcategory of $C \mathcal{H} \mathcal{U}$. This can be done since every continuous function between compact Hausdorff spaces can be interpreted as a usc function.

As one of our main results we show that the inverse limits with upper semicontinuous set-valued bonding functions

$$
\begin{aligned}
& \underset{\longleftarrow}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right) \\
& \quad=\left\{\left(x_{\gamma}\right)_{\gamma \in A} \in \prod_{\gamma \in A} X_{\alpha} \mid \text { for all } \alpha, \beta \in A, \alpha<\beta, x_{\alpha} \in f_{\alpha \beta}\left(x_{\beta}\right)\right\},
\end{aligned}
$$

together with the projections

$$
p_{\gamma}: \lim _{\leftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right) \rightarrow X_{\gamma}, \quad p_{\gamma}\left(\left(x_{\alpha}\right)_{\alpha \in A}\right)=\left\{x_{\gamma}\right\},
$$

are not necessarily inverse limits in the category but they are always so-called weak inverse limits in $\mathrm{CH} \mathcal{U}$.

In Section 2 we give the basic definitions that are used in the paper.
In Section 3 we give a detailed description of the category $C \mathcal{H} \mathcal{U}$ of compact Hausdorff spaces with usc bonding functions.

In Section 4 we give results about inverse limits in the category $\mathrm{CH} \mathcal{U}$.
In Section 5 we define objects in the category $C \mathcal{H} \mathcal{U}$ that are called weak inverse limits in this category. We also show that for any inverse system $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ in CHU , the corresponding inverse limit with usc set-valued bonding functions together with projections is always a weak inverse limit in category $\mathrm{CH} \mathcal{U}$.

2. Definitions and notation

For any category \mathcal{K} the class of objects of \mathcal{K} will be denoted by $\mathrm{Ob}(\mathcal{K})$, the class of morphisms of \mathcal{K} by $\operatorname{Mor}(\mathcal{K})$, and the partial binary associative operation (composition of morphisms) by \circ. For any $X \in \mathrm{Ob}(\mathcal{K})$ the identity morphism on X will be denoted by $1_{X}: X \rightarrow X$.

Given a directed set A (which is is nonempty and equipped with a reflexive and transitive binary relation \leq with the property that every pair of elements has an upper bound), a family of objects $\left\{X_{\alpha} \mid \alpha \in A\right\}$ of \mathcal{K}, and a family of morphisms $\left\{f_{\alpha \beta}: X_{\beta} \rightarrow X_{\alpha} \mid \alpha, \beta \in A, \alpha \leq \beta\right\}$ of \mathcal{K}, such that:
(1) for each $\alpha \in A, f_{\alpha \alpha}=1_{X_{\alpha}}$;
(2) for each $\alpha, \beta, \gamma \in A$, from $\alpha \leq \beta \leq \gamma$ it follows that $f_{\alpha \beta} \circ f_{\beta \gamma}=f_{\alpha \gamma}$,
we call this an inverse system (in \mathcal{K}) and denote it by

$$
\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)
$$

We assume throughout the paper that A is cofinite, that is, every $\alpha \in A$ has at most finitely many predecessors. For more details see [17].

Next we define inverse limits in \mathcal{K}.
Definition 2.1. An object $X \in \mathrm{Ob}(\mathcal{K})$, together with morphisms $\left\{p_{\alpha}: X \rightarrow X_{\alpha} \mid \alpha \in A\right\}$, is an inverse limit of an inverse system $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ in the category \mathcal{K}, if:
(1) for all $\alpha, \beta \in A$, it follows from $\alpha \leq \beta$ that the diagram

commutes;
(2) for any object $Y \in \mathcal{K}$ and any family of morphisms $\left\{\varphi_{\alpha}: Y \rightarrow X_{\alpha} \mid \alpha \in A\right\}$ it follows that if the diagram

commutes, then there is a unique morphism $\varphi: Y \rightarrow X$ such that for each $\alpha \in A$ the diagram

commutes.
A map or mapping is a continuous function.
If X is a compact Hausdorff space, then 2^{X} denotes the set of all nonempty closed subsets of X.

The graph $\Gamma(f)$ of a function $f: X \rightarrow 2^{Y}$ is the set of all points $(x, y) \in X \times Y$ such that $y \in f(x)$.

A function $f: X \rightarrow 2^{Y}$ is upper semicontinuous if for each $x \in X$ and for each open set $U \subseteq Y$ such that $f(x) \subseteq U$ there is an open set V in X such that:
(1) $x \in V$;
(2) for all $v \in V, f(v) \subseteq U$.

The following is a well-known characterisation of usc functions between Hausdorff compacta (see [14, p. 120, Theorem 2.1]).
Theorem 2.2. Let X and Y be compact Hausdorff spaces and $f: X \rightarrow 2^{Y}$ a function. Then f is usc if and only if its graph $\Gamma(f)$ is closed in $X \times Y$.

To conclude this section we introduce the notion of inverse limits with usc setvalued bonding functions as introduced by Mahavier in [16] and Ingram and Mahavier
in [14]. In the last section we use this notion as a motivation for defining inverse limits with usc set-valued bonding functions for arbitrary inverse systems.

An inverse sequence of compact Hausdorff spaces X_{k} with usc bonding functions f_{k} is a sequence $\left\{X_{k}, f_{k}\right\}_{k=1}^{\infty}$, where $f_{k}: X_{k+1} \rightarrow 2^{X_{k}}$ is usc for each k.

The inverse limit with usc set-valued bonding functions of an inverse sequence $\left\{X_{k}, f_{k}\right\}_{k=1}^{\infty}$ is defined to be the subspace of the product space $\prod_{k=1}^{\infty} X_{k}$ of all $x=$ $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \prod_{k=1}^{\infty} X_{k}$, such that $x_{k} \in f_{k}\left(x_{k+1}\right)$ for each k. The inverse limit of $\left\{X_{k}, f_{k}\right\}_{k=1}^{\infty}$ is denoted by $\lim _{\rightleftarrows}\left\{X_{k}, f_{k}\right\}_{k=1}^{\infty}$.

Since the introduction of such inverse limits, there has been much interest in the subject and many papers have appeared [1-12, 15, 18-22].

3. The category $\boldsymbol{C H} \mathcal{U}$

The category $\mathrm{CH} \mathcal{H}$ of compact Hausdorff spaces and usc functions consists of the following objects and morphisms:
(1) $\mathrm{Ob}(\mathrm{CHU})$-compact Hausdorff spaces;
(2) $\operatorname{Mor}(C \mathcal{H} \mathcal{U})$-the usc functions from X to Y are the set of morphisms from X to Y, denoted by $\operatorname{Mor}(C \mathcal{H} \mathcal{U})(X, Y)$.

We also define the partial binary operation \circ (composition) as follows. For each $f \in \operatorname{Mor}(C \mathcal{H} \mathcal{U})(X, Y)$ and each $g \in \operatorname{Mor}(C \mathcal{H} \mathcal{U})(Y, Z), g \circ f \in \operatorname{Mor}(C \mathcal{H} \mathcal{U})(X, Z)$ is defined by

$$
(g \circ f)(x)=g(f(x))=\bigcup_{y \in f(x)} g(y)
$$

for each $x \in X$.
Theorem 3.1. CHUU is a category.
Proof. First, we show that \circ is well defined. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be any morphisms. Let also $x \in X$ be arbitrary and let U be an open set in Z such that $(g \circ f)(x) \subseteq U$. Since g is usc and $f(x) \subseteq Y$, for each $y \in f(x)$ there is an open set W_{y} in Y such that:
(1) $y \in W_{y}$;
(2) for all $w \in W_{y}, g(w) \subseteq U$.

Let $W=\bigcup_{y \in f(x)} W_{y}$. Since W is open in $Y, f(x) \subseteq W$, and since f is usc, there is an open set V in X such that:
(1) $x \in V$;
(2) for all $v \in V, f(v) \subseteq W$.

Let $v \in V$ be arbitrary. Then

$$
(g \circ f)(v)=g(f(v))=\bigcup_{z \in f(v)} g(z) \subseteq U
$$

since for each $z \in f(v), g(z) \subseteq U$. Therefore \circ is well defined.

It is obvious that the composition \circ of usc functions is an associative operation.
All that is left to show is that for each $X \in \mathrm{Ob}(C \mathcal{H} \mathcal{U})$ there is a morphism $1_{X}: X \rightarrow$ X such that $1_{X} \circ f=f$ and $g \circ 1_{X}=g$ for any morphisms $f: Y \rightarrow X$ and $g: X \rightarrow Z$. We can easily see that the identity map $1_{X}: X \rightarrow X$, defined by $1_{X}(x)=\{x\}$ for each $x \in X$, is the usc function satisfying the above conditions.

4. Inverse limits in $\mathrm{CH} \mathcal{U}$

In this section we show that if $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ is an inverse system of compact Hausdorff spaces and usc set-valued bonding functions, then

$$
\underset{\rightleftarrows}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)
$$

(see Definition 4.1), together with the projections, is not necessarily an inverse limit in the category CH .

Motivated by [14, 16], we define in Definition 4.1 objects in $C \mathcal{H} \mathcal{U}$ called inverse limits with usc set-valued bonding functions. Since such objects were first introduced by Mahavier in [16] and Ingram and Mahavier in [14], where they were called inverse limits with usc set-valued bonding functions, we continue to use the same name for them.

Defintion 4.1. Let $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ be any inverse system in $C \mathcal{H} \mathcal{U}$. We call the object

$$
\lim _{\hookleftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)=\left\{x \in \prod_{\alpha \in A} X_{\alpha} \mid \text { for all } \alpha<\beta, x_{\alpha} \in f_{\alpha \beta}\left(x_{\beta}\right)\right\}
$$

an inverse limit with usc set-valued bonding functions.
In the following theorem we prove that $\lim _{\longleftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ is really an object of CHU .

Theorem 4.2. Let $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ be any inverse system in $\mathcal{C H} \mathcal{U}$. Then the inverse limit with usc set-valued bonding functions

$$
\lim _{\rightleftarrows}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)
$$

is a compact Hausdorff space.
Proof. For each $\gamma \in A, X_{\gamma}$ is a compact Hausdorff space, and therefore the product $\prod_{\gamma \in A} X_{\gamma}$ is a compact Hausdorff space. Since $\underset{\longleftrightarrow}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ is a subspace of the Hausdorff space, it is also a Hausdorff space. We show that $\lim ^{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ is a closed subset of the compact space $\prod_{\gamma \in A} X_{\gamma}$ to show that it is compact.

For all $\alpha, \beta \in A, \alpha<\beta$, let

$$
G_{\alpha \beta}=\Gamma\left(f_{\alpha \beta}\right) \times \prod_{\gamma \in A \backslash\{\alpha, \beta\}} X_{\gamma}=\left\{x \in \prod_{\gamma \in A} X_{\gamma} \mid x_{\alpha} \in f_{\alpha \beta}\left(x_{\beta}\right)\right\} .
$$

Since the graph $\Gamma\left(f_{\alpha \beta}\right)$ of $f_{\alpha \beta}$ is by Theorem 2.2 a closed subset of $X_{\beta} \times X_{\alpha}, G_{\alpha \beta}$ is also a closed subset of $\prod_{\gamma \in A} X_{\gamma}$. It is obvious that

$$
\lim _{\longleftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)=\bigcap_{\alpha, \beta \in A, \alpha<\beta} G_{\alpha \beta}
$$

and hence $\underset{\leftarrow}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ is a a closed subset of $\prod_{\gamma \in A} X_{\gamma}$.
In the following example we construct an inverse limit with usc set-valued bonding functions that is not an inverse limit in $\mathrm{CH} \mathcal{U}$ regardless of the choice of morphisms $\left\{p_{\alpha}: X \rightarrow X_{\alpha} \mid \alpha \in A\right\}$.

Example 4.3. Let $A=\mathbb{N}, X_{k}=[0,1]$, and let $f_{k(k+1)}=f$ for each $k \in \mathbb{N}$, where f : $[0,1] \rightarrow 2^{[0,1]}$ is the function on $[0,1]$ defined by its graph

$$
\Gamma(f)=\{(t, t) \in[0,1] \times[0,1] \mid t \in[0,1]\} \cup(\{1\} \times[0,1]) .
$$

Also let $X=\underset{\lim }{\longleftrightarrow}\left(\mathbb{N},\{[0,1]\}_{k \in \mathbb{N}},\left\{f_{k \ell}\right\}_{k, \ell \in \mathbb{N}}\right)$ and let $\left\{p_{i}: X \rightarrow X_{i} \mid i \in \mathbb{N}\right\}$ be any set of morphisms in $\overleftarrow{C \mathcal{H}} \mathcal{U}$, such that the diagrams (2.1) always commute. We show that X with $\left\{p_{i}: X \rightarrow X_{i} \mid i \in \mathbb{N}\right\}$ is not an inverse limit of $\left(\mathbb{N},\{[0,1]\}_{k \in \mathbb{N}},\left\{f_{k \in}\right\}_{k, \ell \in \mathbb{N}}\right)$ in $\mathcal{C H} \mathcal{U}$. Let $Y=[0,1]$ be an object in $C \mathcal{H U}$ and let $\left\{\varphi_{k}: Y \rightarrow X_{k} \mid k \in \mathbb{N}\right\}$ be the family of morphisms where $\varphi_{k}(t)=[0,1]$ for each k and each $t \in Y$. The diagram (2.2) always commutes. We distinguish the following two cases.
(1) If there is a positive integer i_{0}, such that $1 \notin p_{i_{0}}(x)$ for each $x \in X$, then suppose that Φ is any morphism $Y \rightarrow X$. Then $\varphi_{i_{0}}(t)=[0,1]$ but $1 \notin p_{i_{0}}(\Phi(t))$ for any $t \in Y$. Therefore the diagram (2.3) does not commute for $\alpha=i_{0}$.
(2) If for each positive integer i there is $x^{i} \in X$ such that $1 \in p_{i}\left(x^{i}\right)$, then let $s \in X$ be an accumulation point of the sequence $\left\{x^{i}\right\}_{i=1}^{\infty}$. We show first that $p_{i}(s)=[0,1]$ for each i. Let k be any positive integer. Then for each $\ell>k$, it follows from

$$
[0,1] \supseteq p_{k}\left(x^{\ell}\right)=f_{k \ell}\left(p_{\ell}\left(x^{\ell}\right)\right) \supseteq f_{k \ell}(1) \supseteq[0,1]
$$

that $p_{k}\left(x^{\ell}\right)=[0,1]$. Let $\left\{n_{i}\right\}_{i=1}^{\infty}$ be any increasing sequence of positive integers such that:

- $\quad n_{i}>k$ for each i;
- $\quad \lim _{i \rightarrow \infty} x^{n_{i}}=s$.

It follows from $p_{k}\left(x^{n_{i}}\right)=[0,1]$ that $\left\{x^{n_{i}}\right\} \times[0,1] \subseteq \Gamma\left(p_{k}\right)$ for each i. This means that for each $t \in[0,1]$, the point $\left(x^{n_{i}}, t\right) \in \Gamma\left(p_{k}\right)$. Therefore $\lim _{i \rightarrow \infty}\left(x^{n_{i}}, t\right)=$ $(s, t) \in \Gamma\left(p_{k}\right)$ for each t, since $\Gamma\left(p_{k}\right)$ is a closed subset of $X \times[0,1]$. It follows that $\{s\} \times[0,1] \subseteq \Gamma\left(p_{k}\right)$ and hence $p_{k}(s)=[0,1]$.

Next, let $\Phi, \Psi: Y \rightarrow X$ be the morphisms in $C \mathcal{H} \mathcal{U}$, defined by

$$
\begin{aligned}
& \Phi(t)=X \\
& \Psi(t)=\{s\}
\end{aligned}
$$

for each $t \in Y$. It follows from

$$
p_{k}(\Phi(t))=p_{k}(X)=[0,1]=\varphi_{k}(t)
$$

and

$$
p_{k}(\Psi(t))=p_{k}(\{s\})=[0,1]=\varphi_{k}(t)
$$

that the diagram (2.3) commutes for both $\varphi=\Phi$ and $\varphi=\Psi$. Therefore there is no unique morphism φ such that all diagrams (2.3) commute.

Note that in the second part of Example 4.3, $\Psi(t) \subseteq \Phi(t)=\left(\prod_{k=1}^{\infty} \varphi_{k}(t)\right) \cap X$ holds true for each $t \in Y$. The following lemma shows that such an inclusion is not accidental. It will be used in the proof of Theorem 5.5.

Lemma 4.4. Let $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ be any inverse system in $C \mathcal{H} \mathcal{U}$ and let $X=$ $\underset{\longleftarrow}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$. Suppose that for an object Y of $C \mathcal{H U}$ and a family of morphisms $\left\{\varphi_{\alpha}: Y \rightarrow X_{\alpha} \mid \alpha \in A\right\}$ the diagram (2.2) commutes for any α and $\beta, \alpha<\beta$. Then $\varphi: Y \rightarrow X$, defined by $\varphi(y)=\left(\prod_{\gamma \in A} \varphi_{\gamma}(y)\right) \cap X$ for each $y \in Y$, is a morphism in CHU such that for each $\alpha \in A$ the diagram (2.3) commutes. Even more, for any morphism $\Psi: Y \rightarrow X$ such that $p_{\alpha}(\Psi(y))=\varphi_{\alpha}(y)$ for each $\alpha \in A$ and for each $y \in Y$, $\Psi(y) \subseteq \varphi(y)$ holds true for all $y \in Y$.

Proof. We show that φ satisfies all the conditions in the following steps.
(1) The set $\prod_{\gamma \in A} \varphi_{\gamma}(y)$ is a closed subset of $\prod_{\alpha \in A} X_{\alpha}$, so that $\varphi(y)$ is a closed subset of X for any $y \in Y$.
(2) Next we show that for any $y \in Y$, the set $\varphi(y)$ is nonempty. Let $y \in Y$ be arbitrarily chosen. Next, for each positive integer n, let $A_{n} \subseteq A$ be the set of all elements $\alpha \in A$ that have exactly $n-1$ predecessors. For any $\alpha \in A_{1}$ we arbitrarily choose $t_{\alpha} \in \varphi_{\alpha}(y)$. For any $\beta \in A_{2}$ there is an $\alpha \in A_{1}$ such that $\alpha<\beta$. For any such α and β it follows from $t_{\alpha} \in \varphi_{\alpha}(y) \subseteq f_{\alpha \beta}\left(\varphi_{\beta}(y)\right)$ that there is $t_{\beta} \in \varphi_{\beta}(y)$ such that $t_{\alpha} \in$ $f_{\alpha \beta}\left(t_{\beta}\right)$. We choose and fix such t_{β} for each $\beta \in A_{2}$. Suppose that we have already constructed $t_{\alpha} \in \varphi_{\alpha}(y)$ for all $\alpha \in A_{n}$. Then for any $\beta \in A_{n+1}$ there is an $\alpha \in A_{n}$ such that $\alpha<\beta$. For any such α and β it follows from $t_{\alpha} \in \varphi_{\alpha}(y) \subseteq f_{\alpha \beta}\left(\varphi_{\beta}(y)\right)$ that there is $t_{\beta} \in \varphi_{\beta}(y)$ such that $t_{\alpha} \in f_{\alpha \beta}\left(t_{\beta}\right)$. We choose and fix such t_{β} for each $\beta \in A_{n+1}$.

Then obviously $x=\left(t_{\alpha}\right)_{\alpha \in A} \in \varphi(y)$ and therefore $\varphi(y)$ is nonempty.
(3) We show that φ is a usc function. Let $y \in Y$ be an arbitrary point and let

$$
U=\left(U_{\gamma_{1}} \times U_{\gamma_{2}} \times U_{\gamma_{3}} \times \cdots \times U_{\gamma_{n}}\right) \times \prod_{\gamma \in A \backslash\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}} X_{\gamma}
$$

be an open set in X such that $\varphi(y) \subseteq U$, where for each $i=1,2,3, \ldots, n, U_{\gamma_{i}}$ is an open set in $X_{\gamma_{i}}$. It follows from the definitions of φ and U that $\varphi_{\gamma_{i}}(y) \subseteq U_{\gamma_{i}}$
for each $i=1,2,3, \ldots, n$. Since each $\varphi_{\gamma_{i}}$ is usc, there is an open set V_{i} in Y such that:
(a) $y \in V_{i}$;
(b) for each $x \in V_{i}, \varphi_{\gamma_{i}}(x) \subseteq U_{\gamma_{i}}$,
for each i. We define $V=\bigcap_{i=1}^{n} V_{i}$. Then V is an open set in Y for which:
(a) $y \in V$;
(b) for each $x \in V, \varphi(x)=\prod_{\gamma \in A} \varphi_{\gamma}(x) \subseteq U$
hold true. Therefore φ is a usc function and so it is a morphism from Y to X.
(4) Next we show that the diagram (2.3) commutes, that is, for any $\alpha \in A$ and any $y \in Y, \varphi_{\alpha}(y)=\left(p_{\alpha} \circ \varphi\right)(y)$ holds true. Choose any $\alpha \in A$ and any $y \in Y$. Obviously

$$
p_{\alpha}(\varphi(y))=p_{\alpha}\left(\left(\prod_{\gamma \in A} \varphi_{\gamma}(y)\right) \cap X\right) \subseteq p_{\alpha}\left(\prod_{\gamma \in A} \varphi_{\gamma}(y)\right)=\varphi_{\alpha}(y) .
$$

Next we show that $\varphi_{\alpha}(y) \subseteq p_{\alpha}(\varphi(y))$. Let $z \in \varphi_{\alpha}(y)$ be arbitrarily chosen. We show that $z \in p_{\alpha}(\varphi(y))$ by showing that there is a point $x \in \varphi(y)$ such that $z \in$ $p_{\alpha}(x)$. Let k be the positive integer such that $\alpha \in A_{k}$. For each $\gamma \in A_{k} \backslash\{\alpha\}$ let $t_{\gamma} \in \varphi_{\gamma}(y)$ be arbitrary and let $t_{\alpha}=z$. For each $\gamma \in A_{k-1}$ we choose $t_{\gamma} \in \varphi_{\gamma}(y)$ such that if $\alpha \in A_{k-1}, \beta \in A_{k}$, and $\alpha<\beta$, then $t_{\alpha} \in f_{\alpha \beta}\left(t_{\beta}\right)$. This can be done since $f_{\alpha \beta}\left(\varphi_{\beta}(y)\right)=\varphi_{\alpha}(y)$ and therefore $f_{\alpha \beta}\left(t_{\beta}\right) \subseteq \varphi_{\alpha}(y)$.

Continuing in the same fashion, we choose for each $i=1,2,3, \ldots, k-1$ and each $\gamma \in A_{i}$ an element $t_{\gamma} \in \varphi_{\gamma}(y)$ such that $t_{\alpha} \in f_{\alpha \beta}\left(t_{\beta}\right)$ for each $\alpha \in A_{i}, \beta \in A_{i+1}$, $\alpha<\beta$.

Next, for each $\beta \in A_{k+1}$ and for each $\alpha \in A_{k}$ such that $\beta>\alpha$, since $t_{\alpha} \in \varphi_{\alpha}(y)=$ $f_{\alpha \beta}\left(\varphi_{\beta}(y)\right)$, there is $t_{\beta} \in \varphi_{\beta}(y)$, such that $t_{\alpha} \in f_{\alpha \beta}\left(t_{\beta}\right)$.

We continue inductively in the same fashion and choose for each $i=k+1, k+$ $2, k+3, \ldots$ and each $\beta \in A_{i+1}$ an element $t_{\beta} \in \varphi_{\alpha}(y)$ such that $t_{\alpha} \in f_{\alpha \beta}\left(t_{\beta}\right)$ for each $\alpha \in A_{i}$, such that $\alpha<\beta$.

Let $x \in \prod_{\gamma \in A} X_{\gamma}$ be such an element that $p_{\gamma}(x)=\left\{t_{\gamma}\right\}$ for each $\gamma \in A$. It follows from the construction of x that $x \in \varphi(y)$ and $z \in p_{\alpha}(x)$.
(5) Suppose that $\psi: Y \rightarrow X$ is a morphism in $C \mathcal{H} \mathcal{U}$ such that for each $\alpha \in A$ and for each $y \in Y, p_{\alpha}(\Psi(y))=\varphi_{\alpha}(y)$. Let $y \in Y$ be arbitrary and let $z \in \psi(y)$. Obviously $z \in X$ since ψ is a morphism from Y to X. It follows from $p_{\alpha}(z) \subseteq$ $p_{\alpha}(\psi(y))=\varphi_{\alpha}(y)$ (for each α) that $z \in \prod_{\gamma \in A} \varphi_{\gamma}(y)$. Therefore $z \in \varphi(y)$ and hence $\psi(y) \subseteq \varphi(y)$.

5. Weak inverse limits in $\mathrm{CH} \mathcal{H}$

In this section we introduce the notion of weak inverse limits in $C \mathcal{H} \mathcal{U}$ and show that $\lim _{\leftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$, together with the projections, is always a weak inverse limit in $C \mathcal{H} \mathcal{U}$.

In Definition 5.1 we define a weak commutation of a diagram in the category $\mathrm{CH} \mathcal{H}$.
Defintion 5.1. Let $X, Y, Z \in \mathrm{Ob}(C \mathcal{H} \mathcal{U})$ and let $f: X \rightarrow Y, g: X \rightarrow Z$ and $h: Z \rightarrow Y$ be any morphisms in $\mathcal{C H U}$. The diagram

weakly commutes if, for any $x \in X, f(x) \subseteq(h \circ g)(x)$.
Example 5.2. Let $f:[0,1] \rightarrow 2^{[0,1]}, g:[0,1] \rightarrow 2^{[0,1]}$ be identity functions on $[0,1]$ and let $h:[0,1] \rightarrow 2^{[0,1]}$ be defined by

$$
h(x)=[0,1]
$$

for all $x \in[0,1]$. Then the diagram

weakly commutes but does not commute.
In the following definition we generalise the notion of inverse limits in CHU .
Defintion 5.3. An object $X \in \operatorname{Ob}(C \mathcal{H} \mathcal{U})$, together with morphisms $\left\{p_{\alpha}: X \rightarrow X_{\alpha} \mid \alpha \in\right.$ $A\}$, is a weak inverse limit of an inverse system

$$
\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)
$$

in $\mathcal{C H U}$, if:
(1) for all $\alpha, \beta \in A$, it follows from $\alpha \leq \beta$ that the diagram (2.1) weakly commutes;
(2) for any object $Y \in C \mathcal{H} \mathcal{U}$ and any family of morphisms $\left\{\varphi_{\alpha}: Y \rightarrow X_{\alpha} \mid \alpha \in A\right\}$ it follows that if the diagram (2.2) commutes, then for any morphism Ψ : $Y \rightarrow X$ such that for each $\alpha \in A$ and for each $y \in Y, p_{\alpha}(\Psi(y))=\varphi_{\alpha}(y), \Psi(y) \subseteq$ $\left(\prod_{\gamma \in A} \varphi_{\gamma}(y)\right) \cap X$ holds true for all $y \in Y$.

Note that each inverse limit in $\mathrm{CH} \mathcal{U}$ is always a weak inverse limit in $\mathrm{CH} \mathcal{H}$.
Example 5.4. Let $X=\lim \left(\mathbb{N},\{[0,1]\}_{k \in \mathbb{N}},\left\{f_{k \ell}\right\}_{k, \ell \in \mathbb{N}}\right)$ be the inverse limit with usc setvalued bonding functions that we defined in Example 4.3. Then X, together with the projection mappings, is obviously not an inverse limit but it is a weak inverse limit in CHU .

We show in the following theorem that the inverse limits with upper semicontinuous set-valued bonding functions together with projections are always weak inverse limits in CHU .

Theorem 5.5. Let $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ be any inverse system in $\mathcal{C H} \mathcal{U}$. Then the inverse limit with usc set-valued bonding functions

$$
\lim _{\leftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right),
$$

together with projections

$$
p_{\gamma}: \lim _{\longleftarrow}\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right) \rightarrow X_{\gamma}, \quad p_{\gamma}\left(\left(x_{\alpha}\right)_{\alpha \in A}\right)=\left\{x_{\gamma}\right\},
$$

is a weak inverse limit of the inverse system $\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$ in $C \mathcal{H} \mathcal{U}$.
Proof. Let $X=\underset{\sim}{\lim }\left(A,\left\{X_{\alpha}\right\}_{\alpha \in A},\left\{f_{\alpha \beta}\right\}_{\alpha, \beta \in A}\right)$. First, we prove that the diagram (2.1) weakly commutes. Choose any $x \in X$ and let $\alpha<\beta$. Then

$$
p_{\alpha}(x)=\left\{x_{\alpha}\right\} \subseteq f_{\alpha \beta}\left(\left\{x_{\beta}\right\}\right)=\left(f_{\alpha \beta} \circ p_{\beta}\right)(x) .
$$

Next, suppose that for an object $Y \in C \mathcal{H U}$ and a family of morphisms $\left\{\varphi_{\alpha}: Y \rightarrow\right.$ $\left.X_{\alpha} \mid \alpha \in A\right\}$ the diagram (2.2) commutes. By Lemma 4.4, for any morphism $\Psi: Y \rightarrow X$ such that for each $\alpha \in A$ and for each $y \in Y, p_{\alpha}(\Psi(y))=\varphi_{\alpha}(y), \Psi(y) \subseteq\left(\prod_{\gamma \in A} \varphi_{\gamma}(y)\right) \cap X$ holds true for all $y \in Y$.

Acknowledgement

The authors thank Uroš Milutinović for constructive discussion.

References

[1] I. Banič, 'On dimension of inverse limits with upper semicontinuous set-valued bonding functions', Topology Appl. 154 (2007), 2771-2778.
[2] I. Banič, 'Inverse limits as limits with respect to the Hausdorff metric', Bull. Aust. Math. Soc. 75 (2007), 17-22.
[3] I. Banič, 'Continua with kernels', Houston J. Math. 34 (2008), 145-163.
[4] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, 'Limits of inverse limits', Topology Appl. 157 (2010), 439-450.
[5] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, 'Paths through inverse limits', Topology Appl. 158 (2011), 1099-1112.
[6] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, ‘Towards the complete classification of generalized tent maps inverse limits', Topology Appl. 160 (2013), 63-73.
[7] I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič, 'Ważewski's universal dendrite as an inverse limit with one set-valued bonding function', Glas. Mat. Ser. III, in press.
[8] W. J. Charatonik and R. P. Roe, 'Inverse limits of continua having trivial shape', Houston J. Math. 38 (2012), 1307-1312.
[9] A. N. Cornelius, 'Weak crossovers and inverse limits of set-valued functions', Preprint, 2009.
[10] A. Illanes, 'A circle is not the generalized inverse limit of a subset of $[0,1]^{2}$, Proc. Amer. Math. Soc. 139 (2011), 2987-2993.
[11] W. T. Ingram, 'Inverse limits of upper semicontinuous functions that are unions of mappings', Topology Proc. 34 (2009), 17-26.
[12] W. T. Ingram, 'Inverse limits with upper semicontinuous bonding functions: problems and some partial solutions', Topology Proc. 36 (2010), 353-373.
[13] W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions (Springer, New York, 2012).
[14] W. T. Ingram and W. S. Mahavier, 'Inverse limits of upper semi-continuous set valued functions', Houston J. Math. 32 (2006), 119-130.
[15] J. A. Kennedy and S. Greenwood, 'Pseudoarcs and generalized inverse limits', Preprint, 2010.
[16] W. S. Mahavier, 'Inverse limits with subsets of [0, 1] $\times[0,1]$ ', Topology Appl. 141 (2004), 225-231.
[17] S. Mardešić and J. Segal, Shape Theory (North-Holland, Amsterdam, 1982).
[18] V. Nall, 'Inverse limits with set valued functions', Houston J. Math. 37 (2011), 1323-1332.
[19] V. Nall, 'Connected inverse limits with set valued functions', Topology Proc. 40 (2012), 167-177.
[20] V. Nall, 'Finite graphs that are inverse limits with a set valued function on [0, 1]', Topology Appl. 158 (2011), 1226-1233.
[21] A. Palaez, 'Generalized inverse limits', Houston J. Math. 32 (2006), 1107-1119.
[22] S. Varagona, 'Inverse limits with upper semi-continuous bonding functions and indecomposability', Houston J. Math. 37 (2011), 1017-1034.

IZTOK BANIČ, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor 2000, Slovenia
and
Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana 1000, Slovenia
e-mail: iztok.banic@uni-mb.si
TINA SOVIČ, Faculty of Civil Engineering, University of Maribor,
Smetanova 17, Maribor 2000, Slovenia
e-mail: tina.sovic@um.si

