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MONOCOREFLECTIVE SUBCATEGORIES IN GENERAL
TOPOLOGY

R. GRANT WOODS

1. Introduction. Let & be a full subcategory of a category ¥ . & is said
to be coreflective in % if for each object X in % there exists an object X in &
and a morphism opx : X — X such that for each object P in & and each
morphism f: P — X there exists a unique morphism g : P — X such that
f = opx 0 g. The morphism o,y is called the coreflection morphism from PX
to X, and X is called the coreflection of X (in &P). If each coreflection mor-
phism is a monomorphism then £ is said to be a monocoreflective subcategory
of &. We shall denote this by writing & < ¥. In this paper we study mono-
coreflective subcategories of the category .7 of topological spaces and the
category S of Hausdorff spaces. Much is already known about such subcate-
gories; see for instance the papers of Kennison [5] and Herrlich and Strecker
[4]. Chapter 10 of Walker [9], especially Problems 10B and 10C, provides a
succinct summary of the elementary properties of monocoreflective subcate-
gories of 7 . In contrast to this earlier work, however, our chief interest will be
in the interaction of pairs of monocoreflective subcategories of .7~ and of .
Thus many of our results will be dual-like analogues of theorems appearing
in [10], and for this reason some familiarity with the contents of [10] will be
helpful (though not essential) to the reader.

The basic themes of this paper are as follows. First, we show that discrete
spaces play a role in monocoreflective subcategories of .7~ and J# that is
analogous to the role played by compact Hausdorff spaces in epireflective
subcategories of the category of Tychonoff spaces and the category of zero-
dimensional Hausdorff spaces. Second, we introduce the concept of Z-pseudo-
discreteness that is analogous to the concept of #-pseudocompactness defined
in [10], and use it to analyze the relation between pairs of monocoreflective
subcategories of 7 and of 7.

It should be noted that out ‘“dual-like analogues’ of theorems in [10] are
not categorical duals in the strict technical sense described, for example, on
page 31 of [6].
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We shall henceforth assume that all hypothesized subcategories of .7 are
full and replete; thus if € is a subcategory of .7, the objects of % will be the
class of all topological spaces possessing some given topological property and
the morphisms of % will be the continuous functions between these objects.
Hence a subcategory % of .7~ will be specified by describing what class of
topological spaces comprises its objects. A map will be a continuous function.
If we wish to specify explicitly the topology 7 of an object of 7, we shall write
that object as (X, 7). A discussion of the categorical concepts used in this
paper may be found in [4], [6], and in Chapter 10 of [9]. We make no assump-
tions that our topological spaces satisfy any separation axioms unless those
axioms are explicitly stated.

We denote the category of zero-dimensional Hausdorff spaces by.#, (a space
is zero-dimenstonal if its open-and-closed (clopen) subsets form a base for the
open sets of the space). The category of Tychonoff (i.e. completely regular
Hausdorff) spaces is denoted by.7 ych. 1f &7 and & are topological properties
we shall use the notation.o/ C %,/ N #,and X € .2/ to mean respectively:
each space in ./ is in &, the class of all spaces in both .2/ and &, and X is
a space in the class.%/. If &7 is a topological property, we denote by ., the
class of zero-dimensional spaces with.o7.

In any topological category containing the space with one point a map is a
monomorphism if and only if it is one-to-one; see Proposition 10.17 of [9]. In .7
a map is an epimorphism if and only if it is onto; however, in5# a map is an
epimorphism if and only if the image of the domain is a dense subspace of
the range. An examination of the proof of this proposition (see page 255 of [9],
for example) reveals that the following proposition is in fact proved:

1.1. PROPOSITION. Let € be a subcategory of S with the following properties:
(i) If Yy and Y, are objects of €, so is their free union Y1\ V..
(ii) If Y is an object of € and there is a closed finite-to-one mapping from Y
onto a (necessarily Hausdorff) space Z, then Z is an object of € .
Then epimorphisms in G are mappings onto dense subspaces of the range.

It is straightforward to verify that the categories S#, and .7 ych satisfy the
hypotheses on & in 1.1.

To motivate the investigation we shall undertake, we give a brief discussion
of the concept of an epireflective subcategory of a given category. A full sub-
category%Z of a category ¥ is said to be reflective in € if for each object X in &
there exists an object. %/ X in.2/ and a morphism e,y : X — &7 X such that for
each object 4 of .97 and each morphism f : X — A4, there exists a unique mor-
phism f’ : &/ X — A such that f = f’ 0 eyx. This notion is the categorical dual
to the concept of coreflection. If eyx is an epimorphism for each object X of
C then &7 is said to be an epireflective subcategory of €. Epireflective subcate-
gories of certain topological categories have been intensively studied. For
example the category of compact Hausdorff spaces is an epireflective sub-
category of the category of Tychonoff spaces; the epireflection morphism
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embeds each Tychonoff space X in its Stone-Cech compactification BX.
Realcompact spaces, via the Hewitt realcompactification, form another epire-
flective subcategory of Tychonoff spaces. Many other examples are discussed
in [10].

In [10] we studied epireflective subcategories Z° of topological categories %
subject to the following conditions: (1) % is closed under the formation of
product spaces and subspaces. (2) The epireflection € 5y : X — X embeds
X as a dense subspace of 2X. (3) Each compact Hausdorff object in ¥ is in &
and each object in % has a Hausdorff compactification in €. These conditions
imply that each object of % be Tychonoff; in practice € was either .7 ych
of #y. We called an object X of € P-pseudocompact if its P-epireflection X
were compact. We systematically studied the relationship between two such
epireflective subcategories of 4" by using the concept of #-pseudocompactness.
In this paper we investigate the analogous concept for monocoreflective sub-
categories. We are able to obtain dual-like analogues of many of the theorems
in [10] although in some cases we pay a penalty for considering monocore-
flective subcategories of & or J# rather than just of .7 ych or.;; namely our
theorems are sometimes not as strong as their epireflective analogues.

We now discuss some well-known theorems and examples concerning mono-
coreflective subcategories. According to a theorem of Kennison, quoted as
Theorem 4 of [4], all coreflective subcategories of .7~ and of S are mono-
coreflective, so no greater generality is obtained by studying coreflective sub-
categories of .7 or S¥.

The following is Theorem 12 of [4]; part of it also appears in [5].

1.2. THEOREM. Let & be a topological property. Then P (respectively PP N )
is a monocoreflective subcategory of I (respectively ) if and only if P is closed
under the formation of free unions and quotient images (respectively, Hausdorff
quotient images).

It follows that if & is any topological property, then the class A# (%) of
spaces that are quotient images of free unions of members of & (respectively
P NHK) forms a monocoreflective subcategory of .7~ (respectively J£), the
smallest monocoreflective subcategory containing &. In special cases the mono-
coreflection in A (Z?) of an object X in.7 or# can be described explicitly.
The following is Theorem 15 of [4].

1.3. THEOREM. Let & be a lopological property such that continuous images of
spaces with P have . Then the monocoreflection in M (P) of a space (X, 1)
is the space (X, 7'), where V € 7' if and only if V M\ P is open in P for each
subspace P of (X, 7) such that P has . The identity map on the set X is the core-
Sflection morphism from (X, ') to (X, 7).

As examples (mentioned in [4]), if £ is the class of compact spaces, .# (%)
is the class of k-spaces; if & contains one space, namely the one-point com-
pactification N* of the countable discrete space N, then.#(Z) is the class of
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sequential spaces (see 10B of [9]). The class of sequential spaces is also identical
with# ({2¢}), where 2¢ is the Cantor space.

Another important example of a monocoreflective subcategory of 7~ (respec-
tively ) is the category of (Hausdorff) P-spaces. Recall that a space (X, 7)
is a P-space if its G;-sets are open (note that no separation axioms are assumed
here). If & denotes the category of P-spaces then & <.7 ; # (X, 7) is the
topological space whose underlying set is X and whose topology 7’ is the
topology for which the Gs-sets of (X, 7) form an open base. See [3] or [9] for
a discussion of P-spaces. Similarly 2 N # < .

2. #-pseudodiscrete spaces. As mentioned in Section 1 Z-pseudocompact
spaces play an important role in studying the interrelation between pairs of
epireflective subcategories of 5 or 7 ych. To find a concept for monocore-
flective subcategories of .7 or # that is analogous to Z-pseudocompactness
in the category of (zero-dimensional) Tychonoff spaces, we first must find an
analogue for the concept of compactness. To help us do this, we first give
a category-theoretic characterization of the compact objects of the category
of (zero-dimensional) Tychonoff spaces. Recall that in topological categories,
“isomorphism”’ means ‘‘homeomorphism’’.

2.1. LEMMA. Let € be either 7 ych or . The following conditions on an object
X of € are equivalent.
(1) X is compact.
(i1) If Y is an object of € and if f : X — Y is both a monomorphism and an
epimorphism, then f is an isomor phism.

Proof. (i) = (ii): By assumption f[X] is a compact dense subspace of ¥;
thus as YV is Hausdorff, f{X] = Y. As X is compact, f is closed; as f is also
one-to-one and continuous, f is a homeomorphism from X onto V.

(ii) = (i): If X were not compact, the embedding of X in its Stone-Cech
compactification (or its maximal zero-dimensional compactification if 4 = 5#;
see [107]) is both a monomorphism and an epimorphism but not an isomorphism.

The “dual-like analogue” to 2.1, where % is now either # or.7 , is given in
2.2 below. Note that statement 2.2 (ii) would be the categorical dual of
2.1 (ii) if € were the same category in 2.1 and 2.2. This is part of our justi-
fication for claiming that discrete spaces play a dual-like role in #” or.7 to
that which compact spaces play in#, or.7 ych.

2.2. LEMMA. Let € be either S or . The following conditions on an object X
of € are equivalent.
(1) X 1s discrete.
(ii) If YV is an object of € and if f: ¥ — X s both a monomorphism and un
epimorphism, then f 1s an isomorphism.

Proof. (i) = (ii). By assumption f is a one-to-one continuous function from
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Y onto the discrete space X. It follows immediately that V¥ is discrete and that
fis a homeomorphism.

(if) = (1). Suppose X were not discrete. Let ¥ be the discrete space of the
same cardinality as X, and let f be any one-to-one function from Y onto X.
Then f is continuous, a monomorphism and an epimorphism, but is not a
homeomorphism.

Motivated by this analogy between compactness and discreteness, and by
the definition of Z-pseudocompactness appearing in [10], we introduce the
concept of &-pseudodiscreteness as follows. Recall that # < % means & is
a monocoreflective subcategory of % .

2.3. Definition. Let € be. I or # and let # < %. An object X of ¥ is
P-pseudodiscrete if PX is discrete. The class of Z-pseudodiscrete spaces will
be denoted by Z*,

We now develop the properties of &-pseudodiscreteness. We begin with a
preliminary lemma.

2.4. LEMMA. Let € be T or K, let PP < €, and let X be an object .f €.
If A is a clopen subset of X then opx[A] = PA and cax|osx (4] = opa.

Proof. By the corollary of Proposition 3 of [4] 65x“[4] € £ and opx|opx[A]
is a monomorphism from opx“[A] onto A. Let ¥ € & and let f: ¥ — A be
continuous. Let 74 be the embedding of 4 in X. Theni40f: ¥ — X so there
exists a unique map g: ¥ — %X such that cpy0g =i 40f. If y € ¥ then
opx(g(y)) = f(y) € A so g maps Y into opx [A4]. The lemma follows.

The elementary properties of the class 2* are summarized in the following
lemma.

2.5. LEMMA. Let <. 7. Then

W IfY € P*and f: X — Y is a monomorphism then X € P*,
Q) IfP <T and 2 <T and P C D then D* C P*,

(3) The product of finitely many members of P* is in FP*.

(4) The free union of arbitrarily many members of P* is in P*.

Proof. (1) The map f 0 o5y is a monomorphism from X to Y. By definition
of PY there is a unique map g: X — PV such that csy 0¢ = f 0 opx.
As f 0 65x is a monomorphism so is g. As Y is discrete this implies that X
is discrete.

(2) If X € 2* then £X is discrete. As X ¢ 2 there is a unique map
f:PX — 2X such that opx = gpx0f. Thus f is a monomorphism as
opx is; so PX is discrete, i.e. X € P*,

(3) Let Xy, ..., X, € Z* put X = II'_, X, and let p,: X — X, be the
jth projection map. Then p; 0 gpx maps X to X; so there exists a unique
map k;: PX — PX,; such that gpx; 0k; = p;00sx(j = 1 to n). Define
E:PX -1, X, by g;ok = kj, where ¢, : II'e; PX, — PX,is the jth
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projection map. Then k is continuous. Also k is one-to-one for if 2(x) = k(y)
then k;(x) = k;(y) for j = 1 to n; thus p; 0 opx(x) = p;00sx(y) for j =1
to n, 50 gpx(x) = gax(y). As opx is one-to-one, x = y so k is one-to-one.
By hypothesis ITi_; X ; is discrete so 22X is discrete, i.e. X € P*,

(4) Let X = WUaesXa where X, € ZP*. By Lemma 2.4 055 [Xa] = #X, for
each a € 2. Thus X is a free union of discrete spaces, and so X € ZP*,

It is worth noting that while the analogues of (1), (2) and (3) of 2.5—
respectively 2.2 (a) and (c), 2.2 (e), and 2.2 (b) of [10] - are true for Z°-pseudo-
compact spaces, the analogue of 2.5 (4) is not true, for if & is realcompactness,
the product of just two Z-pseudocompact (i.e. pseudocompact) spaces need
not be pseudocompact (see 9.15 of [3]).

We can now prove the first of our main theorems.

2.6. THEOREM. Let # <.T and 2 < I . If X € T put
SpX = {p € X : apx"(p) is not isolated in PX}.

The following are equivalent.
(@) P*NT = 2*NT ..
(b) For each X € Ty each of SpX and S,X is dense in SpX \J SpX.

Proof. (a) = (b): Let X € 9 g, let p € SpX, and let 4 be a clopen set of X
with p € A. As p € SpX, osx[A] is not discrete, so by 2.4 4 ¢ P*. As
A €7, it follows that 4 ¢ £* Thus by 2.4 0,57 [4] is not discrete, so
AN S, X #0.

(b) = (@). Suppose (a) fails and X € (PP* NI ) — (2* N\J ). Thus
PX is discrete and 2X is not discrete. In other words S X = @ and S,X # 0,
so (b) fails.

The above theorem is analogous to Theorem 2.6 of [9]. To prove that there
exist distinct monocoreflective subcategories & and £ of 4 such that #* =
2*, we next prove an analogue of Theorem 3.9 of [9] (Theorem 2.10 below).
Roughly speaking this will show that given a monocoreflective subcategory &
of 7, there exists a ‘‘largest” monocoreflective subcategory & of .7 such that
P* = D* Some preliminaries are necessary. Theorem 2.7 below is analogous
to (a generalization of) Theorem 3.6 of [9].

2.7 THEOREM. Let &/ be any topological property. Let.o/ be the class of (Haus-
dorff) topological spaces X satisfying the following condition: if f: X — V s
continuous and ¥ € 7 (respectively ¥V € o/ NH) then f[X], equipped with the

quotient topology induced on it by f, is discrete. Then o/ < F (respectively
A <H).

Proof. By 1.2 it suffices to show that.e is closed under the formation of free
unions and quotient images. .

Let (X,)«cx be a set of spaces in.%Z and let X be their free union. Let &, : X,
— X be the canonical embedding of X, into X. Let f: X — ¥ be continuous,
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Y € &7, and let Z denote the space f[X] with the quotient topology induced on
it by f. Thus f can be factored as j o ¢ where ¢ is a quotient map from X onto Z
and j is a one-to-one onto map from Z onto f[X]. Similarly for each @ € =
let Z, denote the space f o k,[X,] with the quotient topology induced on it by
fo ks Then fok, can be written as j, 0 g, where ¢, is f 0 k. regarded as a
quotient map from X, onto Z, and j, is a one-to-one map from Z, into f[X]
(see Figure 1).

>X >Z

a

X
lqa
Ja

Zo — > f1X]

F1GUrE 1

ka q

f

Let p € Z. Let A = {a € 2:j(p) € fokdX,]}; note that A # 0. If & € A

then since X, € .7, Z, is discrete so j," (j(p)) is open in Z,. Thus ¢, [7." (7 ($))]

is open in X,, i.e. k. [f7(j(p))] is open in X,. As each such k, embeds X, as

an open subset of X, U {f“(j(p)) M kuo[Xa] : @ € A) is open in X, i.e.f(f(p))

is open in X. As j is one-to-one, f~(j(p)) = ¢~ (p). As g is quotient, this implies
that {p} is open in Z. Thus Z is discrete and X € .<7.

If X ¢ & and ¢: X — Vis quotient map, let f : ¥ — Z be continuous and

Z ¢ /. 1f S denotes f[ Y] equipped with the quotient topology induced by 5

fogqisa quotient map from X onto S, and S maps into Z. Thus as X € <,
S is discrete. Hence ¥ € .27 and the theorem follows.

The following properties of the * operator are stated without proof.

.2.8. PrOPOSITION. Let &/ and B be topological properties. If o/ C B then
% CA.

2.9. ProposITION. Let ./ be a topological property such that if ¥ € o/ and
j: X — Yisamonomorphism then X € of. Then X € &/ if and only if quotient
images of X in.o/ are discrete.

2.10. THEOREM. Let & <. Then:
T
(1) (PP*) <7
Pt
2) (P*)* = 7~ o
3) If 2 <9 and P* = 2* then 2 C (P*).
Proof. (1) is a special case of 2.7.
To prove (3) let X € £ and let f: X — Y be continuous, where ¥ € £*,
As in 2.7 factor f into j o ¢ where ¢ is quotient and j is one-to-one. Let Z

denote the quotient image of X under ¢. As ¥ € P* by 2.5 (1) Z ¢ &*. Thus
by hypothesis Z € £* As X € 2 by 1.2 Z ¢ Z. Thus 2Z = Z so Z is dis-

P
crete. Thus X € (£*).
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A~
To prove (2) note that by (3) and 2.5 (2) ((£7*))* C 2*. Conversely let
X € P* By 25 (1) @X € P*. Let Z denote the set X with the quotient
topology induced on it by eGrx. As X € PP*, Zis discrete. As owx is one-to-
N N
one it follows that (Z?*)X is discrete so X € ((£P*))*.

We now consider some examples.

2.11. Examples. (a) Let & denote the class of P-spaces (described in Section
1); then ﬁﬁs the class of spaces whose singleton sets are Gs-sets. By 2.9 a space
X is in (£*) if and only if, whenever ¥ is a quotient image of X and each
singleton set of Y is a Gs-set, ¥ is discrete. Obviously all first countable 77
spaces are in Z°*, while BN-N is a compact space that is not in &*. It is easy

—
to verify that X € (£?*) if and only if given a partition & of X such that
each member of & is the intersection of countably many Z-saturated open
subsets of X, then each member of & is open in X. If (X, 7) is a topological

Pt
space and 7 when ordered by inclusion is a chain, then (X, 7) € (£**). In
particular let w denote the least infinite ordinal, and consider the set w + 1 of
ordinals no greater than w with the topology 7 = {w +1 — {0,...,n} : 7 < w}.

Then (v + 1, 7) € @ but (w 4+ 1, 7) ¢ P; thus P # @

(b) Let % be a topological property closed under the formation of continuous
images. Using 1.3 it is easily seen that X € [#(%)]* if and only if the only
subspaces of X having % are discrete; one direction is obvious, and if C is a
non-discrete subspace of X with %, find p € C such that {p} is not open in % ;
then by 1.3 o 4@ x" (P) is not open in.# (%)X and so X ¢ [ (€ )]*. In par-
ticular if € is the class of compact spaces, then # (%) is the category £ of
k-spaces and ¥ * is the class of spaces whose compact subspaces are finite. It is
known that all Tychonoff P-spaces are in J£*; see 4K of [3] or 1.65 of [9].
More generally, it is easy to see that each countable subset of a 7 P-space is
closed and discrete, so if 7 ; denotes the category of Tj-spaces then # N9,
CA™* NI ;. An example of a Tychonoff member of £* that is not a P-space
may be found in 3.5 of {7].

As another example if ¥ = {N*} then.# (%) is the class of sequential spaces
(as remarked earlier) and [#(%)]* is the class of spaces containing no con-
vergent sequences.

We now give an analogue of Theorem 2.3 of [10]. Let us call a topological
space X fully disconnected if each singleton set is the intersection of the clopen
sets that contain it. Let.7  denote the category of fully disconnected spaces.

2.12. THEOREM. Let <7 and 2 < .7 . If x is a point of a space X, put
Np(x) = {V C X : 6px[V] is a PP X-neighborhood of opx(x)}. If 2N\ T p
C P*NT g, thenforeachX € T oNT g {x € X :Ny(x) — Np(x) #= 0}
isdensein {x € X 1N o(x) — Np(x) =0} U {x € X : 05x (x) is not isolated
mn PX}.
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Proof. We prove the contrapositive. Suppose X €.7 ¢ MN.J r and there is a
clopen subset 4 of X such that 4 C {x € X : 4 ,(x) € AN »(x)} and there
exists ¥y € A such that o»x“ (x¢) is not isolated in ZX. Now o,x (4] = P4
by 24 so P4 ¢ P* As AC{x€ X : Ny(x) S Np(x)} the function
oox 0 0pa from PA onto gyx[A] (= ZA4) is continuous and one-to-one.
As X €T 5, 24 € 2 NT 5 Also 24 ¢ P*, for if 24 € ZP* by 2.5(1)
PA € P*. The theorem follows.

2.12. Example. Let & be the category of P-spaces and let.#” be the category
of k-spaces. Since I » C.7 ,, it follows from 2.11(a) that Z NJ , CH* N
J p. Hence 2.12 says that if X is a fully disconnected zero-dimensional space
(e.g. a zero-dimensional Hausdorff space) and x, is a limit point of some com-
pact subset of X, then if V is a neighborhood of x, there exists a point y € V,
a Gs-set G, and a compact subset K of X such that y € G and G M K is not
open in K.

We next derive an analogue of Theorem 2.8 of [10] (see Theorem 2.16
below). Some preliminaries are necessary.

2.14. LEMMA. Let (7a)acs be a set of topologies on a set X and let P < T .
If 1 = Naczta and (X, 7o) € P for each a, then (X, 1) € P.

Proof. Let ¥V be the free union of the spaces {(X, 7.):a € 2} and
let k, : (X, 7,) — Y be the canonical embedding. Let ¢: ¥ — (X, 7) be the
map induced by the identity functions (X, 7,) — (X, 7). If V C X then
g (V] is open in Y if and only if ¢7[V] M (X, 7,) € 74 for a € Z, i.e. if and
only if V € Myes 7« = 7. Thus ¢ is a quotient map and (X, r) € £.

Let us call a topology 7 on a set X almost discrete if the only topology on X
that properly contains 7 is the discrete topology (this is the dual-like analogue
to the concept of almost compact spaces discussed in Problem 6] of [3]). The
almost discrete spaces are identical to the ‘“‘ultraspaces’ discussed by Steiner
in [8]. In [2] Frohlich proves Theorem 2.15 below; see Steiner [8] for a discus-
sion of these results.

2.15. THEOREM. Let X be a set, p € X, and U an ultrafiller on X. Put
Gp,U) ={A CX:pqd A} \J U. Then
(@) G (p, U) is a topology on X.
(b) If 7 is a topology on X then (X, ) is almost discrete if and only if T =
G (p, U) for some choice of p and U as described above.
(c) If 7 is any topology on X then 7 1is the intersection of all topologies on X
containing v and of the form G (p, U ).

2.16. THEOREM. Lot P < T and D < T If P* C D then cither P =T
or 2 =9

Proof. Suppose & #.9 and £ #.7 . By 2.15(c) and 2.14 there exist almost
discrete spaces X; and X, such that X; ¢ & and X, ¢ £. By 2.15(b) the
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topology on X ; is of the form ¥ (x;,, %) (i = 1, 2). Put
F = {41 X Ay A€ U

Then % is a filterbase on X; X X.. Let % be any ultrafilter on X; X X,
such that # C % and let X denote the topological space (X; X Xa,
G ((x1, x2), )). Consider the projection map ¢ : X — X;. We claim this is a
quotient map. If V' C X, then x; ¢ Vif and only if (x1, x2) ¢ ¢[V]. Further,
if VE U, then ¢"[V] =V X X2 €F C U, while if V¢ %, then X, —
VEXU andso (X1 = V) XXo€F C U soV XX2d %. Thus g is a
quotient map.

As X is almost discrete, either X € & or X ¢ ZP*. If X € & by 1.2 its
quotient image X, € £, in contradiction to hypothesis. Thus X ¢ Z*. But
X, is also a quotient image of X,s0 X ¢ £ as X, ¢ £. Thus X € 2* — 2.

2.17. Example. No proper monocoreflective subcategory of .7~ contains all
spaces whose singletons are Gs-sets.

In 2.9 of [10] we divided topological extension properties into two classes;
those that contain spaces containing a closed copy of the countably infinite
discrete space N (and hence contain all N-compact spaces), and those that do
not (and hence are contained in the class of countably compact spaces). We
showed in 4.5 of [10] that any extension property in the latter class must be
contained in a-compactness for some free ultrafilter @ on N (if we regard a as
a point of BN-N, a space X is a-compact if each map from N into X can be
continuously extended to VU {a}; see [1] and [10] for details). It is known
(see 3.3-3.5 of [1]) that a completely regular Hausdorff space X is a-compact
for each « € BN-N if and only if it is w-bounded (i.e. each countable subset of
X has compact X-closure). We derive analogues of these results for mono-
coreflective subcategories of I and# although in this case the analogues differ
greatly from their epireflective models.

If we regard N as the smallest ‘‘non-trivial’’ free union (i.e. coproduct in.7~
or #) of topological spaces, it is evident that its dual-like analogue should be
the smallest ‘‘non-trivial”’ product of topological spaces in.7” or3#, namely the
Cantor space 2¢. A space X contains no closed copy of NV if and only if there is
no extremal monomorphism in J# or .7 ych (i.e. no closed embedding; see
10.19 of [9]) from N into X; a space X satisfies the analogue of this property
if and only if there is no extremal epimorphism in.2¢ or.7 from X to 2¢; i.e.
if there is no quotient map from X onto 2¢ (see 10C.2 of [9]). The class %
defined in 2.18 below is, by 2.19, precisely this class.

Let T denote the set of subspaces of 2¢ that are homeomorphic to the one-
point compactification of N. If ¢ € Z let p(s) denote the nonisolated point of .
If 7 is a topology on 2¢ that strictly contains the product topology, it is easily
seen that there exists ¢ € T such that V(e) = (2¢ — o) U {p(s)} € 7. Let
C(o) denote 2¢ equipped with the topology generated by the product topology
together with 1 (¢), and let 7, be the obvious canonical map from C(s) to 2¢.
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The set 2 plays a role analogous to that played by the set BN-N of free ultra-
filters on N, and C(¢) is the analogue of the space N \U {a} (for a € gN-N).
The analogy breaks down in one important way: since |[8N-N| = 22 and
there are only 2 maps from N to itself, there is a set of 22 pairwise non-
homeomorphic spaces of the form N U {a}. However:

2.18. LEMMA. If ¢ and § are in Z then C(o) and C(8) are homeomorphic.

Proof. 1t obviously suffices to exhibit a homeomorphism & from 2 to itself
such that A[s] = 6. Let U(s) = 2¢ — ¢. Evidently the one-point compactifi-
cation U(a)* of U(s) is a compact totally disconnected metric space without
isolated points and hence is homeomorphic to 2¢. As 2¢ is homogeneous it
follows that there is a homeomorphism g from U(s) onto U(8). Let k be a
homeomorphism from ¢ onto é. Then g \U & is the desired k.

2.19. Definition. A topological space X is countably discrete if given a map
f: X —2¢ there is ¢ € £ and a map f,: X — C(s) such that 7, 0f, = .
Let % denote the class of countably discrete spaces.

By 2.18 it does not matter which ¢ we use in definition 2.19; either no
member of 2 satisfies the condition therein, or else they all do. Theorem
2.20 (b) below demonstrates that % is analogous (in the sense described above)
to the class of countably compact spaces; hence our choice of terminology.

2.20. THEOREM. (a) € <.7.

(b) € is the largest monocoreflective subcategory of 7 that does not contain the
class of sequential spaces.

(c) X € € if and only if each countable collection of clopen sets of X hus an
open intersection.

(d) A zero-dimensional Hausdorff space is in € if and only if it is a P-space.

Proof. (a) Let (Xa)aca be a set of spaces in % and let X be their free union.
Let f: X — 2¢ be a map, and let ¢ € 2. By hypothesis for each @ € A there
exists a map g : X, — C(o) such that 7, 0 g, = f|X,. Let g = Uaca £ ; then
gmaps X to C(¢) and4,0g = f. Thus X ¢ ¥.

If X ¢ % and g: X — Y is a quotient map onto Y, let f map V¥ to 2.
As X € & thereisamap k: X — C(o) such that i, 0k = f o0 q. As 7, is one-
to-one, k is constant on preimages under ¢ of points of Y. Thus one can un-
ambiguously define j: ¥V — C(s) such that jogq = k. As ¢ is quotient j is
continuous and 4,07 = f. Thus ¥ € ¥. By 1.2 ¥ <.7.

(b) Obviously 2« ¢ . Conversely if X ¢ % then for each ¢ € Z there is
amap g : X — 2¢such that g, cannot be factored through C(s). Let X, be a
homeomorphic copy of X (for each o € Z£), put ¥V = U,z X,, and define
g: ¥ —2 by g|X, = g,. Obviously g is continuous. If 17 is not open in the
product topology on 2¢ there exists ¢ € 2 such that the topology on C(s) is
contained in the topology generated on 2¢ by ¥ and the product topology. Thus
2,"[V]is not openin X, and so g"[ V] is not open in V. Thus gis a quotient map.
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Since A ({2¢}) is the class of sequential spaces, it follows from 1.2 that any
monocoreflective subcategory of .7~ not contained in % will contain the class
of sequential spaces.

(c) Suppose X € %. Let (4,).<. be a countable set of clopen subsets of X.
For n < w define j, : X — 2 (the two-point discrete space) by 7,7(1) = 4,.
Define j : X — 2¢ by putting =, 0 j = j,. For each n < wlet g, € 2¢ be defined
by 7,(g,) = 1 if and only if j < n. Thus (¢,)u<e € Z; let (gu)nze = 0. By
hypothesis j factors through C(s), so j7{g,: # < w} is closed in X. But
Mg in < wl =X — Ni<o 4,

Conversely suppose each countable collection of clopen sets of X has an
open intersection and let f map X to 2¢. If ¢ € Z then {p(c)} is the intersection
of countably many clopen subsets of 2 so f~(p () is open in X. It follows that
f factors through C(s) and so X ¢ %.

(d) This follows immediately from (c).

Since % is the analogue of the class of countably compact (Hausdorff)
spaces, 2.20 (d) leads us to regard the zero-dimensional Hausdorff P-spaces
as the analogue of the completely regular Hausdorff w-bounded spaces.
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