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MONOCOREFLECTIVE SUBCATEGORIES IN GENERAL 
TOPOLOGY 

R. GRANT WOODS 

1. Introduction. Let & be a full subcategory of a category ^. SP is said 
to be cor elective in ^ if for each object X in *$ there exists an object &X in & 
and a morphism o>x : ^ X —» X such that for each object P in ^ and each 
morphism f : P —* X there exists a unique morphism g : P —> SPX such that 
/ = o>x o g. The morphism o>x is called the coreflection morphism from &X 
to X, and &X is called the coreflection of X (in ^ ) . If each coreflection mor­
phism is a monomorphism then SP is said to be a monocoreflective subcategory 
of *Jf. We shall denote this by writing & < fé7. In this paper we study mono-
coreflective subcategories of the category 3T of topological spaces and the 
category Jf7 of Hausdorff spaces. Much is already known about such subcate­
gories; see for instance the papers of Kennison [5] and Herrlich and Strecker 
[4]. Chapter 10 of Walker [9], especially Problems 10B and IOC, provides a 
succinct summary of the elementary properties of monocoreflective subcate­
gories of 3T. In contrast to this earlier work, however, our chief interest will be 
in the interaction of pairs of monocoreflective subcategories of ^ and of ffl. 
Thus many of our results will be dual-like analogues of theorems appearing 
in [10], and for this reason some familiarity with the contents of [10] will be 
helpful (though not essential) to the reader. 

The basic themes of this paper are as follows. First, we show that discrete 
spaces play a role in monocoreflective subcategories of 3f and ^ that is 
analogous to the role played by compact Hausdorff spaces in epireflective 
subcategories of the category of Tychonoff spaces and the category of zero-
dimensional Hausdorff spaces. Second, we introduce the concept of &-pseudo-
discreteness that is analogous to the concept of ^-pseudocompactness defined 
in [10], and use it to analyze the relation between pairs of monocoreflective 
subcategories of $~ and of J^7. 

It should be noted that out "dual-like analogues" of theorems in [10] are 
not categorical duals in the strict technical sense described, for example, on 
page 31 of [6]. 
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We shall henceforth assume tha t all hypothesized subcategories of ST are 
full and replete; thus if fé7 is a subcategory oiST, the objects of *$ will be the 
class of all topological spaces possessing some given topological proper ty and 
the morphisms of *io will be the continuous functions between these objects. 
Hence a subcategory ^ of ST will be specified by describing what class of 
topological spaces comprises its objects. A map will be a continuous function. 
If we wish to specify explicitly the topology r of an object of^~, we shall write 
tha t object as (X, r ) . A discussion of the categorical concepts used in this 
paper may be found in [4], [6], and in Chapter 10 of [9]. We make no assump­
tions t ha t our topological spaces satisfy any separation axioms unless those 
axioms are explicitly s ta ted. 

We denote the category of zero-dimensional Hausdorff spaces byJ^o (a space 
is zero-dimensional if its open-and-closed (clopen) subsets form a base for the 
open sets of the space). The category of Tychonoff (i.e. completely regular 
Hausdorff) spaces is denoted b y ^ " y c h . If s/ and Se are topological properties 
we shall use the n o t a t i o n ^ C Se,s/ C\ Se, and X £ se to mean respectively: 
each space in se is in S$, the class of all spaces in both se and Se, and X is 
a space in the c l a s s a . If s/ is a topological property, we denote by s/^ the 
class of zero-dimensional spaces with se. 

In any topological category containing the space with one point a map is a 
monomorphism if and only if it is one-to-one; see Proposit ion 10.17 of [9]. In ST 
a m a p is an epimorphism if and only if it is on to ; however, in J^7 a map is an 
epimorphism if and only if the image of the domain is a dense subspace of 
the range. An examination of the proof of this proposition (see page 255 of [9], 
for example) reveals t ha t the following proposition is in fact proved: 

1.1. P R O P O S I T I O N . Let *$ be a subcategory oj*3rif with the following properties: 
(i) 7/ Y i and F 2 are objects of ^ , so is their free union Y\ \J F2 . 

(ii) If Y is an object of *$ and there is a closed finite-to-one mapping from Y 
onto a {necessarily Hausdorff) space Z, then Z is an object of *$. 

Then epimorphisms in *$ are mappings onto dense sub spaces of the range. 

I t is straightforward to verify t ha t the categories J^o and ^~ych satisfy the 
hypotheses on Çf in 1.1. 

T o mot iva te the investigation we shall under take , we give a brief discussion 
of the concept of an epireflective subcategory of a given category. A full sub­
c a t e g o r y ^ of a category ^€ is said to be reflective in ^ if for each object X in ^ 
there exists an o b j e c t s é X ms/ and a morphism e^x : X -^S$X such t ha t for 
each object A ois/ and each m o r p h i s m / : X —-> A, there exists a unique mor­
p h i s m / ' : s/X —> A such t h a t / = / ' o e^x- This notion is the categorical dual 
to the concept of coreflection. If e^x is an epimorphism for each object X of 
C then sé is said to be an epireflective subcategory of fé7. Epireflective subcate­
gories of certain topological categories have been intensively studied. For 
example the category of compact Hausdorff spaces is an epireflective sub­
category of the category of Tychonoff spaces; the epireflection morphism 
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embeds each Tychonoff space X in its Stone-Cech compactification f3X. 
Realcompact spaces, via the Hewit t realcompactification, form another epire-
flective subcategory of Tychonoff spaces. Many other examples are discussed 
in [10]. 

In [10] we studied epireflective subcategories SP of topological categories ^ 
subject to the following conditions: (1) ^ is closed under the formation of 
product spaces and subspaces. (2) The epireflection ^@x • X —•> SPX embeds 
X as a dense subspace of SPX. (3) Each compact Hausdorff object in *$ is in SP 
and each object in ^ has a Hausdorff compactification in fé\ These conditions 
imply tha t each object of ^ be Tychonoff; in practice *$ was either J^~ych 
o f i f o. We called an object X of <% SP-pseudocompact if its ^-epiref lect ion SPX 
were compact . We systematically studied the relationship between two such 
epireflective subcategories of ^ by using the concept of ^ -pseudocompac tness . 
In this paper we investigate the analogous concept for monocoreflective sub­
categories. We are able to obtain dual-like analogues of many of the theorems 
in [10] al though in some cases we pay a penalty for considering monocore­
flective subcategories of J^~ or ffl ra ther than jus t of J ^ y c h or J ^ 0 ; namely our 
theorems are sometimes not as strong as their epireflective analogues. 

We now discuss some well-known theorems and examples concerning mono­
coreflective subcategories. According to a theorem of Kennison, quoted as 
Theorem 4 of [4], all coreflective subcategories of ST and of ffl are mono­
coreflective, so no greater generality is obtained by s tudying coreflective sub­
categories of ST or 3C. 

The following is Theorem 12 of [4] ; par t of it also appears in [5]. 

1.2. T H E O R E M . Let SP be a topological property. Then SP {respectively SP H J f ) 
is a monocoreflective subcategory of ST (respectively 3f) if and only if SP is closed 
under the formation of free unions and quotient images {respectively, Hausdorff 
quotient images). 

I t follows t ha t if SP is any topological property, then the class <J%(SP) of 
spaces t ha t are quotient images of free unions of members of SP (respectively 
SP C\^f) forms a monocoreflective subcategory of 3~ ( r e s p e c t i v e l y ^ ) , the 
smallest monocoreflective subcategory containing SP. In special cases the mono-
coreflection \n<Jé(SP) of an object X in ST or ffl can be described explicitly. 
The following is Theorem 15 of [4]. 

1.3. T H E O R E M . Let SP be a topological property such that continuous images of 
spaces with SP have SP. Then the monocoreflection in^é(SP) of a space (X, r ) 
is the space (X, r ' ) , where V £ r if and only if V C\ P is open in P for each 
subspace P of (X, r ) such that P has SP. The identity map on the set X is the core-
flection morphism from (X, T) to (X, T). 

As examples (mentioned in [4]), if SP is the class of compact spaces,<Jé(SP) 
is the class of ^-spaces; if SP contains one space, namely the one-point com­
pactification iV* of the countable discrete space N, t\\en^$(SP) is the class of 
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sequential spaces (see 10B of [9]). T h e class of sequential spaces is also identical 
wi th^#({2 w }) , where 2W is the Cantor space. 

Another impor tan t example of a monocoreflective subcategory of 0~ (respec­
tively J ^ ) is the category of (Hausdorff) P-spaces. Recall t ha t a space (X, r) 
is a P-space if its G^-sets are open (note t ha t no separation axioms are assumed 
here). If & denotes the category of ^ - s p a c e s then SP <3T\ SP(X, r ) is the 
topological space whose underlying set is X and whose topology T is the 
topology for which the GVsets of (X, r ) form an open base. See [3] or [9] for 
a discussion of P-spaces. Similarly 0* C\3f < ffl. 

2. ^ - p s e u d o d i s c r e t e spaces . As mentioned in Section 1 ^ - p s e u d o c o m p a c t 
spaces play an impor tan t role in s tudying the interrelation between pairs of 
epireflective subcategories of J^o o r ^ y c h . T o find a concept for monocore­
flective subcategories of 3T or J f t ha t is analogous to ^ - p s e u d o c o m p a c t n e s s 
in the category of (zero-dimensional) Tychonoff spaces, we first must find an 
analogue for the concept of compactness. T o help us do this, we first give 
a category-theoretic characterization of the compact objects of the category 
of (zero-dimensional) Tychonoff spaces. Recall t ha t in topological categories, 
" isomorphism" means "homeomorphism". 

2.1. LEMMA. Let *% be either J ^ y c h or J ^ 0 . The following conditions on an object 
X of & are equivalent. 

(i) X is compact. 
(ii) If Y is an object of fë and if f : X —> Y is both a monomorphism and an 

epimorphism, then fis an isomorphism. 

Proof, (i) =» (ii): By assumption f[X] is a compact dense subspace of F ; 
thus as Y is Hausdorff, f[X] = Y. As X is compact , / is closed; as / is also 
one-to-one and con t inuous , / is a homeomorphism from X onto Y. 

(ii) => (i): If X were not compact , the embedding of X in its Stone-Cech 
compactification (or its maximal zero-dimensional compactification if %f = J ^ 0 ; 
see [10]) is both a monomorphism and an epimorphism bu t not an isomorphism. 

The "dual-like analogue" to 2.1, where *% is now either J ^ o r ^ , is given in 
2.2 below. Note t ha t s t a t ement 2.2 (ii) would be the categorical dual of 
2.1 (ii) if ^ were the same category in 2.1 and 2.2. This is par t of our just i­
fication for claiming tha t discrete spaces play a dual-like role in J ^ or 3T to 
t ha t which compact spaces play in J ^ 0 or J ^ y c h . 

2.2. L E M M A . Let *$ be either ^ or £T. The following conditions on an object X 
of *$ are equivalent. 

(i) X is discrete. 
(ii) If Y is an object of *$ and if f : Y —> X is both a monomorphism and an 

epimorphism, then f is an isomorphism. 

Proof, (i) => (ii). By a s s u m p t i o n / is a one-to-one continuous function from 
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F onto the discrete space X. It follows immediately that Fis discrete and that 
/ is a homeomorphism. 

(ii) =» (i). Suppose X were not discrete. Let F be the discrete space of the 
same cardinality as X, and let / be any one-to-one function from F onto X. 
Then / is continuous, a monomorphism and an epimorphism, but is not a 
homeomorphism. 

Motivated by this analogy between compactness and discreteness, and by 
the définition of ^-pseudocompactness appearing in [10], we introduce the 
concept of ^-pseudodiscreteness as follows. Recall that 0* < *$ means 0 is 
a monocoreflective subcategory of *$. 

2.3. Definition. Let <€ be 3T or ̂  and let SP < &. An object X of ^ is 
SP -pseudodiscrete if 0X is discrete. The class of ^-pseudodiscrete spaces will 
be denoted by SP*. 

We now develop the properties of ^-pseudodiscreteness. We begin with a 
preliminary lemma. 

2.4. LEMMA. Let ^ be ^ orJtif, let 0 < ^ , and let X be an object cf tf. 
If A is a clopen subset of X then a&x^[A] = 0 A and o-^xW^x^[A] = o>A. 

Proof. By the corollary of Proposition 3 of [4] a^x^[A] G SP and ^ j | ^ / [ i ] 
is a monomorphism from <T&X*~[A] onto A. Let F G 0 and l e t / : F —> A be 
continuous. Let iA be the embedding of A in X. Then iA of : F —> X so there 
exists a unique map g : F —» £PX such that o>x o g = iA of. If y G F then 
°>x(g(:y)) = f(y) £ A so g maps F into a^x^~[A]. The lemma follows. 

The elementary properties of the class 0* are summarized in the following 
lemma. 

2.5. LEMMA. Let 0 <0~. Then 
(1) If Y G ^ * awd/ : X —-> F is a monomorphism then X G ^ * . 
(2) J / ^ <&~and& < 0~ and gP C 2, then 2* £ ^ * . 
(3) 77&e product of finitely many members of SP* is in &*. 
(4) The free union of arbitrarily many members of SP* is in SP*. 

Proof. (1) The m a p / o 
(jgpx is a monomorphism from gPX to F. By definition 

of gP Y there is a unique map g : &X —* &Y such that o>F o g = / o o>x-
A s / o o>x is a monomorphism so is g. As SP Y is discrete this implies that SPX 
is discrete. 

(2) If X G «g* then â X is discrete. As <^X G â there is a unique map 
/ : SPX -> ^ X such that cr̂ aĵ  = cr̂ x o / . Thus / is a monomorphism as 
0>x is; so &X is discrete, i.e. X G ^ * . 

(3) Let Xi, . . . , Xn G ̂ * , put X = ITLi X,-, and let p, : X -> Xs be the 
j th projection map. Then pj o o>x maps gPX to Xy so there exists a unique 
map kj : ^ X —>£PXj such that o>Xy o &;- = pj o <r^x(j = 1 to n). Define 
k : 0>X -> ri"„i ^ % - by ^ o k = kj, where q, : I T U ^ X , -> &X, is the j th 
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projection map. Then k is continuous. Also k is one-to-one for if k(x) = k(y) 
then kj(x) = kj(y) for j = 1 to n\ thus pj o <rpx(x) = Pj o <r&x{y) for 7 = 1 
to w, so <Tffix(%) — °&x(y)- As o>x is one-to-one, x = y so ft is one-to-one. 
By hypothesis I T U 0Xj is discrete so gPX is discrete, i.e. X G ^ * . 

(4) Let X = W a 6 2Z a where Z a G ^ * . By Lemma 2.4 c r ^ [ X a ] = ^ X a for 
each a G 2. Thus ^ X is a free union of discrete spaces, and so X G &*• 

It is worth noting that while the analogues of (1), (2) and (3) of 2 .5 -
respectively 2.2 (a) and (c), 2.2 (e), and 2.2 (b) of [10] - are true for ^-pseudo-
compact spaces, the analogue of 2.5 (4) is not true, for if SP is realcompactness, 
the product of just two ^-pseudocompact (i.e. pseudocompact) spaces need 
not be pseudocompact (see 9.15 of [3]). 

We can now prove the first of our main theorems. 

2.6. THEOREM. Let 0 <0~and Q <0~. If X ^0~ put 

S&X = {p £ X : o-0>x*~(p) is not isolated in &X\. 

The following are equivalent. 

(b) For each X G 0~§ each of S&X and S^X is dense in S&X U S$X. 

Proof, (a) => (b): Let X G ^~0, let p G S&X, and let i b e a clopen set of X 
with p £ A. As p G S&X, a^x^[A] is not discrete, so by 2.4 A G &*. As 
A G ^~o it follows that A G i2*. Thus by 2.4 aâX*~[A] is not discrete, so 
A C\ S^X ^ 0. 

(b) =» (a). Suppose (a) fails and X G ( ^* C\J~,) - (£* C\3T,). Thus 
&X is discrete and SIX is not discrete. In other words S&X = 0 and SâX 9^ 0, 
so (b) fails. 

The above theorem is analogous to Theorem 2.6 of [9]. To prove that there 
exist distinct monocoreflective subcategories 0* and i2 of 3?~ such that ^ * = 
i2*, we next prove an analogue of Theorem 3.9 of [9] (Theorem 2.10 below). 
Roughly speaking this will show that given a monocoreflective subcategory & 
of Ĵ ~, there exists a "largest" monocoreflective subcategory i2 of 3T such that 
ôp* — g)*m Some preliminaries are necessary. Theorem 2.7 below is analogous 
to (a generalization of) Theorem 3.6 of [9]. 

2.7 THEOREM. Lets/ be any topological property. Lets/ be the class of (Haus-
dorff) topological spaces X satisfying the following condition: if f : X —> Y is 
continuous and Y G se {respectively Y G s/ C\ ffl} then f[X], equipped with the 
quotient topology induced on it by f, is discrete. Then se < 0~ {respectively 
s/ <3f). 

Proof. By 1.2 it suffices to show that J^/ is closed under the formation of free 
unions and quotient images. 

Let (Xa)aex be a set of spaces ins/ and let X be their free union. Let ka : Xa 

—> X be the canonical embedding of Xa into X. L e t / : X —• Y be continuous, 
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F Ç &/, and let Z denote the space f[X] with the quotient topology induced on 
it by/ . T h u s / can be factored a s / o q where g is a quotient map from X onto Z 
and / is a one-to-one onto map from Z onto f[X]. Similarly for each a Ç 2 
let Za denote the space/ o &a[XJ with the quotient topology induced on it by 
/ o ka. Then / o ka can be written as j a o qa where qa is / o ka regarded as a 
quotient map from Xa onto Za and j a is a one-to-one map from Za into /[X] 
(see Figure 1). 

FIGURE 1 

Let p g Z. Let A = {a G S : / ( » G / o fe«[XJ} ; note that A ^ 0. If a Ç A 
then since Xa G ^ , Za is discrete soja*~(j(P)) ls open in Za. Thus ç/~[j/~(j(£))] 
is open in Xa, i.e. &«*"[/*" (j(£))] is open in Xa. As each such ka embeds Xa as 
an open subset of X, U {f"(j(P)) ^ &aK*] : « G A) is open in X, i.e-f~(j(p)) 
is open in X. Asj is one-to-one, f~{j{p)) = q*~(p)- As q is quotient, this implies 
that {p} is open in Z. Thus Z is discrete and X £ ^ . 

If X £ ^ and ç : X —» F is quotient map, l e t / : F —•> Z be continuous and 
Z G -^ . If 5 denotes/[F] equipped with the quotient topology induced b y / , 
/ o q is a quotient map from X onto 5, and 5 maps into Z. Thus as X Ç J^, 
5 is discrete. Hence F G ^ and the theorem follows. 

The following properties of the " operator are stated without proof. 

2.8. PROPOSITION. Let se and S8 be topological properties. If s/ C 38 then 

â es/. 
2.9. PROPOSITION. Lets/ be a topological property such that if Y £ s/ and 

j : X —> Y is a monomorphism then X £ se. Then X £ stf if and only if quotient 
images of X in se are discrete. 

2.10. THEOREM. Let3P <^. Then: 

(1) (^*) <J~. 

(2) ((&*))* = 3P*. 
(3) Ifg <$~ andgP* = Q*thenQ C (^*) . 

Proof. (1) is a special case of 2.7. 
To prove (3) let X G «S and l e t / : X -+ F be continuous, where F G ^ * . 

As in 2.7 factor / into j o q where q is quotient and j is one-to-one. Let Z 
denote the quotient image of X under g. As F G ^ * by 2.5 (1) Z G 3P*. Thus 
by hypothesis Z Ç ^ * . As I G ^ by 1.2 Z Ç «S. Thus «gZ = Z so Z is dis­
crete. Thus X G (^*) . 
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T o prove (2) note t ha t by (3) and 2.5 (2) ( ( ^ * ) ) * C ^ * . Conversely let 

X G ^ * . By 2.5 (1) ( ^ * T X G ^ * . Let Z denote the set X with the quot ient 

topology induced on it by o-(p*)x- As X G ^ * , Z is discrete. As <7(Jï)x is one-to-

one it follows t ha t &*)X is discrete so X G ( ( ^ * ) )*. 

We now consider some examples. 

2.11. Examples, (a) Let SP denote the class of P-spaces (described in Section 
1) ; then SP* is the class of spaces whose singleton sets are Go-sets. By 2.9 a space 
X is in ( ^ * ) if and only if, whenever F is a quot ient image of X and each 
singleton set of F is a G«-set, F is discrete. Obviously all first countable T\ 
spaces are in ^ * , while f3N-N is a compact space tha t is not in SP*. I t is easy 

to verify t ha t X G (&*) if and only if given a part i t ion Ql of X such t ha t 

each member of S is the intersection of countably many «^-saturated open 

subsets of X, then each member of Ql is open in X. If (X, r ) is a topological 

space and r when ordered by inclusion is a chain, then (X, r ) G ( ^ * ) . In 
part icular let co denote the least infinite ordinal, and consider the set co + 1 of 
ordinals no greater than co with the topology r = {co + 1 — (0, . . . , n) : n < co}. 

Then (co + 1, r ) G @*) bu t (co + 1, r ) g ^ ; thus & * (<?*). 
(b) Let 9f be a topological proper ty closed under the formation of continuous 

images. Using 1.3 it is easily seen t ha t X G [ ^ ( ^ ) ] * if and only if the only 
subspaces of X having *$ are discrete; one direction is obvious, and if C is a 
non-discrete subspace of X with &, find p G C such t ha t {p} is not open in ^ ; 
then by 1.3 vj{{<ë)x*~(P) is not open i n ^ f ( ^ ) X and so X G [ ^ ( ^ ) ] * . In par­
ticular if *$ is the class of compact spaces, t h e n ^ ^ ^ ) is the category J ^ of 
^-spaces a n d J ^ * is the class of spaces whose compact subspaces are finite. I t is 
known tha t all Tychonoff P-spaces are in J ^ * ; see 4K of [3] or 1.65 of [9]. 
More generally, it is easy to see tha t each countable subset of a 7 \ P-space is 
closed and discrete, so if $~\ denotes the category of Pi-spaces then SP C\$~\ 
C j f * C\^~i. An example of a Tychonoff member of J ^ * t ha t is not a P-space 
may be found in 3.5 of [7]. 

As another example if ^ = {N*} t h e n ^ # ( ^ ) is the class of sequential spaces 
(as remarked earlier) and [^(fâ)]* is the class of spaces containing no con­
vergent sequences. 

We now give an analogue of Theorem 2.3 of [10]. Let us call a topological 
space X fully disconnected if each singleton set is the intersection of the clopen 
sets t ha t contain it. Le t^ 7 "^ denote the category of fully disconnected spaces. 

2.12. T H E O R E M . Let SP < 3P~ and Q, < £T. If % is a point of a space X, put 
JV&(X) = ( F Ç I : < W t K I is a 0>X-neighborhood of c r ^ ( x ) j . If Q C\ $~ F 

C ^ * C\TF, then for each X G f o H 3T F, j x f l \JV%(x) - J/9(x) ^ 0} 
is dense in {x G X :^Vâ(x) — JV&(X) ^ 0} U [x G X : o^^t'(%) is not isolated 
inSPX\. 
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Proof. We prove the contrapositive. Suppose X G 3T^ C\3T F and there is a 
clopen subset 4 of X such tha t 4 C {x G X \^Yâ(x) C Jf&(x)\ and there 
exists x0 G 4 such t ha t a&x*~(xo) is not isolated in SPX. Now o>x*~[4] = <^4 
by 2.4 so <^4 G <^*. As A Q {x £ X : ^Vâ(x) QJ/

&>(x)} the function 
ojx*" o o>A from <^4 onto ^ / [ i ] ( = St A) is continuous and one-to-one. 
As X G 3TF, &A G £ n <TF. Also &A G ̂ * , for if «S4 G ̂ * by 2.5(1) 
SPA G SP*. The theorem follows. 

2.12. Example. Let £P be the category of P-spaces and let J ^ be the category 
of ^-spaces. S i n c e ^ ~ F £ ^ i , it follows from 2.11(a) tha t SP C\$~'F Ç j f * C\ 
3P~ F. Hence 2.12 says tha t if X is a fully disconnected zero-dimensional space 
(e.g. a zero-dimensional Hausdorff space) and Xo is a limit point of some com­
pact subset of X, then if F is a neighborhood of x0 there exists a point y G V, 
a Gs-set G, and a compact subset K o( X such tha t )/ G G and G C\ K is not 
open in K. 

We next derive an analogue of Theorem 2.8 of [10] (see Theorem 2.16 
below). Some preliminaries are necessary. 

2.14. LEMMA. Let (ra)aez be a set of topologies on a set X and let SP < 3P~. 

IfT= OaesTa and (X, ra) G & for each a, then (X, r) G @. 

Proof. Let Y be the free union of the spaces {(X, ra) : OL G 2} and 
let ka : (X, Ta) —* Y be the canonical embedding. Let q : Y —> (X, r ) be the 
m a p induced by the ident i ty functions (X, ra) —> (X, r ) . If V C X then 
g*-[F] is open in F if and only if cf\V] C\ (X, r«) G r« for a G 2 , i.e. if and 
only if F G ^ \ e s T« = T. Thus g is a quotient map and (X, T) G ^ . 

Let us call a topology r on a set X almost discrete if the only topology on X 
tha t properly contains r is the discrete topology (this is the dual : l ike analogue 
to the concept of almost compact spaces discussed in Problem 6J of [3]). The 
almost discrete spaces are identical to the "ul t raspaces" discussed by Steiner 
in [8]. In [2] Frôhlich proves Theorem 2.15 below; see Steiner [8] for a discus­
sion of these results. 

2.15. T H E O R E M . Let X be a set, p G X , and °ll an ultrafilter on X. Put 

@{p, <%) = {A C X : p G A] U °ti. Then 
(a) ^(p, <%) is a topology on X. 
(b) If T is a topology on X then (X, r ) is almost discrete if and only if r — 

^ (P> °tt) for some choice of p and °ll as described above. 
(c) If T is any topology on X then r is the intersection of all topologies on X 

containing r and of the form & (p, %). 

2.16. T H E O R E M . LetgP < ^ and & < 3T. If SP* <Z_ & then either SP = 3T 
or & =3T. 

Proof. Suppose 0> ^ ^ " a n d â j^F. By 2.15(c) and 2.14 there exist almost 
discrete spaces X i and X 2 such tha t X i G & and X 2 G i2 . By 2.15(b) the 
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topology on Xt is of the form & {xu °tt i) (i = 1,2) . P u t 

F = {A1 X A2:At£ <Wt\. 

Then F is a filterbase on X i X X 2 . Let ^ be any ultrafilter on X i X X 2 

such tha t J^~ C & and let X denote the topological space (Xi X X 2 , 
^ ( ( x i , x2) , ^ ) ) . Consider the projection m a p q : X —> X i . We claim this is a 
quot ient map . If V C X i then Xi g F if and only if (xi, x2) (t çT[V]. Fur ther , 
if V € ^ i then g ^ F ] = F X l 2 ^ C * , while if F g ^ then X x -
F Ç * i and so ( I i - F) X l 2 ^ C t so F X l 2 ? ^ . T h u s q is a 
quot ient map . 

As X is almost discrete, either I G ^ or I É ^ M f I G ^ by 1.2 its 
quot ient image Xi G ^ , in contradict ion to hypothesis. T h u s X £ ^ * . Bu t 
X 2 is also a quot ient image of X, so X g «S as X 2 g «S. T h u s X G ^ * - <S. 

2.17. Example. No proper monocoreflective subcategory of ^ contains all 
spaces whose singletons are Gs-sets. 

In 2.9 of [10] we divided topological extension properties into two classes; 
those tha t contain spaces containing a closed copy of the countably infinite 
discrete space N (and hence contain all X-compact spaces), and those t ha t do 
not (and hence are contained in the class of countably compact spaces). We 
showed in 4.5 of [10] t ha t any extension proper ty in the la t ter class must be 
contained in a-compactness for some free ultrafilter a on N (if we regard a as 
a point of (3N-N, a space X is a-compact if each m a p from N into X can be 
continuously extended to i V U {a} ; see [1] and [10] for detai ls) . I t is known 
(see 3.3-3.5 of [1]) t ha t a completely regular Hausdorff space X is a-compact 
for each a £ (3N-N if and only if it is co-bounded (i.e. each countable subset of 
X has compact X-closure). We derive analogues of these results for mono­
coreflective subcategories o f F andJf7 a l though in this case the analogues differ 
greatly from their epireflective models. 

If we regard N as the smallest "non- t r iv ia l" free union (i.e. coproduct in J7" 
o r J ^ ) of topological spaces, it is evident t ha t its dual-like analogue should be 
the smallest "non- t r iv ia l" product of topological spaces in^7" or J^f, namely the 
Cantor space 2e0. A space X contains no closed copy of N if and only if there is 
no extremal monomorphism in Jif or ^ " y c h (i.e. no closed embedding; see 
10.19 of [9]) from N into X ; a space X satisfies the analogue of this proper ty 
if and only if there is no extremal epimorphism in ffl or F from X to 2W; i.e. 
if there is no quot ient map from X onto 2W (see IOC.2 of [9]). T h e class ^ 
defined in 2.18 below is, by 2.19, precisely this class. 

Let 2 denote the set of subspaces of 203 t ha t are homeomorphic to the one-
point compactification of N. If a Ç 2 let p(a) denote the nonisolated point of a. 
If r is a topology on 2" t ha t strictly contains the product topology, it is easily 
seen t ha t there exists u Ç 2 such t ha t V(a) = (2" - a) KJ {p(a)} £ r. Let 
C(a) denote 2" equipped with the topology generated by the product topology 
together with V(a), and let ia be the obvious canonical map from C(a) to 2". 
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T h e set 2 plays a role analogous to tha t played by the set fiN-N of free ultra-
filters on N, and C(a) is the analogue of the space N U {a} (for a G /3N-N). 

T h e analogy breaks down in one impor tan t way: since \(3N-N\ = 22CO and 
there are only 2" maps from N to itself, there is a set of 22CO pairwise non-
homeomorphic spaces of the form N U {a}. However: 

2.18. L E M M A . / / a and 8 are in 2 then C(a) and C(8) are homeomorphic. 

Proof. I t obviously suffices to exhibit a homeomorphism h from 2" to itself 
such tha t h[a] = 8. Let U(a) = 2W — a. Evident ly the one-point compactifi-
cation U(<r)* of U(<r) is a compact totally disconnected metric space wi thout 
isolated points and hence is homeomorphic to 2". As 2œ is homogeneous it 
follows t ha t there is a homeomorphism g from U(a) onto U(8). Let & be a 
homeomorphism from a onto 5. Then g U & is the desired /&. 

2.19. Definition. A topological space X is countably discrete if given a map 
/ : X —> 2W there is o- G 2 and a map fa : X —> C(o-) such tha t i , o / , = / . 
Let *io denote the class of countably discrete spaces. 

By 2.18 it does not mat te r which a we use in definition 2.19; either no 
member of 2 satisfies the condition therein, or else they all do. Theorem 
2.20 (b) below demonstrates tha t ^f is analogous (in the sense described above) 
to the class of countably compact spaces; hence our choice of terminology. 

2.20. T H E O R E M , (a) <% <&~. 

(b) *% is the largest monocoreflective subcategory of 3F that does not contain the 
class of sequential spaces. 

(c) X G ^ if and only if each countable collection of clopen sets of X has an 
open intersection. 

(d) A zero-dimensional Hausdorff space is in *% if and only if it is a P-space. 

Proof, (a) Let (Xa)a^A be a set of spaces in *$ and let X be their free union. 
Let / : X —» 2W be a map, and let a G S. By hypothesis for each a G A there 
exists a map ga : Xa —> C(a) such tha t ia o ga = f\Xa. Let g = Ua^A &<*; then 
g maps X to C(a) and i* o g = / . Thus I Ç ^ . 

If X G ^ and g : X —» F is a quotient map onto F, let / map F to 2W. 
As J ^ ? there is a map & : X —» C(o-) such tha t ia o k = f o g. As f̂f is one-
to-one, k is constant on preimages under q of points of F. Thus one can un­
ambiguously define j : F —» C(<r) such tha t j o q = k. As q is quotient j is 
continuous and iv oj =f. Thus F G # \ By 1.2 <£ <,T. 

(b) Obviously 2W g ^ . Conversely if X £ ^ then for each a G 2 there is 
a map gff : X —» 2W such tha t go- cannot be factored through C(a). Let X^ be a 
homeomorphic copy of X (for each a G S) , pu t F = W a € 2 X a , and define 
g : Y —>2œ by g\Xa = ga. Obviously g is continuous. If V is not open in the 
product topology on 203 there exists a G 2 such tha t the topology on C(a) is 
contained in the topology generated on 2œ by V and the product topology. Thus 
g/~[ F] is not open in Xa and so g*~[V] is not open in F. Thus g is a quotient map. 
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Since^({2w}) is the class of sequential spaces, it follows from 1.2 that any 
monocoreflective subcategory of 3f not contained in *$ will contain the class 
of sequential spaces. 

(c) Suppose 1 ^ ? . Let (An)n<u be a countable set of clopen subsets of X. 
For n < co define j n : X —•» 2 (the two-point discrete space) by j / ~ ( l ) = An. 
Define j : X —> 2" by putting 7rra o j = j w . For each n ^ co let gw Ç 2" be defined 
by TTjfe) = 1 if and only if j < n. Thus (gn)n£W G 2; let (qn)n^ = o-. By 
hypothesis j factors through C(c), so j*~{qn : n < w} is closed in X. But 
j*~{qn : » < co} = X - Hn<« An. 

Conversely suppose each countable collection of clopen sets of X has an 
open intersection and l e t / m a p X to 2W. If a G 2 then { (̂o-)} is the intersection 
of countably many clopen subsets of 2œ so j*~(p(a) is open in X. It follows that 
/ factors through C(a) and s o l Ç ^ . 

(d) This follows immediately from (c). 

Since *% is the analogue of the class of countably compact (Hausdorff) 
spaces, 2.20 (d) leads us to regard the zero-dimensional Hausdorff P-spaces 
as the analogue of the completely regular Hausdorff co-bounded spaces. 
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