Region analysis and a π-calculus with groups

SILVANO DAL ZILIO and ANDREW D. GORDON
Microsoft Research,
7 J J Thomson Avenue, Cambridge CB3 0FB, United Kingdom
(e-mail: adg@microsoft.com)

Abstract

We show that the typed region calculus of Tofte and Talpin can be encoded in a typed π-calculus equipped with name groups and a novel effect analysis. In the region calculus, each boxed value has a statically determined region in which it is stored. Regions are allocated and de-allocated according to a stack discipline, thus improving memory management. The idea of name groups arose in the typed ambient calculus of Cardelli, Ghelli, and Gordon. There, and in our π-calculus, each name has a statically determined group to which it belongs. Groups allow for type-checking of certain mobility properties, as well as effect analyses. Our encoding makes precise the intuitive correspondence between regions and groups. We propose a new formulation of the type preservation property of the region calculus, which avoids Tofte and Talpin's rather elaborate co-inductive formulation. We prove the encoding preserves the static and dynamic semantics of the region calculus. Our proof of the correctness of region de-allocation shows it to be a specific instance of a general garbage collection principle for the π-calculus with effects. We propose new equational laws for letregion, analogous to scope mobility laws in the π-calculus, and show them sound in our semantics.

Capsule Review

The paper presents a correctness proof for Tofte and Talpin's region calculus based on a translation into the pi-calculus. Generally, such a translation technique allows to reason about higher-order languages (like the region calculus) in a first- order setting (the pi-calculus), and to exploit the powerful proof-machinery that has been developed for the pi-calculus. I consider the work to be especially in line with pi-calculus encodings of the lambda-calculus by Milner and Sangiorgi, for the following reasons: (1) the region calculus is an extension of the lambda-calculus with regions; (2) for the encoding, an extension of the pi-calculus with groups is used; these groups correspond exactly to the regions; (3) the encoding inherits a lot from encodings of the lambda-calculus; in fact, regions and groups turn out to be orthogonal in the sense that adding them does not harm the validity of the methods applied to the lambda-calculus parts of the encoding.

1 Motivation

This paper reports a new proof of correctness of region-based memory management (Tofte \& Talpin, 1997), and also proofs of new equational laws for the region calculus.

Tofte and Talpin's region calculus is a compiler intermediate language that, remarkably, supports an implementation of Standard ML that has no garbage collector, the ML Kit compiler (Birkedal et al., 1996). The basic idea of the region calculus is to partition heap memory into a stack of regions. Each boxed value (that is, a heap-allocated value such as a closure or a cons cell) is annotated with the particular region into which it is stored. The construct letregion ρ in b manages the allocation and de-allocation of regions. It means: "Allocate a fresh, empty region, denoted by the region variable ρ; evaluate the expression b; deallocate ρ." A type and effect system for the region calculus guarantees the safety of de-allocating the defunct region as the last step of letregion. The allocation and de-allocation of regions obeys a stack discipline determined by the nesting of the letregion constructs. A region inference algorithm compiles ML to the region calculus by computing suitable region annotations for boxed values, and inserting letregion constructs as necessary. In practice, space leaks, where a particular region grows without bound, are a problem. Still, they can practically always be detected by profiling and eliminated by simple modifications. The ML Kit efficiently executes an impressive range of benchmarks without a garbage collector and without space leaks. Region-based memory management facilitates interoperability with languages like C that have no garbage collector and helps enable realtime applications of functional programming.

Tofte and Talpin's semantics of the region calculus is a structural operational semantics. A map from region names to their contents represents the heap. A fresh region name is invented on each evaluation of letregion. This semantics supports a co-inductive proof of type safety, including the safety of de-allocating the defunct region at the end of each letregion. The proof is complex and surprisingly subtle, in part because active regions may contain dangling pointers that refer to de-allocated regions.

This paper describes a new semantics for a form of the region calculus, obtained by translation to a typed π-calculus equipped with a novel effect system. The π-calculus (Milner, 1999) is a rather parsimonious formalism for describing the essential semantics of concurrent systems. It serves as a foundation for describing a variety of imperative, functional, and object-oriented programming features (Sangiorgi \& Walker, 2001; Walker, 1995), for the design of concurrent programming languages (Fournet \& Gonthier, 1996; Pierce \& Turner, 2000), and for the study of security protocols (Abadi \& Gordon, 1999), as well as other applications. The only data in the π-calculus are atomic names. Names can model a wide variety of identifiers: communication channels, machine addresses, pointers, object references, cryptographic keys, and so on. A new-name construct $(v x) P$ generates names dynamically in the standard π-calculus. It means: "Invent a fresh name, denoted by x; run process P." One might hope to model region names with π-calculus names but unfortunately typings would not be preserved: a region name may occur in a region-calculus type, but in standard typed π-calculi (Pierce \& Sangiorgi, 1996), names may not occur in types.

We solve the problem of modelling regions by defining a typed π-calculus equipped with named groups and a new-group construct (Cardelli et al., 2000a). The idea is
that each π-calculus name belongs to a group, G. The type of a name now includes its group. A new-group construct $(v G) P$ generates groups dynamically. It means: "Invent a fresh group, denoted by G; run process P." The basic ideas of the new semantics are that region names are groups, that pointers into a region ρ are names of group ρ, and that given a continuation channel k the continuation-passing semantics of letregion ρ in b is simply the process $(v \rho) \llbracket b \rrbracket k$ where $\llbracket b \rrbracket k$ is the semantics of expression b. The semantics of other expressions is much as in earlier π-calculus semantics of λ-calculi (Sangiorgi \& Walker, 2001). Parallelism allows us to explain a whole functional computation as an assembly of individual processes that represent components such as closures, continuations, and function invocations.

This new semantics for regions makes two main contributions.

- First, we give a new proof of the correctness of memory management in the region calculus. We begin by extending a standard encoding with the equation \llbracket letregion ρ in $b \rrbracket k=(v \rho) \llbracket b \rrbracket k$. Then the rather subtle correctness property of de-allocation of defunct regions turns out to be a simple instance of a new group-based garbage collection principle expressed in the π-calculus.
- Secondly, the semantics provides a more abstract account of the behaviour of the region calculus than the standard operational semantics. A specific benefit is that new equational laws for letregion are corollaries of its semantics in terms of the new-group construct.

The specific technical results of the paper are:

- A simple proof of type soundness of the region calculus (Theorem 2.1).
- A new semantics of the region calculus in terms of the π-calculus with groups. The translation preserves types and effects (Theorem 4.1) and operational behaviour (Theorem 4.2).
- A new garbage collection principle for the π-calculus (Theorem 4.3) whose corollary (Theorem 4.4) justifies de-allocation of defunct regions in the region calculus.
- A new equational theory for letregion, inspired and justified (Theorem 5.2) by the π-calculus model.

Overall, the paper makes a new connection between two programming language constructs, regions and groups, that were proposed independently and for different purposes. A benefit for the theory of the π-calculus is the discovery of a new confinement principle, Theorem 4.3. Although our proof of this theorem involves a substantial theoretical development, we anticipate it will be of use in other settings, such as the study of other source languages with regions. A benefit for the theory of the region calculus is that once we have proved this principle, we can write down a strikingly simple proof of the soundness of region-based memory management.

We organise the rest of the paper as follows. Section 2 introduces the region calculus. Section 3 describes the π-calculus with groups and effects. Section 4 gives our new π-calculus semantics for regions. Section 5 describes our new equations for manipulating letregion. Section 6 considers extensions. Section 7 concludes.

Appendix A reviews the untyped π-calculus. Appendix B describes proofs of all properties stated without proof in the main text.

An abridged version of this work appears as a conference paper (Dal Zilio \& Gordon, 2000a).

2 A λ-calculus with regions

To focus on the encoding of letregion with the new-group construct, we work with a simplified version of the region calculus of Tofte \& Talpin (1997). Our calculus omits the recursive functions, type polymorphism, and region polymorphism present in Tofte and Talpin's calculus. Section 6 extends our results to a version of the region calculus of this section extended with recursive functions, finite lists, and region polymorphism. Tofte and Talpin explain that type polymorphism is not essential for their results. Still, we conjecture that our framework could easily accommodate type polymorphism.

2.1 Syntax

Our region calculus is a typed call-by-value λ-calculus equipped with a letregion construct and an annotation on each function to indicate its storage region. We assume an infinite set of names, ranged over by p, q, x, y, z. For the sake of simplicity, names represent both program variables and memory pointers, and a subset of the names $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ represents literals. The following table defines the syntax of λ-calculus expressions, a or b, as well as an auxiliary notion of boxed value, u or v.

Expressions and Values:

x, y, p, q, f, g	name: variable, pointer, literal
ρ	region variable
$a, b::=$	expression
$\quad x$	name
$\quad v$ at ρ	allocation of v at ρ
$\quad x(y)$	application
\quad let $x=a$ in b	sequencing
\quad letregion ρ in b	region allocation, de-allocation
$u, v::=$	boxed value
$\lambda(x: A) b$	function

We shall explain the type A later. In both let $x=a$ in b and $\lambda(x: A) b$, the name x is bound with scope b. Let $f n(a)$ be the set of names that occur free in the expression a. We identify expressions and values up to consistent renaming of bound names. We write $P\{x \leftarrow y\}$ for the outcome of renaming all free occurrences of x in P to the name y. Our syntax is in a reduced form, where an application $x(y)$ is of a name to a name. We can regard a conventional application $b(a)$ as an abbreviation for
let $f=b$ in let $x=a$ in $f(x)$, where $f \neq x$ and f is not free in a. This reduced syntax for application allows a more concise presentation of the operational semantics than the conventional syntax.

We explain the intended meaning of the syntax by example. The expression

$$
\begin{aligned}
& \text { ex } x_{1} \triangleq \text { letregion } \rho^{\prime} \text { in } \\
& \text { let } f=\lambda(x: \text { Lit }) x \text { at } \rho^{\prime} \text { in } \\
& \text { let } g=\lambda(y: \text { Lit }) f(y) \text { at } \rho \text { in } g(5)
\end{aligned}
$$

means "Allocate a fresh, empty region, and bind it to ρ^{\prime}; allocate $\lambda(x:$ Lit $) x$ in region ρ^{\prime}, and bind the pointer to f; allocate $\lambda(y: L i t) f(y)$ in region ρ (an already existing region), and bind the pointer to g; call the function at g with literal argument 5; finally, de-allocate ρ^{\prime}." The function call amounts to calling $\lambda(y: L i t) f(y)$ with argument 5 . So we call $\lambda(x:$ Lit $) x$ with argument 5 , which immediately returns 5. Hence, the final outcome is the answer 5, and a heap containing a region ρ with g pointing to $\lambda(y: \operatorname{Lit}) f(y)$. The intermediate region ρ^{\prime} has gone. Any subsequent invocations of the function $\lambda(y: \operatorname{Lit}) f(y)$ would go wrong, since the target of f has been de-allocated. The type and effect system of Section 2.3 guarantees there are no subsequent allocations or invocations on region ρ^{\prime}, such as invoking $\lambda(y: L i t) f(y)$.

2.2 Dynamic semantics

Like Tofte and Talpin, we formalize the intuitive semantics via a conventional structural operational semantics. A heap, h, is a map from region names to regions, and a region, r, is a map from pointers (names) to boxed values (function closures). In Tofte and Talpin's semantics, defunct regions are erased from the heap when they are de-allocated. In our semantics, the heap consists of both live regions and defunct regions. Our semantics maintains a set S containing the region names for the live regions. This is the main difference between the two semantics. Side-conditions on the evaluation rules guarantee that only the live regions in S are accessed during evaluation. Retaining the defunct regions simplifies the proof of subject reduction. Semmelroth \& Sabry (1999) adopt a similar technique for the same reason in their semantics of monadic encapsulation.

Regions, Heaps, and Stacks:

$r::=\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$	region, p_{i} distinct
$h::=\left(\rho_{i} \mapsto r_{i}\right)^{i \in 1 . . n}$	heap, ρ_{i} distinct
$S::=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$	stack of live regions

A region r is a finite map of the form $p_{1} \mapsto v_{1}, \ldots, p_{n} \mapsto v_{n}$, where the p_{i} are distinct, which we usually denote by $\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$. An application, $r(p)$, of the map r to p denotes v_{i}, if p is p_{i} for some $i \in 1$..n. Otherwise, the application is undefined. The domain, $\operatorname{dom}(r)$, of the map r is the set $\left\{p_{1}, \ldots, p_{n}\right\}$. We write \varnothing for the empty map. If $r=\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$, we define the notation $h-p$ to be $p_{i} \mapsto v_{i}{ }^{i \in(1 . . n)-\{j\}}$ if
$p=p_{j}$ for some $j \in 1 . . n$, and otherwise to be simply r. Then we define the notation $r+(p \mapsto v)$ to mean $(r-p), p \mapsto v$.

We use finite maps to represent regions, but also heaps, and various other structures. The notational conventions defined above for regions apply also to other finite maps, such as heaps. Additionally, we define $\operatorname{dom}_{2}(h)$ to be the set of all pointers defined in h, that is, $\bigcup_{\rho \in \operatorname{dom}(h)} \operatorname{dom}(h(\rho))$.

The evaluation relation, $S \cdot(a, h) \Downarrow\left(p, h^{\prime}\right)$, may be read: in an initial heap h, with live regions S, the expression a evaluates to the name p (a pointer or literal), leaving an updated heap h^{\prime}, with the same live regions S.

Judgments:
$S \cdot(a, h) \Downarrow\left(p, h^{\prime}\right) \quad$ evaluation

Evaluation Rules:

(Eval Var)

$$
S \cdot(p, h) \Downarrow(p, h)
$$

(Eval Alloc)
$\frac{\rho \in S \quad p \notin \operatorname{dom}_{2}(h)}{S \cdot(v \text { at } \rho, h) \Downarrow(p, h+(\rho \mapsto(h(\rho)+(p \mapsto v))))}$
(Eval Appl)

$$
\begin{gathered}
\rho \in S \quad h(\rho)(p)=\lambda(x: A) b \quad S \cdot(b\{x \leftarrow q\}, h) \Downarrow\left(p^{\prime}, h^{\prime}\right) \\
S \cdot(p(q), h) \Downarrow\left(p^{\prime}, h^{\prime}\right)
\end{gathered}
$$

(Eval Let)

$$
\frac{S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right) S \cdot\left(b\left\{x \leftarrow p^{\prime}\right\}, h^{\prime}\right) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)}{S \cdot(\text { let } x=a \text { in } b, h) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)}
$$

(Eval Letregion)
$\rho \notin \operatorname{dom}(h) \quad S \cup\{\rho\} \cdot(a, h+\rho \mapsto \varnothing) \Downarrow\left(p^{\prime}, h^{\prime}\right)$
$S \cdot($ letregion ρ in $a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$

Recall the example expression $e x_{1}$ from the previous section. Consider an initial heap $h=\rho \mapsto \varnothing$ and a region stack $S=\{\rho\}$, together representing a heap with a single region ρ that is live but empty. We can derive $S \cdot\left(e x_{1}, h\right) \Downarrow\left(5, h^{\prime}\right)$ where $h^{\prime}=\rho \mapsto(g \mapsto \lambda(y: L i t) f(y)), \rho^{\prime} \mapsto(f \mapsto \lambda(x: L i t) x)$. Since $\rho \in S$ but $\rho^{\prime} \notin S, \rho$ is live but ρ^{\prime} is defunct.

2.3 Static semantics

The static semantics of the region calculus is a simple type and effect system (Gifford \& Lucassen, 1986; Talpin \& Jouvelot, 1992; Wadler, 1998). The central typing judgment of the static semantics is:

$$
E \vdash a:\left\{\rho_{1}, \ldots, \rho_{n}\right\} A
$$

which means that in a typing environment E, the expression a may yield a result of type A, while allocating and invoking boxed values stored in regions ρ_{1}, \ldots, ρ_{n}. The set of regions $\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ is the effect of the expression, a bound on the interactions between the expression and the store. For simplicity, we have dropped the distinction between allocations, put (ρ), and invocations, get (ρ), in Tofte and Talpin's effects. This is an inessential simplification; the distinction could easily be added to our work.

An expression type, A, is either Lit, a type of literal constants, or $(A \xrightarrow{e} B)$ at ρ, the type of a function stored in region ρ. The effect e is the latent effect: the effect unleashed by calling the function. An environment E has entries for the regions and names currently in scope.

Effects, Types, and Environments:

$e::=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$	effect
$A, B:=$	type of expressions
Lit	type of literals
$(A \xrightarrow{e} B)$ at ρ	type of functions stored in ρ
$E::=$	environment
\varnothing	empty environment
E, ρ	entry for a region ρ
$E, x: A$	entry for a name x

Let $f r(A)$ be the set of region variables occurring in the type A. We define the domain, $\operatorname{dom}(E)$, of an environment, E, by the equations $\operatorname{dom}(\varnothing)=\varnothing, \operatorname{dom}(E, \rho)=$ $\operatorname{dom}(E) \cup\{\rho\}$, and $\operatorname{dom}(E, x: A)=\operatorname{dom}(E) \cup\{x\}$.

The following tables present our type and effect system as a collection of typing judgments defined by a set of rules. Tofte and Talpin present their type and effect system in terms of constructing a region-annotated expression from an unannotated expression. Instead, our main judgment simply expresses the type and effect of a single region-annotated expression. Otherwise, our system is essentially the same as Tofte and Talpin's.

Type and Effect Judgments:

$E \vdash \diamond$	good environment
$E \vdash A$	good type
$E \vdash a: e A$	good expression, with type A and effect e

Type and Effect Rules:

(Exp Appl)
$\frac{E \vdash x: \varnothing(B \xrightarrow{e} A) \text { at } \rho \quad E \vdash y:{ }^{\varnothing} B}{E \vdash x(y):\{\rho\} \cup e} A$
(Exp Let)
$\frac{E \vdash a:^{e} A \quad E, x: A \vdash b::^{\prime} B}{E \vdash \text { let } x=a \text { in } b::^{\cup e^{\prime}} B}$

(Exp Letregion)	(Exp Fun)
$E, \rho \vdash a:^{e} A \quad \rho \notin f r(A)$	$E, x: A \vdash b:^{e} B \quad e \subseteq e^{\prime} \quad\{\rho\} \cup e^{\prime} \subseteq \operatorname{dom}(E)$
$E \vdash$ letregion ρ in $a:^{e-\{\rho\}} A$	$E \vdash \lambda(x: A) b$ at $\rho::^{\{\rho\}}\left(A \xrightarrow{e^{\prime}} B\right)$ at ρ

The rules for good environments are standard; they assure that all the names and region variables in the environment are distinct, and that the type of each name is good. All the regions in a good type must be declared. The type of a good expression is checked much as in the simply typed λ-calculus. The effect of a good expression is the union of all the regions in which it allocates or from which it invokes a closure. In the rule (Exp Letregion), the condition $\rho \notin f r(A)$ ensures that no function with a latent effect on the region ρ may be returned. Calling such a function would be unsafe since ρ is de-allocated once the letregion terminates. In the rule (Exp Fun), the effect e of the body of a function must be contained in the latent effect e^{\prime} of the function. For the sake of simplicity we have no rule of effect subsumption, but it would be sound to add it: if $E \vdash a:^{e} A$ and $e^{\prime} \subseteq \operatorname{dom}(E)$ then $E \vdash a::^{. \cup e^{\prime}} A$. In the presence of effect subsumption we could simplify (Exp Fun) by taking $e=e^{\prime}$.

Recall the expression $e x_{1}$ from section 2.1. We can derive the following judgments:

$$
\begin{aligned}
& \rho, \rho^{\prime} \vdash(\lambda(x: \text { Lit }) x) \text { at } \rho^{\prime}:\left\{\rho^{\prime}\right\}(\text { Lit } \xrightarrow{\varnothing} \text { Lit }) \text { at } \rho^{\prime} \\
& \rho, \rho^{\prime}, f:(\text { Lit } \xrightarrow{\varnothing} \text { Lit }) \text { at } \rho^{\prime} \vdash(\lambda(x: \text { Lit }) f(x)) \text { at } \rho:\{\rho\}\left(\text { Lit } \xrightarrow{\left\{\rho^{\prime}\right\}} \text { Lit }\right) \text { at } \rho \\
& \rho, \rho^{\prime}, f:(\text { Lit } \xrightarrow{\varnothing} \text { Lit }) \text { at } \rho^{\prime}, g:\left(\text { Lit } \xrightarrow{\left\{\rho^{\prime}\right\}} \text { Lit }\right) \text { at } \rho \vdash g(5):\left\{\rho, \rho^{\prime}\right\} \\
& \text { Lit }
\end{aligned}
$$

Hence, we can derive $\rho \vdash e x_{1}:{ }^{\{\rho\}}$ Lit.
For an example of a type error, suppose we replace the application $g(5)$ in $e x_{1}$ simply with the identifier g. Then we cannot type-check the letregion ρ^{\prime} construct,
because ρ^{\prime} is free in the type of its body. This is just as well, because otherwise we could invoke a function in a defunct region.

For an example of how a dangling pointer may be passed around harmlessly, but not invoked, consider the following. Let F abbreviate the type (Lit $\xrightarrow{\varnothing}$ Lit) at ρ^{\prime}. Let $e x_{2}$ be the following expression:

$$
\begin{aligned}
& e x_{2} \triangleq \text { letregion } \rho^{\prime} \text { in } \\
& \text { let } f=\lambda(x: \text { Lit }) x \text { at } \rho^{\prime} \text { in } \\
& \text { let } g=\lambda(f: F) 5 \text { at } \rho \text { in } \\
& \text { let } j=\lambda(z: \operatorname{Lit}) g(f) \text { at } \rho \text { in } j
\end{aligned}
$$

We have $\rho \vdash e x_{2}:\{\rho\}$ (Lit $\xrightarrow{\{\rho\}}$ Lit) at ρ. If $S=\{\rho\}$ and $h=\rho \mapsto \varnothing$, then $S \cdot(b, h) \Downarrow\left(j, h^{\prime}\right)$ where the final heap h^{\prime} is $\rho \mapsto(g \mapsto \lambda(f: F) 5, j \mapsto \lambda(z: \operatorname{Lit}) g(f)), \rho^{\prime} \mapsto$ ($f \mapsto \lambda(x: L i t) x)$. In the final heap, there is a pointer f from the live region ρ to the defunct region ρ^{\prime}. Whenever j is invoked, this pointer will be passed to g, harmlessly, since g will not invoke it.

2.4 Relating the static and dynamic semantics

To relate the static and dynamic semantics, we need to define when a configuration is well-typed. First, we need notions of region and heap typings. A region typing R tracks the types of boxed values in the region. A heap typing H tracks the region typings of all the regions in a heap. The environment $\operatorname{env}(H)$ lists all the regions in H, followed by types for all the pointers in those regions.

Region and Heap Typings:

$R::=\left(p_{i}: A_{i}\right)^{i \in 1 . n}$	region typing
$H::=\left(\rho_{i} \mapsto R_{i}\right)^{i \in 1 . n}$	heap typing
$\operatorname{ptr}(H) \triangleq R_{1}, \ldots, R_{n}$	if $H=\left(\rho_{i} \mapsto R_{i}\right)^{i \in 1 . . n}$
$\operatorname{env}(H) \triangleq \operatorname{dom}(H), \operatorname{ptr}(H)$	

The next tables describe the judgments and rules defining well-typed regions, heaps, and configurations. The main judgment $H \models S \cdot(a, h): A$ means that a configuration $S \cdot(a, h)$ is well-typed: the heap h conforms to H and the expression a returns a result of type A, and its effect is within the live regions S.

Region, Heap, and Configuration Judgments:

$E \vdash r$ at $\rho: R$	in E, region r, named ρ, has type R
$H \models \diamond$	the heap typing H is good
$H \models h$	in H, the heap h is good
$H \models S \cdot(a, h): A$	in H, configuration $S \cdot(a, h)$ returns A

Region, Heap, and Configuration Rules:

(Region Good)
$E \vdash v_{i}$ at $\rho:\{\rho\}$
A_{i}
:---:
$\frac{\operatorname{env}(H) \vdash \diamond}{}$
$E \vdash\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$ at $\rho:\left(p_{i}: A_{i}\right)^{i \in 1 . . n}$
:---

(Heap Good) (where $\operatorname{dom}(H)=\operatorname{dom}(h))$
$\frac{\operatorname{env}(H) \vdash h(\rho) \text { at } \rho: H(\rho) \quad \forall \rho \in \operatorname{dom}(H)}{H \models h}$
(Config Good) (where $S \subseteq \operatorname{dom}(H)$)
$\frac{e n v(H) \vdash a:^{e} A \quad e \cup f r(A) \subseteq S \quad H \models h}{H \models S \cdot(a, h): A}$

These predicates roughly correspond to the co-inductively defined consistency predicate of Tofte and Talpin. The retention of defunct regions in our semantics allows a simple inductive definition of these predicates, and a routine inductive proof of the subject reduction theorem stated below.

We now present a subject reduction result relating the static and dynamic semantics. Let $H \asymp H^{\prime}$ if and only if the pointers defined by H and H^{\prime} are disjoint, that is, $\operatorname{dom}_{2}(H) \cap \operatorname{dom}_{2}\left(H^{\prime}\right)=\varnothing$. Assuming that $H \asymp H^{\prime}$, we write $H+H^{\prime}$ for the heap consisting of all the regions in either H or H^{\prime}; if ρ is in both heaps, $\left(H+H^{\prime}\right)(\rho)$ is the concatenation of the two regions $H(\rho)$ and $H\left(\rho^{\prime}\right)$.
Theorem 2.1
If $H \models S \cdot(a, h): A$ and $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ there is H^{\prime} such that $H \asymp H^{\prime}$ and $H+H^{\prime} \equiv S \cdot\left(p^{\prime}, h^{\prime}\right): A$.

Intuitively, the theorem asserts that evaluation of a well-typed configuration $S \cdot(a, h)$ leads to another well-typed configuration $S \cdot\left(p^{\prime}, h^{\prime}\right)$, where H^{\prime} represents types for the new pointers and regions in h^{\prime}.

The following proposition shows that well-typed configurations avoid the runtime errors of allocation or invocation of a closure in a defunct region.

Proposition 2.2

(1) If $H \models S \cdot(v$ at $\rho, h): A$ then $\rho \in S$.
(2) If $H \models S \cdot(p(q), h): A$ then there are ρ and v such that $\rho \in S, h(\rho)(p)=v$, and v is a function of the form $\lambda(x: B) b$ with $\operatorname{env}(H), x: B \vdash b:^{e} A$.

Combining Theorem 2.1 and Proposition 2.2 we may conclude that such runtime errors never arise in any intermediate configuration reachable from an initial welltyped configuration. Implicitly, this amounts to asserting the safety of region-based memory management, that defunct regions make no difference to the behaviour of a well-typed configuration. Our π-calculus semantics of regions makes this explicit: we show equationally that direct deletion of defunct regions makes no difference to the semantics of a configuration.

3 A π-calculus with groups

In this section, we define a typed π-calculus with groups. In the next, we explain a semantics of our region calculus in this π-calculus. Exactly as in the ambient calculus with groups (Cardelli et al., 2000a), each name x has a type that includes its group G, and groups may be generated dynamically by a new-group construct, $(v G) P$. So as to model the type and effect system of the region calculus, we equip our π-calculus with a novel group-based effect system. In other work (Cardelli et al., 2000b), not concerned with the region calculus, we consider a simpler version of this π-calculus, with groups but without an effect system, and show that new-group helps keep names secret, in a certain formal sense.

Several authors have developed type and effect analyses for concurrent languages. The earliest include systems by Nielson \& Nielson (1993; 1994) and Talpin (1993). There are several effect-based analyses of the π-calculus (Yoshida, 1996; Kobayashi, 1998). Our type and effect system is considerably simpler, and therefore less expressive, than some of these related systems. Unlike previous systems, it exploits the analogy between a function type with a latent effect in a functional calculus - such as the region calculus - and a channel type with a hidden effect. In our system, we may attach a hidden effect to a channel type; the effect is unleashed by an output and is masked by an input on the channel. This new idea is essential for our modelling of the region calculus.

3.1 Syntax

The following table gives the syntax of processes, P. The syntax depends on a set of atomic names, x, y, z, p, q, and a set of groups, G, H. For convenience, we assume that the sets of names and groups are identical to the sets of names and region names, respectively, of the region calculus. We impose a standard constraint (Fournet \& Gonthier, 1996; Merro \& Sangiorgi, 1998), usually known as locality, that received names may be used for output but not for input. This constraint confers a richer equational theory on the π-calculus and is needed for the results of section 5 . Except for the addition of type annotations and the new-group construct, and the locality constraint, the following syntax and semantics are the same as for the polyadic, choice-free, asynchronous π-calculus (Milner, 1999).

Expressions and Processes:

x, y, p, q	name: variable, channel
$P, Q, R::=$	process
$x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P$	input (no $\left.y_{i} \in \operatorname{inp}(P)\right)$
$\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle$	output
$(v G) P$	new-group: group restriction
$(v x: T) P$	new-name: name restriction
$P \mid Q$	composition
$!P$	replication
$\mathbf{0}$	inactivity

We explain the set $\operatorname{inp}(P)$ below, and the types T, T_{1}, \ldots, T_{n} in section 3.3.
In a process $x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P$, the names y_{1}, \ldots, y_{n} are bound; their scope is P (we explain the types T below). In a group restriction $(v G) P$, the group G is bound; its scope is P. In a name restriction $(v x: T) P$, the name x is bound; its scope is P. We identify processes up to the consistent renaming of bound groups and names. We let $f n(P)$ and $f g(P)$ be the sets of free names and free groups, respectively, of a process P. We write $P\{x \leftarrow y\}$ for the outcome of a capture-avoiding substitution of the name y for each free occurrence of the name x in the process P.

Free Names, $f n(P)$, of Process P :

```
\(f n\left(x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P\right) \triangleq\{x\} \cup\left(f n(P)-\left\{y_{1}, \ldots, y_{n}\right\}\right)\)
\(f n\left(\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle\right) \triangleq\left\{x, y_{1}, \ldots, y_{n}\right\}\)
\(f n((v G) P) \triangleq f n(P)\)
\(f n((v x: T) P) \stackrel{\Delta}{=} f n(P)-\{x\}\)
\(f n(P \mid Q) \stackrel{\Delta}{=} f n(P) \cup f n(Q)\)
\(f n(!P) \triangleq \stackrel{\Delta}{=} n(P)\)
\(f n(\mathbf{0}) \triangleq \varnothing\)
```

Free Groups, $f g(P)$, of Process P :

```
\(f g\left(x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P\right) \triangleq f g\left(T_{1}\right) \cup \cdots \cup f g\left(T_{n}\right) \cup f g(P)\)
\(f g\left(\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle\right) \triangleq \varnothing\)
\(f g((v G) P) \stackrel{\Delta}{=} f g(P)-\{G\}\)
\(f g((v x: T) P) \triangleq f g(T) \cup f g(P)\)
\(f g(P \mid Q) \stackrel{\Delta}{=} f g(P) \cup f g(Q)\)
\(f g(!P) \triangleq f g(P)\)
\(f g(\mathbf{0}) \triangleq \varnothing\)
```

The set $\operatorname{inp}(P)$ consists of each name x such that an input $x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P^{\prime}$ occurs as a subprocess of P, with x not bound.

Names in Input Position, $\operatorname{inp}(P)$, in Process P :

```
\(\operatorname{inp}\left(x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P\right) \triangleq\{x\} \cup\left(\operatorname{inp}(P)-\left\{y_{1}, \ldots, y_{n}\right\}\right)\)
\(\operatorname{inp}\left(\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle\right) \stackrel{\Delta}{=} \varnothing\)
\(\operatorname{inp}((v G) P) \triangleq \operatorname{inp}(P)\)
\(\operatorname{inp}((v x: T) P) \triangleq \operatorname{inp}(P)-\{x\}\)
\(\operatorname{inp}(P \mid Q) \triangleq \operatorname{inp}(P) \cup \operatorname{inp}(Q)\)
\(\operatorname{inp}(!P) \triangleq \operatorname{inp}(P)\)
\(\operatorname{inp}(\mathbf{0}) \triangleq \varnothing\)
```

Next, we explain the semantics of the calculus informally, by example. We omit type annotations and groups; we shall explain these later.

A process represents a particular state in a π-calculus computation. A state may reduce to a successor when two subprocesses interact by exchanging a tuple of names on a shared communication channel, itself identified by a name. For example, consider the following process:

$$
f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle\left|g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle\right| \bar{g}\langle 5, k\rangle
$$

This is the parallel composition (denoted by the | operator) of two input processes $g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle$ and $f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle$, and an output process $\bar{g}\langle 5, k\rangle$. The whole process performs two reductions. The first is to exchange the tuple $\langle 5, k\rangle$ on the channel g. The names 5 and k are bound to the input names y and k, leaving $f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle \mid \bar{f}\langle 5, k\rangle$ as the next state. This state itself may reduce to the final state $\bar{k}\langle 5\rangle$ via an exchange of $\langle 5, k\rangle$ on the channel f.

The process above illustrates how functions may be encoded as processes. Specifically, it is a simple encoding of the example $e x_{1}$ from section 2.1. The input processes correspond to λ-abstractions at addresses f and g; the output processes correspond to function applications; the name k is a continuation for the whole expression. The reductions described above represent the semantics of the expression: a short internal computation returning the result 5 on the continuation k.

The following is a more accurate encoding:

$$
(v f)(v g)(\overbrace{!f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle}^{f \mapsto \lambda(x) x}|\overbrace{!g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle}^{g \mapsto \lambda(y)) f(y)}| \overbrace{\bar{g}\langle 5, k\rangle}^{g(5)})
$$

A replication $!P$ is like an infinite parallel array of replicas of P; we replicate the inputs above so that they may be invoked arbitrarily often. A name restriction $(v x) P$ invents a fresh name x with scope P; we restrict the addresses f and g above to indicate that they are dynamically generated, rather than being global constants.

The other π-calculus constructs are group restriction and inactivity. Group restriction $(v G) P$ invents a fresh group G with scope P; it is the analogue of name restriction for groups. Finally, the $\mathbf{0}$ process represents inactivity.

3.2 Dynamic semantics

We formalize the semantics of our π-calculus using standard techniques. A reduction relation, $P \rightarrow Q$, means that P evolves in one step to Q. It is defined in terms of an auxiliary structural congruence relation, $P \equiv Q$, that identifies processes we never wish to tell apart.

Structural Congruence: $P \equiv Q$

$P \equiv P$	(Struct Refl)
$Q \equiv P \Rightarrow P \equiv Q$	(Struct Symm)
$P \equiv Q, Q \equiv R \Rightarrow P \equiv R$	(Struct Trans)
$P \equiv Q \Rightarrow x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P \equiv x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot Q$	(Struct Input)
$P \equiv Q \Rightarrow(v G) P \equiv(v G) Q$	(Struct GRes)

$P \equiv Q \Rightarrow(v x: T) P \equiv(v x: T) Q$	(Struct Res)
$P \equiv Q \Rightarrow P\|R \equiv Q\| R$	(Struct Par)
$P \equiv Q \Rightarrow!P \equiv!Q$	(Struct Repl)
$P \mid \mathbf{0} \equiv P$	(Struct Par Zero)
$P\|Q \equiv Q\| P$	(Struct Par Comm)
$(P \mid Q)\|R \equiv P\|(Q \mid R)$	(Struct Par Assoc)
$!P \equiv P \mid!P$	(Struct Repl Par)
$x_{1} \neq x_{2} \Rightarrow\left(v x_{1}: T_{1}\right)\left(v x_{2}: T_{2}\right) P \equiv\left(v x_{2}: T_{2}\right)\left(v x_{1}: T_{1}\right) P$	(Struct Res Res)
$x \notin f n(P) \Rightarrow(v x: T)(P \mid Q) \equiv P \mid(v x: T) Q$	(Struct Res Par)
$\left(v G_{1}\right)\left(v G_{2}\right) P \equiv\left(v G_{2}\right)\left(v G_{1}\right) P$	(Struct GRes GRes)
$G \notin f g(T) \Rightarrow(v G)(v x: T) P \equiv(v x: T)(v G) P$	(Struct GRes Res)
$G \notin f g(P) \Rightarrow(v G)(P \mid Q) \equiv P \mid(v G) Q$	(Struct GRes Par)

Reduction: $P \rightarrow Q$
$\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \mid x\left(z_{1}: T_{1}, \ldots, z_{n}: T_{n}\right) \cdot P \rightarrow P\left\{z_{1} \leftarrow y_{1}\right\} \cdots\left\{z_{n} \leftarrow y_{n}\right\} \quad$ (Red Interact)
$P \rightarrow Q \Rightarrow P|R \rightarrow Q| R$
(Red Par)
$P \rightarrow Q \Rightarrow(v G) P \rightarrow(v G) Q$
$P \rightarrow Q \Rightarrow(v x: T) P \rightarrow(v x: T) Q$
$P^{\prime} \equiv P, P \rightarrow Q, Q \equiv Q^{\prime} \Rightarrow P^{\prime} \rightarrow Q^{\prime}$
(Red GRes)
(Red Res)
\llcorner
$(\operatorname{Red} \equiv)$

Groups help to type-check names statically but have no dynamic behaviour; groups are not themselves values. The following proposition demonstrates this precisely; it asserts that the reduction behaviour of a typed process is equivalent to the reduction behaviour of the untyped process obtained by erasing all type and group annotations. (Appendix A reviews the untyped π-calculus.)

Erasing Type Annotations and Group Restrictions:

```
\(\operatorname{erase}((v G) P) \triangleq \operatorname{erase}(P)\)
\(\operatorname{erase}((v x: T) P) \triangleq(v x) \operatorname{erase}(P)\)
\(\operatorname{erase}(\mathbf{0}) \triangleq \mathbf{0}\)
\(\operatorname{erase}(P \mid Q) \triangleq \operatorname{erase}(P) \mid \operatorname{erase}(Q)\)
\(\operatorname{erase}(!P) \triangleq\) !erase \((P)\)
\(\operatorname{erase}\left(x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P\right) \triangleq \Delta\left(y_{1}, \ldots, y_{n}\right) \cdot \operatorname{erase}(P)\)
\(\operatorname{erase}\left(\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle\right) \triangleq \stackrel{\Delta}{\bar{x}}\left\langle y_{1}, \ldots, y_{n}\right\rangle\)
```


Proposition 3.1 (Erasure)

For all typed processes P and Q, if $P \rightarrow Q$ then $\operatorname{erase}(P) \rightarrow \operatorname{erase}(Q)$. If $\operatorname{erase}(P) \rightarrow R$ then there is a typed process Q such that $P \rightarrow Q$ and $R \equiv \operatorname{erase}(Q)$.

3.3 Static semantics

The main judgment $E \vdash P:\left\{G_{1}, \ldots, G_{n}\right\}$ of the effect system for the π-calculus means that the process P uses names according to their types and that all its external reads and writes are on channels in groups G_{1}, \ldots, G_{n}. A channel type takes the form $G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$. This stipulates that the name is in group G and that it is a channel for the exchange of n-tuples of names with types T_{1}, \ldots, T_{n}. The set of group names \mathbf{H} is the hidden effect of the channel. In the common case when $\mathbf{H}=\varnothing$, we abbreviate the type to $G\left[T_{1}, \ldots, T_{n}\right]$.

As examples of groups, in our encoding of the region calculus we have groups Lit and K for literals and continuations, respectively, and each region ρ is a group. Names of type Lit[] are in group Lit and exchange empty tuples, and names of type $K[\operatorname{Lit}[]]$ are in group K and exchange names of type Lit []. In our running example, we have $5: \operatorname{Lit}[]$ and $k: K[\operatorname{Lit}[]]$. A pointer to a function in a region ρ is a name in group ρ. In our example, we could have $f: \rho^{\prime}[\operatorname{Lit}[], K[\operatorname{Lit}[]]$ and $g: \rho[\operatorname{Lit}[], K[\operatorname{Lit}[]]]$.

Given these typings for names, we have $g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle:\left\{\rho, \rho^{\prime}\right\}$ because the reads and writes of the process are on the channels g and f whose groups are ρ and ρ^{\prime}. Similarly, we have $f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle:\left\{\rho^{\prime}, K\right\}$ and $\bar{g}\langle 5, k\rangle:\{\rho\}$. The composition of these three processes has effect $\left\{\rho, \rho^{\prime}, K\right\}$, the union of the individual effects.

The idea motivating hidden effects is that an input process listening on a channel may represent a passive resource (for example, a function) that is only invoked if there is an output on the channel. The hidden effect of a channel is an effect that is masked in an input process, but incurred by an output process. In the context of our example, our formal translation makes the following type assignments: f : $\rho^{\prime}[\operatorname{Lit}[], K[\operatorname{Lit}[]]] \backslash\{K\}$ and $g: \rho[\operatorname{Lit}[], K[\operatorname{Lit}[]]] \backslash\left\{K, \rho^{\prime}\right\}$. We then have $f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle$: $\left\{\rho^{\prime}\right\}, g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle:\{\rho\}$, and $\bar{g}\langle 5, k\rangle:\left\{\rho, \rho^{\prime}, K\right\}$. The hidden effects are transferred from the function bodies to the process $\bar{g}\langle 5, k\rangle$ that invokes the functions. This transfer is essential in the proof of our main garbage collection result, Theorem 4.4.

The effect of a replicated or name-restricted process is the same as the original process. For example, abbreviating the types for f and g, we have:

$$
\begin{aligned}
&\left(v f: \rho^{\prime}\right)(v g: \rho)\left(!f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle \mid\right. \\
&\left.!g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle \mid \bar{g}\langle 5, k\rangle\right):\left\{\rho, \rho^{\prime}, K\right\}
\end{aligned}
$$

On the other hand, the effect of a group-restriction $(v G) P$ is the same as that of P, except that G is deleted. This is because there can be no names free in P of group G; any names of group G in P must be internally introduced by name-restrictions. Therefore, $(\nu G) P$ has no external reads or writes on channels of group G. For example,

$$
\begin{aligned}
& \left(v \rho^{\prime}\right)(v f)(v g)\left(!f\left(x, k^{\prime}\right) \cdot \overline{k^{\prime}}\langle x\rangle \mid\right. \\
& \left.\quad!g\left(y, k^{\prime}\right) \cdot \bar{f}\left\langle y, k^{\prime}\right\rangle \mid \bar{g}\langle 5, k\rangle\right):\{\rho, K\}
\end{aligned}
$$

The following tables describe the syntax of types and environments, the judgments and the rules defining our effect system. Let $f g\left(G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}\right) \triangleq\{G\} \cup f g\left(T_{1}\right) \cup$ $\cdots \cup f g\left(T_{n}\right) \cup \mathbf{H}$.

Syntax of Types and Environments, Typing Judgments:

$\mathbf{G}, \mathbf{H}::=\left\{G_{1}, \ldots, G_{n}\right\}$	finite set of name groups
$T::=G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$	type of channel in group G with hidden effect \mathbf{H}
$E::=\varnothing\|E, G\| E, x: T$	
$E \vdash \diamond$	environment
$E \vdash T$	good environment
$E \vdash x: T$	good channel type T
$E \vdash P: \mathbf{H}$	good name x of channel type T good process P with effect \mathbf{H}

Typing Rules:

(Env \varnothing)	(Env x)	(Env G)
	$E \vdash T \quad x \notin \operatorname{dom}(E)$	$E \vdash \diamond \quad G \notin \operatorname{dom}(E)$
$\varnothing \vdash \diamond$	$E, x: T \vdash \diamond$	$E, G \vdash \diamond$

(Type Chan)				$(\operatorname{Exp} x)$
$E \vdash \diamond$	$\{G\} \cup \mathbf{H} \subseteq \operatorname{dom}(E)$	$E \vdash T_{1}$	$E \vdash T_{n}$	$E^{\prime}, x: T, E^{\prime \prime} \vdash \diamond$
$E \vdash G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$				$E^{\prime}, x: T, E^{\prime \prime} \vdash x: T$

(Proc Input)

$$
\frac{E \vdash x: G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H} \quad E, y_{1}: T_{1}, \ldots, y_{n}: T_{n} \vdash P: \mathbf{G}}{E \vdash x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P:\{G\} \cup(\mathbf{G}-\mathbf{H})}
$$

(Proc Output)

$$
\frac{E \vdash x: G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H} \quad E \vdash y_{1}: T_{1} \quad \cdots \quad E \vdash y_{n}: T_{n}}{E \vdash \bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle:\{G\} \cup \mathbf{H}}
$$

(Proc GRes) $E, G \vdash P: \mathbf{H}$	(Proc Res) $E, x: T \vdash P: \mathbf{H}$	(Proc Par) $E \vdash P: \mathbf{G} \quad E \vdash Q: \mathbf{H}$$\quad$$E \vdash(v x: T) P: \mathbf{H}$

(Proc Repl)	(Proc Zero)	(Proc Subsum)		
$E \vdash P: \mathbf{H}$				
$E \vdash!P: \mathbf{H}$	$E \vdash \diamond$			
$E \vdash \mathbf{0}: \varnothing$			\quad	$E \vdash P: \mathbf{G} \mathbf{G} \subseteq \mathbf{H} \subseteq \operatorname{dom}(E)$
:---:				

The rules for good environments and good channel types ensure that declared names and groups are distinct, and that all the names and groups occurring in a type are declared. The rules for good processes ensure that names are used for input and output according to their types, and compute an effect that includes the groups of all the free names used for input and output.

In the special case when the hidden effect \mathbf{H} is \varnothing, (Proc Input) and (Proc Output) specialise to the following:

In this situation, we attribute all the effect \mathbf{G} of the prefixed process P to the input process $x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P$. The effect \mathbf{G} of P is entirely excluded from the hidden effect, since $\mathbf{H}=\varnothing$.

A dual special case is when the effect of the prefixed process P is entirely included in the hidden effect \mathbf{H}. In this case, (Proc Input) and (Proc Output) specialise to the following:

$E \vdash x: G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$	
$E, y_{1}: T_{1}, \ldots, y_{n}: T_{n} \vdash P: \mathbf{H}$	
$E \vdash x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P:\{G\}$	
	$E \vdash x: G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$
$E \vdash \bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle:\{G\} \cup \mathbf{H}$	

The effect of P is not attributed to the input $x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P$ but instead is transferred to any outputs in the same group as x. If there are no such outputs, the process P will remain blocked, so it is safe to discard its effects.

These two special cases of (Proc Input) and (Proc Output) are in fact sufficient for the encoding of the region calculus presented in section 4.2; we need the first special case for typing channels representing continuations, and the second special case for typing channels representing function pointers. For simplicity, our actual rules (Proc Input) and (Proc Output) combine both special cases; an alternative would be to have two different kinds of channel types corresponding to the two special cases.

The rule (Proc GRes) discards G from the effect of a new-group process $(v G) P$, since, in P, there can be no free names of group G (though there may be restricted names of group G). The rule (Proc Subsum) is a rule of effect subsumption. We need this rule to model the effect subsumption in rule (Exp Fun) of the region calculus. The other rules for good processes simply compute the effect of a whole process in terms of the effects of its parts.

We can prove a standard subject reduction result.

Proposition 3.2

If $E \vdash P: \mathbf{H}$ and $P \rightarrow Q$ then $E \vdash Q: \mathbf{H}$.

Next, a standard definition of the barbs exhibited by a process formalizes the idea of the external reads and writes through which a process may interact with its environment. Let a barb, β, be either a name x or a co-name \bar{x}.

Exhibition of a Barb:

The following asserts the soundness of the effect system. The group of any barb of a process is included in its effect.

Proposition 3.3 (Effect Soundness)
If $E \vdash P: \mathbf{H}$ and $P \downarrow \beta$ with $\beta \in\{x, \bar{x}\}$ then there is a type $G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E \vdash x: G\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ and $G \in \mathbf{H}$.

3.4 Barbed congruence

To state equational properties of our encoding of the region calculus in the π calculus, we need a notion of operational equivalence. To this end, we use a typed form (Pierce \& Sangiorgi, 1996) of the barbed congruence of Milner \& Sangiorgi (1992), an equivalence with a uniform definition for a variety of process calculi. See the textbook of Sangiorgi \& Walker (2001) for further motivations and examples. What follows is a series of definitions leading up to our definition of barbed congruence.

First, we state a simple predicate for processes well-defined in a specific environment:

- We write $E \vdash P$ to mean there is an effect \mathbf{G} such that $E \vdash P: \mathbf{G}$.

Since we are in a typed calculus, we only wish to ask whether two processes are equivalent when they are well-defined in the same environment. The notion of a relation on typed processes, given next, is that of a family of binary relations on processes, indexed by an environment. Barbed congruence is defined as a relation on typed processes.

- A relation on typed processes, \mathscr{S}, is a set of triples (E, P, Q) where E is an environment and P and Q are typed terms such that $E \vdash P$ and $E \vdash Q$. We write $E \vdash P \mathscr{S} Q$ to mean $(E, P, Q) \in \mathscr{S}$.
- A relation on typed processes, \mathscr{S}, is reflexive if and only if $E \vdash P \mathscr{S} P$ whenever $E \vdash P$. It is symmetric if and only if $E \vdash Q \mathscr{S} P$ whenever $E \vdash P \mathscr{S} Q$. It is transitive if and only if $E \vdash P \mathscr{S} R$ whenever $E \vdash P \mathscr{S} Q$ and $E \vdash Q \mathscr{S} R$.
- For any relation on typed processes, \mathscr{S}, let $E \vdash P \equiv \mathscr{S} \equiv Q$ mean there are processes P^{\prime} and Q^{\prime} such that $P \equiv P^{\prime}, E \vdash P^{\prime} \mathscr{S} Q^{\prime}$, and $Q^{\prime} \equiv Q$.
Next, as a standard step towards defining barbed congruence, we define an auxiliary relation, barbed bisimilarity. It is defined co-inductively as the greatest barbed bisimulation.
- We write $P \Downarrow \beta$ to mean there is a process P^{\prime} such that $P \rightarrow^{*} P^{\prime}$ and $P^{\prime} \downarrow \beta$.
- A relation on typed processes, \mathscr{S}, is a barbed bisimulation if and only if it is symmetric and $E \vdash P \mathscr{S} Q$ implies:
(1) If $P \downarrow \bar{x}$ then $Q \Downarrow \bar{x}$.
(2) If $P \rightarrow P^{\prime}$ then there is Q^{\prime} such that $Q \rightarrow{ }^{*} Q^{\prime}$ and $E \vdash P^{\prime} \equiv \mathscr{T} \equiv Q^{\prime}$.
- Barbed bisimilarity, $\dot{\approx}$, is the relation on typed processes such that $E \vdash P \dot{\approx} Q$ if and only if there is a barbed bisimulation \mathscr{S} such that $E \vdash P \mathscr{S} Q$.
By definition of $E \vdash P \dot{\approx} Q$, it follows that the operational behaviours of P and Q are related in that the reductions and the barbs of P are matched by Q, and vice versa. On the other hand, barbed bisimilarity, $\dot{\approx}$, is not a congruence relation, that is, it is not preserved by the syntax formers of our calculus. In particular, it is not even closed under parallel composition. To remedy this, we extract a congruence relation, barbed congruence, from barbed bisimilarity as follows.
- A renaming, σ, is a substitution $\left\{x_{1} \leftarrow x_{1}^{\prime}\right\} \cdots\left\{x_{n} \leftarrow x_{n}^{\prime}\right\}$ of names for names where $n \geqslant 0$ and the names x_{1}, \ldots, x_{n} are pairwise distinct. Let $\operatorname{dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{ran}(\sigma)=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. If $x=x_{j}$ for some $j \in 1 . . n$, let $\sigma(x)=x_{j}^{\prime}$. Otherwise, if $x \notin \operatorname{dom}(\sigma)$, let $\sigma(x)=x$. A renaming, σ, is an E-renaming if and only if for all names x, y, if $\sigma(x)=\sigma(y)$ and $E \vdash x: T$ and $E \vdash y: T^{\prime}$ then $T=T^{\prime}$. For any E-renaming, σ, the environment $E \sigma$ is defined as follows: $\varnothing \sigma \triangleq \varnothing$; $\left(E^{\prime}, G\right) \sigma \triangleq E^{\prime} \sigma, G ;\left(E^{\prime}, x: T\right) \sigma \triangleq E^{\prime} \sigma, \sigma(x): T$ if $\sigma(x) \notin \operatorname{dom}\left(E^{\prime} \sigma\right)$, and $E^{\prime} \sigma$ if not.
- Barbed congruence, \approx, is the relation on typed processes such that $E \vdash P \approx Q$ if and only if for all processes R, all E-renamings σ and all type environments E^{\prime}, if $E \sigma, E^{\prime} \vdash R$ then $E \sigma, E^{\prime} \vdash P \sigma|R \dot{\approx} Q \sigma| R$.

The following are basic properties of barbed congruence needed for equational reasoning. It is a congruence relation that is preserved by well-typed renamings, includes structural congruence, and satisfies a weakening principle.

Proposition 3.4

(1) Barbed congruence is reflexive, transitive, and symmetric.
(2) Barbed congruence satisfies the congruence properties:

- If $E, y_{1}: T_{1}, \ldots, y_{n}: T_{n} \vdash P \approx Q$ then $E \vdash x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P \approx x\left(y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot Q$.
- If $E \vdash P \approx Q$ and $E \vdash R$ then $E \vdash P|R \approx Q| R$.
- If $E, x: T \vdash P \approx Q$ then $E \vdash(v x: T) P \approx(v x: T) Q$.
- If $E, G \vdash P \approx Q$ then $E \vdash(v G) P \approx(v G) Q$.
- If $E \vdash P \approx Q$ then $E \vdash!P \approx!Q$.
(3) If $E \vdash P \approx Q$ and σ is an E-renaming then $E \sigma \vdash P \sigma \approx Q \sigma$.
(4) If $P \equiv Q$ and $E \vdash P$ then $E \vdash P \approx Q$.
(5) If $E \vdash P \approx Q$ and $E, E^{\prime} \vdash \diamond$ then $E, E^{\prime} \vdash P \approx Q$.

4 Encoding regions as groups

This section interprets the region calculus in terms of our π-calculus.

4.1 The encoding

Most of the ideas of the translation are standard, and have already been illustrated by example. A function value in the heap is represented by a replicated input process, awaiting the argument and a continuation on which to return a result. A function is invoked by sending it an argument and a continuation. Region names and letregion ρ are translated to groups and $(v \rho)$, respectively.

The remaining construct of our region calculus is sequencing: let $x=a$ in b. Assuming a continuation k, we translate this to $\left(v k^{\prime}\right)\left(\llbracket a \rrbracket k^{\prime} \mid k^{\prime}(x) . \llbracket b \rrbracket k\right)$. This process invents a fresh, intermediate continuation k^{\prime}. The process $\llbracket a \rrbracket k^{\prime}$ evaluates a returning a result on k^{\prime}. The process $k^{\prime}(x)$. $\llbracket b \rrbracket k$ blocks until the result x is returned on k^{\prime}, then evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions, and configurations of the region calculus in the π-calculus. In particular, if $S \cdot(a, h)$ is a configuration, then $\llbracket S \cdot(a, h) \rrbracket k$ is its translation, a process that returns any eventual result on the continuation k. In typing the translation, we assume two global groups: a group, K, of continuations and a group, Lit, of literals. The environment $\llbracket \varnothing \rrbracket$ declares these groups and also a typing $\ell_{i}: L i t$ for each of the literals $\ell_{1}, \ldots, \ell_{n}$.

Translating of the Region Calculus to the π-Calculus:

$\llbracket A \rrbracket$	type modelling the type A
$\llbracket E \rrbracket$	environment modelling environment E
$\llbracket a \rrbracket k$	process modelling term a, answer on k
$\llbracket p \mapsto v \rrbracket$	process modelling value v at pointer p
$\llbracket r \rrbracket$	process modelling region r
$\llbracket S \cdot(a, h) \rrbracket k$	process modelling configuration $S \cdot(a, h)$

In the following equations, where necessary to construct type annotations in the π-calculus, we have added type subscripts to the syntax of the region calculus. The notation $\prod_{i \in I} P_{i}$ for some finite indexing set $I=\left\{i_{1}, \ldots, i_{n}\right\}$ is short for the composition $P_{i_{1}}|\cdots| P_{i_{n}} \mid \mathbf{0}$.

Translation Rules:
$\llbracket L i t \rrbracket \triangleq \operatorname{Lit}[]$
$\llbracket(A \xrightarrow{e} B)$ at $\rho \rrbracket \triangleq \rho[\llbracket A \rrbracket, K[\llbracket B \rrbracket]] \backslash(e \cup\{K\})$
$\llbracket \varnothing \rrbracket \triangleq K, \operatorname{Lit}, \ell_{1}: \operatorname{Lit}[], \ldots, \ell_{n}: \operatorname{Lit}[]$
$\llbracket E, \rho \rrbracket \stackrel{\Delta}{=}[E \rrbracket, \rho$
$\llbracket E, x: A \rrbracket \triangleq \llbracket E \rrbracket, x: \llbracket A \rrbracket$
$\llbracket x \rrbracket k \triangleq \stackrel{\Delta}{=}\langle x\rangle$
\llbracket let $x=a_{A}$ in $b \rrbracket k \triangleq\left(v k^{\prime}: K[\llbracket A \rrbracket]\right)\left(\llbracket a \rrbracket k^{\prime} \mid k^{\prime}(x: \llbracket A \rrbracket) . \llbracket b \rrbracket k\right)$
$\llbracket p(q) \rrbracket k \triangleq \bar{p}\langle q, k\rangle$
\llbracket letregion ρ in $a \rrbracket k \triangleq(v \rho) \llbracket a \rrbracket k$
$\llbracket(v \text { at } \rho)_{A} \rrbracket k \triangleq(v p: \llbracket A \rrbracket)(\llbracket p \mapsto v \rrbracket \mid \bar{k}\langle p\rangle)$
$\llbracket p \mapsto \lambda(x: A) b_{B} \rrbracket \triangleq!p(x: \llbracket A \rrbracket, k: K[\llbracket B \rrbracket]) . \llbracket b \rrbracket k$
$\llbracket\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n} \rrbracket \triangleq \prod_{i \in 1 . n} \llbracket p_{i} \mapsto v_{i} \rrbracket$
$\llbracket\left(\rho_{i} \mapsto r_{i}\right)^{i \in 1 . n} \rrbracket \triangleq \triangleq \prod_{i \in 1 . . n} \llbracket r_{i} \rrbracket$
$\llbracket S \cdot\left(a, h_{H}\right) \rrbracket k \triangleq \triangleq\left(v \vec{\rho}_{\text {defunct }}\right)(v \llbracket p \operatorname{tr}(H) \rrbracket)(\llbracket a \rrbracket k \mid \llbracket h \rrbracket)$ where $\left\{\vec{\rho}_{\text {defunct }}\right\}=\operatorname{dom}(H)-S$

The following theorem asserts that the translation preserves the static semantics of the region calculus.

Theorem 4.1 (Static Adequacy)
(1) If $E \vdash \diamond$ then $\llbracket E \rrbracket \vdash \diamond$.
(2) If $E \vdash A$ then $\llbracket E \rrbracket \vdash \llbracket A \rrbracket$.
(3) If $E \vdash a:^{e} A$ and $k \notin \operatorname{dom}(\llbracket E \rrbracket)$ then $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e \cup\{K\}$
(4) If $H \models h$ and $\rho \in \operatorname{dom}(H)$ then $\llbracket e n v(H) \rrbracket \vdash \llbracket h(\rho) \rrbracket:\{\rho\}$
(5) If $H \models S \cdot(a, h): A$ and $k \notin \llbracket e n v(H) \rrbracket$ then

$$
\llbracket e n v(H) \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \mid \llbracket h \rrbracket: \operatorname{dom}(H) \cup\{K\}
$$

and also: $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot(a, h) \rrbracket k: S \cup\{K\}$
Next we state that the translation preserves the dynamic semantics. Our theorem states that if one region calculus configuration evaluates to another, their π-calculus interpretations are barbed congruent:

Theorem 4.2 (Dynamic Adequacy)
If $H \models S \cdot(a, h): A$ and $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ then there is H^{\prime} such that $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$ and for all $k \notin \operatorname{dom}_{2}\left(H+H^{\prime}\right) \cup L, \llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash$ $\llbracket S \cdot(a, h) \rrbracket k \approx \llbracket S \cdot\left(p^{\prime}, h^{\prime}\right) \rrbracket k$.

Recall the evaluations of the examples $e x_{1}$ and $e x_{2}$ given previously. From Theorem 4.2 we obtain the following equations (in which we abbreviate environments and types for the sake of clarity):

$$
\begin{aligned}
& \llbracket\{\rho\} \cdot\left(e x_{1}, h\right) \rrbracket k \approx\left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(\llbracket f \mapsto \lambda(x) x \rrbracket|\llbracket g \mapsto \lambda(y) f(y) \rrbracket| \bar{k}\langle 5\rangle) \\
& \llbracket\{\rho\} \cdot\left(e x_{2}, h\right) \rrbracket k \approx\left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(v j: \rho) \\
& \quad(\llbracket f \mapsto \lambda(x) x \rrbracket|\llbracket g \mapsto \lambda(f) 5 \rrbracket| \llbracket j \mapsto \lambda(z) g(f) \rrbracket \mid \bar{k}\langle j\rangle)
\end{aligned}
$$

4.2 Two garbage collection theorems

We present a general π-calculus theorem that has as a corollary a theorem asserting that defunct regions may be deleted without affecting the meaning of a configuration. Although various untyped equations to eliminate unused resources have been proposed, as far as we know none is applicable in our situation.

Suppose there are processes P and R such that R has effect $\{G\}$ but G is not in the effect of P. So R only interacts on names in group G, but P never interacts on names in group G, and therefore there can be no interaction between P and R. Moreover, if P and R are the only sources of inputs or outputs in the scope of G, then R has no external interactions, and therefore makes no difference to the behaviour of the whole process. The following makes this idea precise equationally.

We state the theorem in terms of the notation $(v E) P$ defined by the equations: $(v \varnothing) P \triangleq P,(v E, x: T) P \triangleq(v E)(v x: T) P$, and $(v E, G) P \triangleq(v E)(v G) P$. The proof proceeds by constructing a suitable bisimulation relation.

Theorem 4.3

If $E, G, E^{\prime} \vdash P: \mathbf{H}$ and $E, G, E^{\prime} \vdash R:\{G\}$ with $G \notin \mathbf{H}$, then $E \vdash(v G)\left(v E^{\prime}\right)(P \mid R) \approx$ $(v G)\left(v E^{\prime}\right) P$.

Now, by applying this theorem, we can delete the defunct region ρ^{\prime} from our two examples. We obtain:

$$
\begin{aligned}
& \left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(\llbracket f \mapsto \lambda(x) x \rrbracket|\llbracket g \mapsto \lambda(y) f(y) \rrbracket| \bar{k}\langle 5\rangle) \\
& \quad \approx\left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(\llbracket g \mapsto \lambda(y) f(y) \rrbracket \mid \bar{k}\langle 5\rangle) \\
& \left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(v j: \rho)(\llbracket f \mapsto \lambda(x) x \rrbracket|\llbracket g \mapsto \lambda(f) 5 \rrbracket| \llbracket j \mapsto \lambda(z) g(f) \rrbracket \mid \bar{k}\langle j\rangle) \\
& \quad \approx\left(v \rho^{\prime}\right)\left(v f: \rho^{\prime}\right)(v g: \rho)(v j: \rho)(\llbracket g \mapsto \lambda(f) 5 \rrbracket|\llbracket j \mapsto \lambda(z) g(f) \rrbracket| \bar{k}\langle j\rangle)
\end{aligned}
$$

The first equation illustrates the need for hidden effects. The hidden effect of g is $\left\{K, \rho^{\prime}\right\}$, and so the overall effect of the process $\llbracket g \mapsto \lambda(y) f(y) \rrbracket \mid \bar{k}\langle 5\rangle$ is simply $\{\rho, K\}$. This effect does not contain ρ^{\prime} and so the theorem justifies deletion of the process $\llbracket f \mapsto \lambda(x) x \rrbracket$, whose effect is $\left\{\rho^{\prime}\right\}$. In an effect system for the π-calculus without hidden effects, the effect of $\llbracket g \mapsto \lambda(y) f(y) \rrbracket \mid \bar{k}\langle 5\rangle$ would include ρ^{\prime}, and so the theorem would not be applicable.

A standard garbage collection principle in the π-calculus is that if f does not occur free in P, then $(v f)(!f(x, k) \cdot R \mid P) \approx P$. One might hope that this principle alone would justify de-allocation of defunct regions. But neither of our example equations is justified by this principle; in both cases, the name f occurs in the remainder of the process. We need an effect system to determine that f is not actually invoked by the remainder of the process.

The two equations displayed above are instances of our final theorem, a corollary of Theorem 4.3. It asserts that deleting defunct regions makes no difference to the behaviour of a configuration:

Theorem 4.4

Suppose $H \models S \cdot(a, h): A$ and $k \notin \operatorname{dom}_{2}(H) \cup L$. Let $\vec{\rho}_{\text {defunct }}$ be the sequence of groups in $\operatorname{dom}(H)-S$. Then:

$$
\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot(a, h) \rrbracket k \approx\left(v \vec{\rho}_{\text {defunct }}\right)(v \llbracket p \operatorname{tr}(H) \rrbracket)\left(\llbracket a \rrbracket k \mid \prod_{\rho \in S} \llbracket H(\rho) \rrbracket\right)
$$

5 An equational theory

The new-group construct enjoys various equational properties, such as our laws of structural congruence. On the other hand, equational properties of letregion do not appear to have been previously studied. This section proposes an equational theory for the region calculus, including equations for letregion inspired in part by equations for new-group. We prove that the equational theory is sound with respect to the semantics of the previous section. The equational transformations of Benton \& Kennedy (1999) for their ML intermediate language (without regions) appear to
be the only prior work on an explicit equational theory for a typed calculus with effects.

In the following, recall that the conventional syntax for application, $b(a)$, where either b or a is not a name, abbreviates $b(a) \triangleq$ let $f=b$ in let $x=a$ in $f(x)$ where $f \notin\{x\} \cup f n(a)$. Given this abbreviation, we can define in the standard way the substitution $b\{x \leftarrow a\}$ to be the expression obtained by replacing each free occurrence of x in b with the expression a.
Substitution of a Term for a Name:

$$
\begin{array}{ll}
x\{z \leftarrow c\} \triangleq \begin{cases}c & \text { if } x=z \\
x & \text { otherwise }\end{cases} \\
x(y)\{z \leftarrow c\} \stackrel{\Delta}{=} x\{z \leftarrow c\}(y\{z \leftarrow c\}) & \\
(\text { let } x=a \text { in } b)\{z \leftarrow c\} \triangleq \text { let } x=a\{z \leftarrow c\} \text { in }(b\{z \leftarrow c\}) & \text { for } x \notin\{z\} \cup f n(c) \\
(\lambda(x: A) b)\{z \leftarrow c\} \triangleq \lambda(x: A)(b\{z \leftarrow c\}) & \text { for } x \notin\{z\} \cup \text { fn }(c)
\end{array}
$$

The rules in the following tables inductively define the judgment $E \vdash a \leftrightarrow b: A$ intended to mean that the terms a and b have the same type, A, and equivalent observable behaviour, although they may have different effects.

The first set of rules is essentially the call-by-value λ-calculus (Plotkin, 1975). As usual in an equational theory for call-by-value, we restrict the argument a in the rule (Eq Fun β) to be fully evaluated, either a name, x, or an allocation, $\lambda(x) b$ at ρ. This restriction is actually unnecessary for the present calculus, since there are no nonterminating computations, but we include it so that the equational theory remains valid when we extend our calculus with recursion. In rule (Eq Fun β), we also ask for $(\lambda(x: A) b$ at $\rho)(a)$ and $b\{x \leftarrow a\}$ to share the same type, B. This is because the type of $b\{x \leftarrow a\}$ can sometimes differ from the type of $(\lambda(x: A) b$ at $\rho)(a)$.
Equational Theory: The Call-by-Value λ-Calculus

(Eq Refl)	(Eq Symm)	(Eq Trans)
$E \vdash a: e A$	$E \vdash a \leftrightarrow b: A$	
$E \vdash a \leftrightarrow a: A$	$E \vdash b \leftrightarrow a: A$	$\frac{E \vdash a \leftrightarrow b: A \quad E \vdash b \leftrightarrow c: A}{}$

(Eq Fun)

$$
\begin{gathered}
E \vdash(A \xrightarrow{e} B) \text { at } \rho \quad E, x: A \vdash b_{1} \leftrightarrow b_{2}: B \\
E, x: A \vdash b_{i}::_{i} B \quad e_{i} \subseteq e \quad \forall i \in 1 . .2 \\
E \vdash\left(\lambda(x: A) b_{1}\right) \text { at } \rho \leftrightarrow\left(\lambda(x: A) b_{2}\right) \text { at } \rho:(A \xrightarrow{e} B) \text { at } \rho
\end{gathered}
$$

(Eq Fun β) (where a is a name or an allocation)

$$
\frac{E \vdash a::^{e_{1}} A}{} \quad E, x: A \vdash b::^{e_{2}} B \quad E \vdash b\{x \leftarrow a\}::^{e_{3}} B \quad \rho \in \operatorname{dom}(E)
$$

Next, we have rules for let, inspired by the computational λ-calculus (Moggi, 1989).

Equational Theory: let

```
(Eq Let)
    \(E \vdash a \leftrightarrow a^{\prime}: A \quad E, x: A \vdash b \leftrightarrow b^{\prime}: B\)
    \(E \vdash\) let \(x=a\) in \(b \leftrightarrow\) let \(x=a^{\prime}\) in \(b^{\prime}: B\)
```

(Eq Let Assoc)

$$
\begin{gathered}
E \vdash a:{ }^{e_{1}} A \quad E, x: A \vdash b::^{e_{2}} B \quad E, y: B \vdash c::^{e_{3}} C \\
E \vdash \text { let } x=a \text { in }(\text { let } y=b \text { in } c) \\
\leftrightarrow \text { let } y=(\text { let } x=a \text { in } b) \text { in } c: C
\end{gathered}
$$

(Eq Let β) (where a is a name or an allocation)

$$
\frac{E \vdash a::^{e_{1}} A \quad E, x: A::^{e_{2}} b: B \quad E \vdash b\{x \leftarrow a\}::_{3} B}{E \vdash \text { let } x=a \text { in } b \leftrightarrow b\{x \leftarrow a\}: B}
$$

Finally, here are the new rules for letregion. For the sake of brevity, we write $(v \rho) a$ as a shorthand for letregion ρ in a.

Equational Theory: letregion

(Eq Letregion)
$E, \rho \vdash a \leftrightarrow a^{\prime}: A \quad \rho \notin f r(A)$
$E \vdash(v \rho) a \leftrightarrow(v \rho) a^{\prime}: A$
:---:
$E \vdash a:^{e} A \quad \rho \notin \operatorname{dom(E)}$
$E \vdash(v \rho) a \leftrightarrow a: A$

(Eq Swap)

$$
\frac{E, \rho, \rho^{\prime} \vdash a:^{e} A \quad\left\{\rho, \rho^{\prime}\right\} \cap f r(A)=\varnothing}{E \vdash(v \rho)\left(v \rho^{\prime}\right) a \leftrightarrow\left(v \rho^{\prime}\right)(v \rho) a: A}
$$

(Eq Letregion Let)
$\frac{E, \rho \vdash a::^{e_{1}} A \quad E, x: A, \rho \vdash b::^{e_{2}} B \quad \rho \notin f r(A) \cup f r(B)}{E \vdash(v \rho) l e t x=a \text { in } b \leftrightarrow \text { let } x=(v \rho) a \text { in }(v \rho) b: B}$

The rule (Eq Letregion) is a congruence rule. The rule (Eq Swap) allows region scopes to be re-ordered. The rule (Eq Drop) allows unused region scopes to be discarded; we need the condition $\rho \notin \operatorname{dom}(E)$, rather than the weaker condition $\rho \notin e \cup f r(A)$, to ensure that both $(v \rho) a$ and a are well-typed. The rule (Eq Letregion Let) allows a single region to be broken into two.

The following lemma justifies our intention that if a_{1} and a_{2} are related by the equational theory then in fact they have the same type, although they need not have the same effect.

Lemma 5.1
If $E \vdash a_{1} \leftrightarrow a_{2}: A$ then there are e_{1}, e_{2} such that for each $i \in 1 . .2, e_{i} \subseteq \operatorname{dom}(E)$ and $E \vdash a_{i}{ }^{e_{i}} A$.

Using standard π-calculus techniques, we can show that our equational theory is sound with respect to our π-calculus semantics.

Theorem 5.2
Suppose $E \vdash a \leftrightarrow b: A$ and $k \notin \operatorname{dom}(E) \cup L$. Then $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \llbracket b \rrbracket k$.
Tofte and Talpin proved a result that the operational behaviour of a regionannotated term (like the terms of our calculus) is the same as its erasure to a pure term of the λ-calculus. We conjecture that our equational theory is sound for a standard contextual equivalence for the region calculus, and that this could easily be shown by appealing to Tofte and Talpin's result.

The following are derivable rules. The first is an instance of (Eq Drop). The second follows from the first, (Eq Letregion Let), and (Eq Trans).

```
(Eq Appl \(x(y)\) )
    \(E \vdash x:{ }^{\varnothing}(B \xrightarrow{e} A)\) at \(\rho^{\prime} \quad E \vdash y::^{\varnothing} B \quad \rho \notin \operatorname{dom}(E)\)
    \(E \vdash(v \rho) x(y) \leftrightarrow x(y): B\)
```

(Eq Appl) (where $\rho \notin f r\left(\left(A \xrightarrow{e_{2}} B\right)\right.$ at $\left.\left.\rho^{\prime}\right)\right)$
$\frac{E, \rho \vdash b::^{e_{1}}\left(A \xrightarrow{e_{2}} B\right) \text { at } \rho^{\prime} \quad E, \rho \vdash a::^{e_{3}} A}{E \vdash(v \rho)(b(a)) \leftrightarrow((v \rho) b)((v \rho) a): B}$

Other examples of derivable rules are:

```
\(E \vdash x: \varnothing A \xrightarrow{e} B\) at \(\rho \quad E \vdash a::^{e^{\prime}} A \quad y \notin \operatorname{dom}(E)\)
    \(E \vdash x(a) \leftrightarrow\) let \(y=a\) in \(x(y): B\)
\(E \vdash a::^{e^{\prime}} A \xrightarrow{e} B\) at \(\rho \quad E \vdash x: \varnothing A \quad y \notin \operatorname{dom}(E)\)
    \(E \vdash a(x) \leftrightarrow\) let \(y=a\) in \(y(x): B\)
\(E, x: A \vdash b::^{e_{1}} B \quad E \vdash a::^{e_{2}} A \quad E \vdash b\{x \leftarrow a\}::^{. e_{3}} B \quad f \notin \operatorname{dom}(E) \quad \rho \in \operatorname{dom}(E)\)
            \(E \vdash\) let \(f=\lambda(x: A) b\) at \(\rho\) in \(f(a) \leftrightarrow b\{x \leftarrow a\}: B\)
\(E \vdash a::^{e_{1}} A \quad E, x: A \vdash b:^{e_{2}} B \quad \rho \in \operatorname{dom}(E)\)
    \(E \vdash\) let \(x=a\) in \(b \leftrightarrow(\lambda(x: A) b\) at \(\rho)(a): B\)
    \(E \vdash a::^{e_{1}} A \quad E \vdash b::^{e_{2}} B \quad x \notin \operatorname{dom}(E)\)
        \(E \vdash\) let \(x=a\) in \(b \leftrightarrow b: B\)
    \(E \vdash a: e^{e_{1}} A \quad E, x: A \vdash b: e^{e_{2}} B \quad E \vdash b\{x \leftarrow a\}::^{e_{3}} B\)
    \(E \vdash\) let \(x=a\) in \(b \leftrightarrow\) let \(x=a\) in \(b\{x \leftarrow a\}: B\)
    \(E \vdash a::^{e_{1}} A \quad E, x: A \vdash b::^{e_{2}} B \quad E, x: A, y: B \vdash c::^{e_{3}} C\)
    \(E \vdash\) let \(x=a\) in let \(y=b\) in \(c \leftrightarrow\)
            let \(y=(\) let \(x=a\) in \(b)\) in \((\) let \(x=a\) in \(c): C\)
```

The following are special cases of (Eq Drop):

$\frac{E, \rho \vdash x: \varnothing}{}$| $E \vdash(v \rho) x \leftrightarrow x:^{\varnothing} A$ |
| :--- |
| $E, \rho \vdash v$ at $\rho^{\prime}:\left\{^{\left.\prime \rho^{\prime}\right\}}(A \xrightarrow{e} B)\right.$ at $\rho^{\prime} \quad \rho \notin f r\left(A \xrightarrow{e} B\right.$ at $\left.\rho^{\prime}\right)$ |
| $E \vdash(v \rho)\left(v\right.$ at $\left.\rho^{\prime}\right) \leftrightarrow v$ at $\rho^{\prime}:\left\{\rho^{\prime}\right\}(A \xrightarrow{e} B)$ at ρ^{\prime} |

In the following example, we apply (Eq Let Assoc) followed by (Eq Letregion Let) to optimise a computation by replacing a single global region ρ by two smaller local regions ρ_{1} and ρ_{2} whose lives do not overlap, and hence could share storage.

$$
\begin{aligned}
& \varnothing \vdash(v \rho) \text { let } f=\lambda(x) x \text { at } \rho \text { in let } y=f(5) \\
& \quad \text { in let } g=\lambda(z) y \text { at } \rho \text { in } g(42) \\
& \leftrightarrow \quad(v \rho) \text { let } y=(\text { let } f=\lambda(x) x \text { at } \rho \text { in } f(5)) \\
& \quad \text { in let } g=\lambda(z) y \text { at } \rho \text { in } g(42) \\
& \leftrightarrow \quad \text { let } y=\left(v \rho_{1}\right)\left(\text { let } f=\lambda(x) x \text { at } \rho_{1} \text { in } f(5)\right) \quad \\
& \quad \text { in }\left(v \rho_{2}\right) \text { let } g=\lambda(z) y \text { at } \rho_{2} \text { in } g(42) \quad: \text { Lit }
\end{aligned}
$$

6 Extensions

In this section, we show that the main results of the paper apply not only to the simple region calculus of Section 2 but also to that calculus extended with recursive functions, lists, and region polymorphism. As we discussed at the beginning of section 2, this extended calculus includes all the features of Tofte and Talpin's original calculus, except type polymorphism. We include lists as a simple example of a boxed data structure. We conjecture that our treatment of lists would easily extend to general algebraic types, that is, recursive sums-of-products, with no further extensions to the typed π-calculus of this section. Likewise, a treatment of mutable storage would require no extensions. On the other hand, type or effect polymorphism would require an extended π-calculus; we leave this study as future work. The results of this section show that our π-calculus model of the region calculus is robust with respect to extensions that do not directly manipulate regions.

We describe our extended calculus in section 6.1. Then in section 6.2 we describe an extended π-calculus. Its extensions are recursive types, to model lists, and group polymorphism, to model region polymorphism. In Section 6.3 we define an encoding of the extended region calculus in this extended π-calculus. With the exception of the results in section 5 concerning equational reasoning, all the other theorems in the paper concerning the unextended calculi can be generalized to the extended calculi. We omit the statement of these generalized theorems from this section, but in Appendix B we state and prove all these theorems. We conjecture that the material in section 5 could be generalized also, but we have not investigated this generalization.

6.1 An Extended λ-calculus

Here is the extended syntax of expressions and values.
Expressions and Values:

x, y, p, q, f, g	name: variable, pointer, literal
ρ	
$a, b::=$	region variable
$\quad x$	expression
$\quad v$ at ρ	variable or pointer or literal
$\quad x\left[\rho_{1}, \ldots, \rho_{n}\right](y)$	allocation of v at ρ
\quad let $x=a$ in b	application
\quad letregion ρ in b	sequencing
\quad case x of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}$	region allocation and de-allocation
$u, v::=$	list case
$\quad \mu(f: A) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$	boxed value
nil	recursive function
$\quad x_{1}:: x_{2}$	empty list
	cons cell

Previously, the only kind of value was function abstraction. In this calculus, a boxed value can be a recursive, region-polymorphic function, an empty list, or a cons cell.

In a function value $\mu(f: A) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$, the names f and x and the region variables $\rho_{1}, \ldots, \rho_{n}$ are bound, with scope b. During evaluation, the name x gets bound to the function's argument and the name f gets bound to the function itself, to enable recursive calls. The region parameters $\rho_{1}, \ldots, \rho_{n}$ allow the function to allocate and read from regions passed in as arguments. This region polymorphism is essential for efficient code generation in the ML Kit compiler (Tofte \& Talpin, 1997). Other kinds of boxed values are lists, that is either the empty list, nil, or a cons cell, $x_{1}:: x_{2}$, where the names x_{1} and x_{2} are heap pointers referring to the head and tail of the list, respectively.

A new expression for function application, $x\left[\rho_{1}, \ldots, \rho_{n}\right](y)$, applies the function pointed to by x to the region parameters $\rho_{1}, \ldots, \rho_{n}$, and the value parameter y. The other new expression, case x of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}$, is for list discrimination. In this expression, the names y_{1} and y_{2} are bound, with scope b_{2}. When the expression evaluates, if x is the empty list, b_{1} runs. Otherwise, if x is a cons cell $x_{1}:: x_{2}$, then $b_{2}\left\{y_{1} \leftarrow x_{1}\right\}\left\{y_{2} \leftarrow x_{2}\right\}$ runs. The other expressions of the extended calculus have the same interpretation as in the unextended calculus.

The definitions of regions, heaps, and stacks needed for the dynamic semantics are the same as before, though the set of values, v, stored in regions is extended.

Regions, Heaps and Stacks:

$r::=\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$	region, p_{i} distinct
$h::=\left(\rho_{i} \mapsto r_{i}\right)^{i \in 1 . . n}$	heap, ρ_{i} distinct
$S::=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$	stack of live regions

The evaluation relation, $S \cdot(a, h) \Downarrow\left(p, h^{\prime}\right)$, is defined by the rules in the following table.

Evaluation Rules:
(Eval Var)

$$
S \cdot(p, h) \Downarrow(p, h)
$$

(Eval Alloc)
$\frac{\rho \in S \quad p \notin \operatorname{dom}_{2}(h)}{S \cdot(v \text { at } \rho, h) \Downarrow(p, h+(\rho \mapsto(h(\rho)+(p \mapsto v))))}$
(Eval Appl) (where $\rho \in S$ and $\left.h(\rho)(p)=\mu(f: A) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b\right)$

$$
\frac{S \cdot\left(b\{f \leftarrow p\}\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}\{x \leftarrow q\}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)}{S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)}
$$

(Eval Let)

$$
\frac{S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right) \quad S \cdot\left(b\left\{x \leftarrow p^{\prime}\right\}, h^{\prime}\right) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)}{S \cdot(\text { let } x=a \text { in } b, h) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)}
$$

(Eval Letregion)
$\frac{\rho \notin \operatorname{dom}(h) \quad S \cup\{\rho\} \cdot(a, h+\rho \mapsto \varnothing) \Downarrow\left(p^{\prime}, h^{\prime}\right)}{S \cdot(\text { letregion } \rho \text { in } a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)}$
(Eval Case 1)
$\begin{array}{ll}\rho \in S & h(\rho)(p)=n i l \\ S\end{array}\left(b_{1}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$
$S \cdot\left(\right.$ case p of nil $\left.\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$
(Eval Case 2)
$\frac{\rho \in S \quad h(\rho)(p)=q_{1}:: q_{2} \quad S \cdot\left(b_{2}\left\{y_{1} \leftarrow q_{1}\right\}\left\{y_{2} \leftarrow q_{2}\right\}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)}{S \cdot\left(\text { case } p \text { of nil } \Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)}$

Next, we introduce the effects, types, and environments needed for the static semantics. The definitions of effects and environments are unchanged, but we need to introduce new types for region polymorphic functions and for lists.

In the extended type system, a function value $\left(\mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b\right)$ at ρ, will have a type $F=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)$ at ρ, where A is the type of the function argument x, and the regions $\rho_{1}, \cdots, \rho_{n}$ are bound. A list stored at ρ will have type [A] at ρ, where A is the type of the elements of the list. Note that nil is an overloaded constant, which inhabits every well-formed type, and that each element of a list is stored in the same region than the list itself.

Effects, Types, and Environments:

$e::=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$	effect
$A, B, F::=$	type of expressions
Lit	type of literals
V at ρ	type of V values at ρ
$U, V::=$	type of boxed values
$\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B$	polymorphic function
$[A]$	list
$E::=$	environment
\varnothing	empty environment
E, ρ	entry for a region ρ
$E, x: A$	entry for a name x

In the type $\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)$ at ρ, the regions $\rho_{1}, \ldots, \rho_{n}$ are bound with scope $A \xrightarrow{e} B$. Let $f r(A)$ be the set of region variables free in the type A. We have $f r($ Lit $)=\varnothing$, and $f r\left(\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)\right.$ at $\left.\rho\right)=(f r(A) \cup f r(B) \cup e)-\left\{\rho_{1}, \ldots, \rho_{n}\right\} \cup\{\rho\}$, and $\operatorname{fr}([A]$ at $\rho)=\operatorname{fr}(A) \cup\{\rho\}$. We identify types up to consistent renaming of bound regions.

The static semantics consists of judgments with the same format as before: good environments, $E \vdash \diamond$, good types, $E \vdash A$, and good expressions, $E \vdash a:^{e} A$. The rules in the following tables define the static semantics. For any substitution σ of regions for regions and effect $e=\left\{\rho_{1}, \cdots, \rho_{n}\right\}$, the effect $e \sigma$ is the set of regions $\left\{\sigma\left(\rho_{1}\right), \cdots, \sigma\left(\rho_{n}\right)\right\}$.

Typing Rules:

(Env \varnothing)	(Env x)		(Env ρ)	(Type Lit)
	$E \vdash A$	$x \notin \operatorname{dom}(E) \cup L$	$E \vdash \diamond \rho \notin \operatorname{dom}(E)$	$E \vdash \diamond$
$\varnothing \vdash \diamond$, $x: A \vdash \diamond$	$E, \rho \vdash \diamond$	$E \vdash L i t$

(Type \rightarrow) (where $\left.E^{\prime}=E, \rho_{1}, \ldots, \rho_{n}\right)$		(Type List)
$E^{\prime} \vdash A \quad e \subseteq \operatorname{dom}\left(E^{\prime}\right)$	$E^{\prime} \vdash B \quad \rho \in \operatorname{dom}(E)$	$E \vdash A \quad \rho \in \operatorname{dom}(E)$
$E \vdash\left(\forall\left[\rho_{1}, \ldots\right.\right.$,	$\left.\left.{ }_{n}\right] A \xrightarrow{e} B\right)$ at ρ	$E \vdash[A]$ at ρ

$(\operatorname{Exp} x)$	$(\operatorname{Exp} \ell)$
$E, x: A, E^{\prime} \vdash \diamond$	
$E, x: A, E^{\prime} \vdash x: \varnothing A$	$\frac{E \vdash \diamond \ell \in L}{E \vdash \ell: \varnothing}$ Lit

(Exp Appl) (where $\sigma=\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}$ and $\left.\left\{\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right\} \subseteq \operatorname{dom}(E)\right)$
$\frac{E \vdash x: \varnothing\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right) \text { at } \rho \quad E \vdash y: \varnothing A \sigma}{E \vdash x\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](y):{ }^{\{\rho\} \cup(e \sigma)} B \sigma}$

(Exp Fun) (where $F=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)$ at ρ)

$$
\frac{E, f: F, \rho_{1}, \ldots, \rho_{n}, x: A \vdash b::^{e^{\prime}} B \quad e^{\prime} \subseteq e \subseteq \operatorname{dom}\left(E, \rho_{1}, \ldots, \rho_{n}\right)}{E \vdash\left(\mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b\right) \text { at } \rho:\left\{\rho^{\{ \}} F\right.}
$$

(Exp Nil)
(Exp Cons)
$\frac{E \vdash[A] \text { at } \rho}{E \vdash \text { nil at } \rho:\left\{^{\rho \beta\}}[A] \text { at } \rho\right.} \quad \frac{E \vdash x_{1}: \varnothing A \quad E \vdash x_{2}: \varnothing[A] \text { at } \rho}{E \vdash\left(x_{1}:: x_{2}\right) \text { at } \rho:^{\{\rho\}}[A] \text { at } \rho}$

The definitions of region and heap typings, R and H, respectively, and of the judgments $E \vdash r$ at $\rho: R, H \models \diamond, H \models h$, and $H \models S \cdot(a, h): A$ are exactly as in section 2.

6.2 An Extended π-calculus

We enrich our typed π-calculus with group polymorphism and recursive types.
The idea of group polymorphism is that instead of simply exchanging tuples of names with fixed types on a channel, we exchange tuples of names together with tuples of groups, where the types of the names depend on the groups. Accordingly, the type of a channel acquires the form $G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$, where G is the group of the channel, G_{1}, \ldots, G_{m} are group parameters, T_{1}, \ldots, T_{n} are the types of the name parameters, and \mathbf{H} is the hidden effect. The types T_{1}, \ldots, T_{n} and the effect \mathbf{H} may depend on the group parameters G_{1}, \ldots, G_{m}. An output process takes the form $\bar{x}\left\langle G_{1}, \ldots, G_{m}, y_{1}, \ldots, y_{n}\right\rangle$, where G_{1}, \ldots, G_{m} are the group parameters, and y_{1}, \ldots, y_{n} are the name parameters. An input process takes the form $x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P$ where G_{1}, \ldots, G_{m} receive the group parameters, and y_{1}, \ldots, y_{n} receive the name parameters. This treatment of group polymorphism, where group parameters are transmitted on channels, is inspired by previous treatments of type polymorphism in the π-calculus (Turner, 1995; Pierce \& Sangiorgi, 1997), where type parameters are transmitted on channels. Group polymorphism allows to type-check richer behaviour, such as an encoding of region polymorphism, than previously. Still, group polymorphism does not introduce any new dynamic behaviour: the reductions of any well-typed process are equivalent to the reductions of its untyped erasure.

The idea of recursive types is standard. A recursive type takes the form $\mu(X) T$.

A name of type $\mu(X) T$ is deemed also to have the unfolded type $T\{X \leftarrow \mu(X) T\}$, and vice versa. However, for the sake of simplicity, we do not identify a recursive type with its unfolding. A name may be assigned the type $\mu(X) X$, but such a name cannot be used for communication since we cannot unfold $\mu(X) X$ to a channel type.

The extended syntax of our π-calculus is as follows:

Types, Expressions, and Processes:

G, H	group
X	type variable
$T::=$	channel type
X	type variable
$G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$	channel type
$\mu(X) T$	recursive type
x, y, p, q	name: variable, channel
$P, Q, R::=$	process
$x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P$	input (no $\left.y_{i} \in \operatorname{inp}(P)\right)$
$\bar{x}\left\langle G_{1}, \ldots, G_{m}, y_{1}, \ldots, y_{n}\right\rangle$	output
$(v G) P$	new-group: group restriction
$(v x: T) P$	new-name: name restriction
$P \mid Q$	composition
$!P$	replication
$\mathbf{0}$	inactivity

In the type $G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$, the groups G_{1}, \ldots, G_{m} are bound with scope T_{1}, \ldots, T_{n} and \mathbf{H}. In the type $\mu(X) T$, the type variable X is bound with scope T. In a process $x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P$, the groups G_{1}, \ldots, G_{m} and the names y_{1}, \ldots, y_{n} are bound; their scope is P. The other binders, new-name and new-group, have the same semantics as before. The definitions of free names of a process, $f n(P)$, free groups of a type, $f g(T)$, and free groups of a process, $f g(P)$, are as before, except for the following changes:

Free Groups, $f g(T)$, of Type T :

```
\(f g(X) \triangleq \varnothing\)
\(f g\left(G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}\right) \triangleq\)
    \(\{G\} \cup\left(\left(f g\left(T_{1}\right) \cup \cdots \cup f g\left(T_{n}\right) \cup \mathbf{H}\right)-\left\{G_{1}, \ldots, G_{m}\right\}\right)\)
\(f g(\mu(X) T) \triangleq \xlongequal{\triangleq} f(T)\)
```

Free Groups, $f g(P)$, of Process P :

```
\(f g\left(x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P\right) \triangleq\left(f g\left(T_{1}\right) \cup \cdots \cup f g\left(T_{n}\right) \cup f g(P)\right)\)
        \(-\left\{G_{1}, \ldots, G_{m}\right\}\)
\(\left.f g\left(\bar{x}\left\langle G_{1}, \ldots, G_{m}, y_{1}, \ldots, y_{n}\right\rangle\right) \triangleq \triangleq G_{1}, \ldots, G_{m}\right\}\)
\(f g((v G) P) \stackrel{\Delta}{=} f g(P)-\{G\}\)
\(f g((v x: T) P) \triangleq) \triangleq f g(T) \cup f g(P)\)
```

```
\(f g(P \mid Q) \triangleq \stackrel{\Delta}{=} f(P) \cup f g(Q)\)
\(f g(!P) \triangleq f g(P)\)
\(f g(0) \triangleq \varnothing\)
```

We identify types and processes up to consistent renaming of bound groups, names, and type variables. We write $P\{x \leftarrow y\}$ for the outcome of substituting y for each free occurrence of the name x in the process P. We write $P\{G \leftarrow H\}$ and $T\{G \leftarrow H\}$ for the outcomes of substituting H for each free occurrence of the group G in the process P and the type T, respectively. We write $P\{X \leftarrow T\}$ and $T^{\prime}\{X \leftarrow T\}$ for the outcomes of substituting T for each free occurrence of the type variable X in the process P and the type T^{\prime}, respectively.

We define structural congruence $P \equiv Q$ by the same rules as before, except that we replace (Struct Input) with the following:

$$
\begin{aligned}
P \equiv Q \Rightarrow & x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P \equiv \\
& x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot Q
\end{aligned}
$$

(Struct Input)

We define reduction $P \rightarrow Q$ by the following rules:

Reduction:

$\begin{gathered} \bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle \mid x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P \\ \quad \rightarrow P\left\{G_{1} \leftarrow G_{1}^{\prime}\right\} \cdots\left\{G_{m} \leftarrow G_{m}^{\prime}\right\}\left\{y_{1} \leftarrow y_{1}^{\prime}\right\} \cdots\left\{y_{n} \leftarrow y_{n}^{\prime}\right\} \end{gathered}$	(Red Interact)
$P \rightarrow Q \Rightarrow P\|R \rightarrow Q\| R$	(Red Par)
$P \rightarrow Q \Rightarrow(v G) P \rightarrow(v G) Q$	(Red GRes)
$P \rightarrow Q \Rightarrow(v x: T) P \rightarrow(v x: T) Q$	(Red Res)
$P^{\prime} \equiv P, P \rightarrow Q, Q \equiv Q^{\prime} \Rightarrow P^{\prime} \rightarrow Q^{\prime}$	(Red \equiv)

To take recursive types into account, we extend the definition of type environment to include type variables, X. The definition of the domain, $\operatorname{dom}(E)$, of an environment, E, is also extended and is defined by the equations $\operatorname{dom}(\varnothing)=\varnothing, \operatorname{dom}(E, \rho)=$ $\operatorname{dom}(E) \cup\{\rho\}, \operatorname{dom}(E, x: A)=\operatorname{dom}(E) \cup\{x\}$ and $\operatorname{dom}(E, X)=\operatorname{dom}(E) \cup\{X\}$.

Environments:

$E::=$	environment
\varnothing	empty environment
E, X	entry for a type variable X
E, G	entry for a group G
$E, x: T$	entry for a variable x

The judgments of the type system have the same format as previously: good environment $E \vdash \diamond$, good type $E \vdash T$, good name $E \vdash x: T$, and good process $E \vdash P: \mathbf{H}$. Their meaning is given inductively by the rules in the following tables.

Typing Rules:

$(E n v \varnothing)$	(Env x)	(Env G)	(Env X)
	$E \vdash T \quad x \notin \operatorname{dom}(E)$	$E \vdash \diamond \quad G \notin \operatorname{dom}(E)$	$E \vdash \diamond \quad X \notin \operatorname{dom}(E)$
$\varnothing \vdash \diamond$	$E, x: T \vdash \diamond$	$E, G \vdash \diamond$	$E, X \vdash \diamond$

(Type Chan) (where $E^{\prime}=E, G_{1}, \ldots, G_{m}$)
$\frac{E^{\prime} \vdash \diamond \quad G \in \operatorname{dom}(E) \quad \mathbf{H} \subseteq \operatorname{dom}\left(E^{\prime}\right) \quad E^{\prime} \vdash T_{i} \quad \forall i \in 1 . . n}{E \vdash G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}}$

(Type X) $E^{\prime}, X, E^{\prime \prime} \vdash \diamond$	(Type Rec) $E, X \vdash T$			
$E^{\prime}, X, E^{\prime \prime} \vdash X$			\quad	(Exp $x)$
:---:				
$E \vdash \mu(X) T$	\quad	$E^{\prime}, x: T, E^{\prime \prime} \vdash \diamond$		
:---:	$\quad x, E^{\prime \prime} \vdash x: T$			

(Exp Unfold) $E \vdash x: \mu(X) T$	(Exp Fold) $E \vdash x: T\{X \leftarrow \mu(X) T\}$
$E \vdash x: T\{X \leftarrow \mu(X) T\}$	

(Proc Input) (where $(\mathbf{G}-\mathbf{H}) \cap\left\{G_{1}, \ldots, G_{m}\right\}=\varnothing$)
$E \vdash x: G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$
$E, G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n} \vdash P: \mathbf{G}$
$E \vdash x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P:\{G\} \cup(\mathbf{G}-\mathbf{H})$

(Proc Output) (where $\sigma=\left\{G_{1} \leftarrow G_{1}^{\prime}\right\} \cdots\left\{G_{m} \leftarrow G_{m}^{\prime}\right\}$)
$E \vdash x: G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$
$\frac{\left\{G_{1}^{\prime}, \ldots, G_{m}^{\prime}\right\} \subseteq \operatorname{dom}(E) \quad E \vdash y_{i}^{\prime}: T_{i} \sigma \quad \forall i \in 1 . . n}{E \vdash \bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle:\{G\} \cup \mathbf{H} \sigma}$

(Proc GRes)	(Proc Res)	(Proc Par)		
$E, G \vdash P: \mathbf{H}$	$E, x: T \vdash P: \mathbf{H}$			
$E \vdash(v G) P: \mathbf{H}-\{G\}$			\quad	$E \vdash(v x: T) P: \mathbf{H}$
:---:	---:	\quad	$E \vdash P: \mathbf{G} E \vdash Q: \mathbf{H}$	
:---:				
$E \vdash P \mid Q: \mathbf{G} \cup \mathbf{H}$				

(Proc Repl)	(Proc Zero)	(Proc Subsum)		
$E \vdash P: \mathbf{H}$				
$E \vdash!P: \mathbf{H}$	$E \vdash \diamond$		\quad	$E \vdash P: \mathbf{G} \mathbf{G} \subseteq \mathbf{H} \subseteq \operatorname{dom}(E)$
:---:				

The standard rule (Type Rec) for checking goodness of a recursive types $\mu(X) T$ records the name of the recursively bound variable X by inserting it into the environment used to check goodness of the body T. This is the only circumstance in which we are interested in having type variables in an environment. We are only interested in the behaviour of processes type-checked in proper environments, those in which no type variables occur.

Proper environments:

Let E be proper if and only if $E \vdash \diamond$ but there is no X such that $E \vdash X$.

The relation $P \downarrow \beta$ where the barb $\beta \in\{x, \bar{x}\}$, is defined much as before.
Exhibition of a Barb:

(Barb Input)	(Barb Output)	
$x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P \downarrow x$	$\bar{x}\left\langle G_{1}, \ldots, G_{m}, y_{1}, \ldots, y_{n}\right\rangle \downarrow \bar{x}$	
(Barb GRes) (Barb Res)	(Barb Par)	$(\mathrm{Barb} \equiv$)
$P \downarrow \beta \quad P \downarrow \beta \quad \beta \notin\{x, \bar{x}\}$	$P \downarrow \beta$	$P \equiv Q \quad Q \downarrow \beta$
$(v G) P \downarrow \beta \quad(v x: T) P \downarrow \beta$	$P \mid Q \downarrow \beta$	$P \downarrow \beta$

The definition of a relation on typed processes is the same as before, except we restrict attention to proper environments:

- A relation on typed processes (of the extended π-calculus), \mathscr{S}, is a set of triples (E, P, Q) where E is a proper environment and P and Q are typed terms such that $E \vdash P$ and $E \vdash Q$.

The definition of barbed congruence, and the auxiliary notions including barbed bisimulation and barbed bisimilarity, are exactly as before.

6.3 An extended encoding

We translate the extended region calculus into the extended π-calculus as follows. In this encoding, the type of a boxed value located at region ρ is of the kind $\rho\left(\rho_{1}, \ldots, \rho_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{H}$. In the common case when $m=0$, that is, the value is monomorphic, and has no hidden effect, we abbreviate the type to $\rho\left[T_{1}, \ldots, T_{n}\right]$.

Translating of the Region Calculus to the π-Calculus:

$\boxed{\llbracket A \rrbracket}$	type modelling the type A
$\llbracket E \rrbracket$	environment modelling proper environment E
$\llbracket a \rrbracket k$	process modelling term a, answer on k
$\llbracket p \mapsto v \rrbracket$	process modelling value v at pointer p
$\llbracket r \rrbracket$	process modelling region r
$\llbracket S \cdot(a, h) \rrbracket k$	process modelling configuration $S \cdot(a, h)$

Translation Rules:

```
\(\llbracket L i t \rrbracket \triangleq \operatorname{Lit}[]\)
\(\llbracket\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)\) at \(\rho \rrbracket \stackrel{\Delta}{=} \rho\left(\rho_{1}, \ldots, \rho_{n}\right)[\llbracket A \rrbracket, K[\llbracket B \rrbracket]] \backslash(e \cup\{K\})\)
\(\llbracket[A]\) at \(\rho \rrbracket \stackrel{\Delta}{=} \mu(X) \rho[\rho[], \rho[\llbracket A \rrbracket, X]]\)
```

$\llbracket \varnothing \rrbracket \stackrel{\Delta}{=} K, \operatorname{Lit}, \ell_{1}: \operatorname{Lit}[], \ldots, \ell_{n}: \operatorname{Lit}[]$
$\llbracket E, \rho \rrbracket \triangleq \llbracket E \rrbracket, \rho$
$\llbracket E, x: A \rrbracket \stackrel{\Delta}{=} \llbracket E \rrbracket, x: \llbracket A \rrbracket$
$\llbracket x \rrbracket k \triangleq \stackrel{\Delta}{=}\langle x\rangle$
$\llbracket l e t \quad x=a_{A}$ in $b \rrbracket k \triangleq\left(v k^{\prime}: K[\llbracket A \rrbracket]\right)\left(\llbracket a \rrbracket k^{\prime} \mid k^{\prime}(x: \llbracket A \rrbracket) . \llbracket b \rrbracket k\right)$
$\llbracket p\left[\rho_{1}, \ldots, \rho_{n}\right](q) \rrbracket k \triangleq \bar{p}\left\langle\rho_{1}, \ldots, \rho_{n}, q, k\right\rangle$
$\llbracket(v \text { at } \rho)_{A} \rrbracket k \triangleq(v p: \llbracket A \rrbracket)(\llbracket p \mapsto v \rrbracket \mid \bar{k}\langle p\rangle)$
\llbracket letregion ρ in $a \rrbracket k \triangleq(v \rho) \llbracket a \rrbracket k$
\llbracket case $p_{[A] a t \rho}$ of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2} \rrbracket k \triangleq\left(v z_{1}: \rho[]\right)\left(v z_{2}: \rho[\llbracket A \rrbracket, \llbracket[A]\right.$ at $\left.\rho \rrbracket]\right)$ $\left(\bar{p}\left\langle z_{1}, z_{2}\right\rangle\left|z_{1}() . \llbracket b_{1} \rrbracket k\right| z_{2}\left(y_{1}: \llbracket A \rrbracket, y_{2}: \llbracket[A]\right.\right.$ at $\left.\left.\rho \rrbracket\right) . \llbracket b_{2} \rrbracket k\right)$
$\llbracket p \mapsto \mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b \rrbracket \stackrel{\wedge}{=}!p\left(\rho_{1}, \ldots, \rho_{n}, x: \llbracket A \rrbracket, k: K\lceil\llbracket B \rrbracket]\right) . \llbracket b\{f \leftarrow p\} \rrbracket k$ where $F=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] A \xrightarrow{e} B\right)$ at ρ
$\llbracket p \mapsto \operatorname{nil}_{[A] a t \rho} \rrbracket \triangleq!p\left(z_{1}: \rho[], z_{2}: \rho[\llbracket A \rrbracket, \llbracket[A]\right.$ at $\left.\rho \rrbracket]\right) . \overline{z_{1}}\langle \rangle$
$\llbracket p \mapsto\left(x_{1}:: x_{2}\right)_{[A] a t \rho} \rrbracket \stackrel{\Delta}{=}!p\left(z_{1}: \rho \llbracket, z_{2}: \rho[\llbracket A \rrbracket, \llbracket[A]\right.$ at $\left.\rho \rrbracket]\right) \cdot \overline{z_{2}}\left\langle x_{1}, x_{2}\right\rangle$
$\llbracket\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n} \rrbracket \triangleq \prod_{i \in 1 . . n} \llbracket p_{i} \mapsto v_{i} \rrbracket$
$\llbracket\left(\rho_{i} \mapsto r_{i}\right)^{i \in 1 . . n} \rrbracket \stackrel{\Delta}{=} \prod_{i \in 1 . . n} \llbracket r_{i} \rrbracket$
$\llbracket S \cdot\left(a, h_{H}\right) \rrbracket k \triangleq \stackrel{\Delta}{=}\left(v \vec{\rho}_{\text {defunct }}\right)(v \llbracket p \operatorname{tr}(H) \rrbracket)(\llbracket a \rrbracket k \mid \llbracket h \rrbracket)$ where $\left\{\vec{\rho}_{\text {defunct }}\right\}=\operatorname{dom}(H)-S$

The translation of the extended region calculus is an extension of the encoding given in section 4. In particular, the encodings of type environments, regions, heaps and configurations are unchanged.

The encoding of lists and the case expression are standard (Milner, 1999). A polymorphic recursive function is modelled as a replicated input process, awaiting the argument of the function, a continuation on which to return a result and for group parameters representing the region parameters to the function. A function is invoked by sending it the argument and a continuation channel.

Appendix B states and proves reformulations of all the results stated in sections 2, 3 and 4 in terms of the extended calculi of this section.

7 Conclusions

We showed that the static and dynamic semantics of Tofte and Talpin's region calculus are preserved by a translation into a typed π-calculus. The letregion construct is modelled by a new-group construct originally introduced into process calculi by Cardelli, Ghelli \& Gordon (2000a). We showed that the rather subtle correctness of memory de-allocation in the region calculus is an instance of Theorem 4.3, a new garbage collection principle for the π-calculus. The translation is an example of how the new-group construct accounts for the types generated by letregion, just as the standard new-name construct of the π-calculus accounts for dynamic generation of values.

Banerjee, Heintze \& Riecke (1999) give an alternative proof of the soundness of
region-based memory management. Theirs is obtained by interpreting the region calculus in a polymorphic λ-calculus equipped with a new binary type constructor \# that behaves like a union or intersection type. Their techniques are those of denotational semantics, completely different from the operational techniques of this paper. The formal connections between the two approaches are not obvious but would be intriguing to investigate. A possible advantage of our semantics in the π-calculus is that it could easily be extended to interpret a region calculus with concurrency, but that remains future work.

Other alternative proofs of soundness are contained in some papers published after this work first appeared (Helsen \& Thiemann, 2000; Calcagno, 2001; Talpin, 2001). These papers give concrete, purely syntactic proofs of soundness for various region calculi. Still, these specific proofs do not expose the fact that the soundness of region de-allocation follows from a more abstract principle such as our Theorem 4.3.

A line of future work is to consider the semantics of other region calculi (Aiken et al., 1995; Crary et al., 1999; Hughes \& Pareto, 1999) in terms of the π-calculus. Finally, various researchers (Moggi \& Palumbo, 1999; Semmelroth \& Sabry, 1999) have noted a connection between the monadic encapsulation of state in Haskell (Launchbury \& Peyton Jones, 1995) and regions; hence it would be illuminating to interpret monadic encapsulation in the π-calculus.

Acknowledgements

Luca Cardelli participated in the initial discussions that led to this paper. We had useful conversations with Giorgio Ghelli, Cédric Fournet, and Mads Tofte on the connections between groups and regions. Thanks to Simon Helsen for pointing out a problem with the rules $(\mathrm{Eq}$ Fun β) and (Eq Let β) in the original version of this paper. Luca Cardelli, Tony Hoare, and Andy Moran commented on a draft.

A Review of the untyped π-calculus

In this section, we review the syntax and semantics of the untyped, polyadic, choicefree, asynchronous π-calculus (Milner, 1999; Boudol, 1992; Honda, 1992). We impose two additional (standard) simplifications, that are: (1) the recipient of a name may only use it in output actions; (2) there are no operators for testing the equality (or inequality) of names. Intuitively, only the capability to output on a named channel may be transmitted.

The π-calculus fragment defined by these restrictions, also known as the local π-calculus (Merro \& Sangiorgi, 1998), has a richer equational theory than the full π-calculus, and can be regarded as a basis for some proposals of concurrent programming languages (Fournet \& Gonthier, 1996; Pierce \& Turner, 2000). The additional algebraic laws obtained in the local variant of π, such as, for example, the replication laws listed subsequently in Proposition A.6, are required in the proof of Theorem 5.2, the correctness of our proposed equational theory for the region calculus.

The syntax and dynamic semantics of the untyped π-calculus are defined in

Appendixes A. 1 and A.2, respectively. In Appendix A. 3 we define an alternative semantics for the calculus based on a labelled transition system, that makes it easier to reason about possible reductions of a process. We also formulate Proposition A.1, which relates the reduction and transition semantics. In Appendix A. 4 we define barbed congruence for the untyped calculus and we prove several algebraic laws that are useful in Appendix B.

A. 1 Syntax

Processes of this calculus are those obtained from the typed π-calculus processes defined in Section 3 by erasing all type and group annotations.

Processes:

x, y, p, q	names
$P, Q, R::=$	process
$x\left(y_{1}, \ldots, y_{n}\right) \cdot P$	input (no $\left.y_{i} \in \operatorname{inp}(P)\right)$
$\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle$	output
$(v x) P$	restriction
$P \mid Q$	composition
$!P$	replication
$\mathbf{0}$	inactivity

The locality property is ensured using a syntactic restriction on the definition of inputs, $x\left(y_{1}, \ldots, y_{n}\right) \cdot P$, namely that no parameter y_{i} is in $\operatorname{inp}(P)$, where $\operatorname{inp}(P)$ is the set of names x such that an input $x\left(z_{1}, \ldots, z_{m}\right) \cdot P^{\prime}$ occurs as a subprocess of P, with x not bound.

We write $P\left\{x \leftarrow x^{\prime}\right\}$ for the outcome of a capture-avoiding substitution of x^{\prime} for each free occurrence of the variable x in the process P. We identify processes up to renaming of bound variables. We write $P=Q$ to mean that P and Q are the same up to renaming of bound variables.

A. 2 Dynamic semantics

We formalize the semantics of the untyped π-calculus using techniques identical to those applied in section 2.2. In particular, a reduction relation between processes, $P \rightarrow Q$, is defined on top of an auxiliary structural congruence relation, $P \equiv Q$, that identifies processes up to simple rearrangements.

Structural Congruence:

$P \equiv P$	
$Q \equiv P \Rightarrow P \equiv Q$	(Struct Refl)
$P \equiv Q, Q \equiv R \Rightarrow P \equiv R$	(Struct Symm)
	(Struct Trans)
$P \equiv Q \Rightarrow(v x) P \equiv(v x) Q$	
$P \equiv Q \Rightarrow P\|R \equiv Q\| R$	(Struct Res)
(Struct Par)	

```
\(P \equiv Q \Rightarrow!P \equiv!Q\)
\(P \equiv Q \Rightarrow x\left(y_{1}, \ldots, y_{n}\right) \cdot P \equiv x\left(y_{1}, \ldots, y_{n}\right) \cdot Q\)
\(P \mid \mathbf{0} \equiv P\)
\(P|Q \equiv Q| P\)
\((P \mid Q)|R \equiv P|(Q \mid R)\)
\(!P \equiv P \mid!P\)
\((v x)(v y) P \equiv(v y)(v x) P \quad\) (Struct Res Res)
\(x \notin f n(P) \Rightarrow(v x)(P \mid Q) \equiv P \mid(v x) Q\)
(Struct Repl)
(Struct Input)
(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Par)
```


Reduction:

$\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \mid x\left(z_{1}, \ldots, z_{n}\right) \cdot P \rightarrow P\left\{z_{1} \leftarrow y_{1}\right\} \cdots\left\{z_{n} \leftarrow y_{n}\right\}$	(Red Interact)
$P \rightarrow Q \Rightarrow P\|R \rightarrow Q\| R$	(Red Par)
$P \rightarrow Q \Rightarrow(v x) P \rightarrow(v x) Q$	(Red Res)
$P^{\prime} \equiv P, P \rightarrow Q, Q \equiv Q^{\prime} \Rightarrow P^{\prime} \rightarrow Q^{\prime}$	(Red \equiv)

This presentation of the π-calculus semantics allows for a simple and compact definition of the reduction rules in which the sub-processes having to interact - the redexes in λ-calculus terminology - appear in contiguous position. Nonetheless, the operational semantics of concurrent systems are commonly defined using labelled transition systems and, whereas a reduction semantics may be much more enlightening and simple than a transition semantics, the latter makes it easier to reason about the possible reductions of a process. For instance, it appears to be difficult to prove directly Lemma B. 29, a property essential in the proof of the garbage collection principle given in Appendix B.5, without proving first an equivalent result, Lemma B.28, for the labelled transition system.

A. 3 Labelled transition semantics

The definitions in this section are adapted from the presentation of the labelled transition system of the spi calculus (Abadi \& Gordon, 1999). In order to define the labelled transition semantics, we need some new syntactic forms: abstractions, concretions, and agents.

- An abstraction is an expression of the form $(\vec{x}) P$, where P is a process and \vec{x} is a sequence of names x_{1}, \ldots, x_{n} such that $n \geqslant 0$ and x_{1}, \ldots, x_{n} are pairwise distinct and bound in P.
- A concretion is an expression of the form $(v \vec{z})\langle\vec{y}\rangle Q$, where Q is a process and \vec{z} and \vec{y} are sequences of names z_{1}, \ldots, z_{m}, and y_{1}, \ldots, y_{n}, respectively, such that $m, n \geqslant 0$, and $\{\vec{z}\} \subseteq\{\vec{y}\}$, and z_{1}, \ldots, z_{m} are pairwise distinct and bound in $\langle\vec{y}\rangle Q$.
- An agent is either a process, an abstraction, or a concretion. We use the metavariables A and B to stand for arbitrary agents.

For any abstraction, $(\vec{x}) P$, let its arity, $|(\vec{x}) P|$, be the length of the sequence \vec{x}. Similarly, for any concretion, $(v \vec{z})\langle\vec{y}\rangle Q$, let its arity, $|(v \vec{z})\langle\vec{y}\rangle Q|$, be the length of the sequence \vec{y}.

Let $f n(A)$ be the sets of free names of an agent A. Like processes, both abstractions and concretions are identified up to consistent renaming of bound names.

We extend the restriction and composition operators to arbitrary agents, as follows. For an abstraction, $(\vec{x}) P$, we set:

$$
(v y)(\vec{x}) P \triangleq(\vec{x})(v y) P \quad \text { and } \quad R \mid(\vec{x}) P \triangleq(\vec{x})(R \mid P)
$$

where we assume that the bound names \vec{x} are disjoint from $\{y\} \cup f n(R)$.
For a concretion, $(v \vec{z})\langle\vec{y}\rangle Q$, we set:

$$
\begin{array}{rll}
(v x)(v \vec{z})\langle\vec{y}\rangle Q & \triangleq\left\{\begin{array}{cl}
(v x, \vec{z})\langle\vec{y}\rangle Q & \text { if } x \in\{\vec{y}\} \\
(v \vec{z})\langle\vec{y}\rangle(v x) Q & \text { otherwise }
\end{array}\right. \\
R \mid(v \vec{z})\langle\vec{y}\rangle Q & \triangleq(v \vec{z})\langle\vec{y}\rangle(R \mid Q)
\end{array}
$$

assuming that $x \notin\{\vec{z}\}$ and that $\{\vec{z}\} \cap f n(R)=\varnothing$.
We define the dual composition $A \mid R$ symmetrically.
Next, we define processes obtained by combining abstractions and concretions of equal arity. If F is the abstraction $(\vec{x}) P$ where $\vec{x}=x_{1}, \ldots, x_{n}$ and C is the concretion $(v \vec{z})\langle\vec{y}\rangle Q$ where $\vec{y}=y_{1}, \ldots, y_{n}$ and $\{\vec{z}\} \cap f n(P)=\varnothing$, we define the interactions $F @ C$ and $C @ F$ to be the processes given by:

$$
\begin{aligned}
& F @ C \triangleq(v \vec{z})\left(P\left\{x_{1} \leftarrow y_{1}\right\} \cdots\left\{x_{n} \leftarrow y_{n}\right\} \mid Q\right) \\
& C @ F \triangleq(v \vec{z})\left(Q \mid P\left\{x_{1} \leftarrow y_{1}\right\} \cdots\left\{x_{n} \leftarrow y_{n}\right\}\right)
\end{aligned}
$$

An action is either a barb or the distinguished silent action τ. The labelled transition system is written $P \xrightarrow{\alpha} A$, where P is a process, α is an action, and A is an agent. We define this relation inductively, by the following rules:
The Labelled Transition System:
(Trans In)
(Trans Out)

$$
x\left(y_{1}, \ldots, y_{n}\right) \cdot P \xrightarrow{x}\left(y_{1}, \ldots, y_{n}\right) P
$$

$$
\overline{\bar{x}}\left\langle y_{1}, \ldots, y_{n}\right\rangle \xrightarrow{\bar{x}}(v)\left\langle y_{1}, \ldots, y_{n}\right\rangle \mathbf{0}
$$

(Trans Inter 1) (with $|F|=|C|) \quad$ (Trans Inter 2) (with $|F|=|C|$)

$$
\frac{P \xrightarrow{x} F \quad Q \xrightarrow{\bar{x}} C}{P \mid Q \xrightarrow{\tau} F @ C} \quad \xrightarrow[{P \mid Q \xrightarrow{\tau} C @} F]{P} F
$$

$(\text { Trans Par } 1)$	(Trans Par 2)		(Trans Repl)
$P \longrightarrow A$	$Q \longrightarrow A$	$P \longrightarrow A \quad \alpha \notin\{x, \bar{x}\}$	$P \mid!P \xrightarrow{ } A$
$P\|Q \xrightarrow{\alpha} A\| Q$	$P\|Q \xrightarrow{\alpha} P\| A$	$(v x) P \xrightarrow{\alpha}(v x) A$	$!P \xrightarrow{\alpha} A$

The following is a basic result that states that modulo structural congruence, the reduction relation exactly represents the silent action of the transition semantics.

A proof of this property can be obtained by adapting the detailed proof of an equivalent result for the π-calculus (Abadi \& Gordon, 1999).

Proposition A. 1
$P \rightarrow Q$ if and only if there is a process R such that $P \xrightarrow{\tau} R$ and $R \equiv Q$.

A.4 Barbed congruence

The notion of equivalence between untyped terms that we consider in this paper is barbed congruence (Milner \& Sangiorgi, 1992), a bisimulation-based behavioural equivalence that preserves a notion of observation, called barbs.

A barb, β, is either a name x or a co-name \bar{x}. We write $P \Downarrow \beta$ if there exists P^{\prime} such that $P \rightarrow{ }^{*} P^{\prime}$ and $P^{\prime} \downarrow \beta$, where the relation \downarrow is defined in the following table.

Exhibition of a Barb:

(Barb Input)	(Barb Output)	
${$$\left., \ldots, y_{n}\right) . P \downarrow x} }$	$\bar{x}\left\langle y_{1}, \ldots, y_{n}\right\rangle \downarrow \bar{x}$	
(Barb Res)		
$\frac{\text { (Barb Par) }}{P \downarrow \beta \notin\{x, \bar{x}\}}$	$\frac{P \downarrow \beta}{P \mid Q \downarrow \beta}$	$\frac{P \equiv Q \quad Q \downarrow \beta}{P \downarrow \beta}$

The barbs exhibited by a process, P, are related to the labelled transitions that P can perform, that is, to the external communications through which a process may interact with an outer context. We can formalize this idea using the following proposition.

Proposition A. 2

$P \downarrow \beta$ if and only if there is an agent A such that $P \xrightarrow{\beta} A$.
What follows is a series of definitions leading up to our definition of barbed congruence for the untyped π-calculus.

- For any relation on processes \mathscr{S}, let $P \equiv \mathscr{T} \equiv Q$ mean there are processes P^{\prime} and Q^{\prime} such that $P \equiv P^{\prime}, P^{\prime} \mathscr{S} Q^{\prime}$, and $Q^{\prime} \equiv Q$.
- A symmetric relation \mathscr{S} is a barbed bisimulation if and only if $P \mathscr{S} Q$ implies:
(1) If $P \downarrow \bar{x}$ then $Q \Downarrow \bar{x}$.
(2) If $P \rightarrow P^{\prime}$ then there is Q^{\prime} such that $Q \rightarrow{ }^{*} Q^{\prime}$ and $P^{\prime} \equiv \mathscr{S} \equiv Q^{\prime}$.
- A renaming, σ, is a substitution $\left\{x_{1} \leftarrow x_{1}^{\prime}\right\} \cdots\left\{x_{n} \leftarrow x_{n}^{\prime}\right\}$ of names for names where $n \geqslant 0$ and the names x_{1}, \ldots, x_{n} are pairwise distinct. Let $\operatorname{dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{ran}(\sigma)=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. If $x=x_{j}$ for some $j \in 1 . . n$, let $\sigma(x)=x_{j}^{\prime}$. Otherwise, if $x \notin \operatorname{dom}(\sigma)$, let $\sigma(x)=x$.
- Barbed bisimilarity, $\dot{\approx}$, is the relation on processes such that $P \dot{\approx} Q$ if and only if there is a barbed bisimulation \mathscr{S} such that $P \mathscr{S} Q$.
- Barbed congruence, \approx, is the relation on processes such that $P \approx Q$ if and only if for all processes R and renamings σ we have that $P \sigma|R \dot{\approx} Q \sigma| R$.

The following are basic properties of barbed congruence for the untyped π calculus. As in the typed case, barbed congruence is a congruence relation preserved by renamings that includes structural congruence.

Proposition A. 3

(1) Barbed congruence is reflexive, transitive, and symmetric.
(2) Barbed congruence satisfies the congruence properties.

- If $P \approx Q$ then $x\left(y_{1}, \ldots, y_{n}\right) \cdot P \approx x\left(y_{1}, \ldots, y_{n}\right) \cdot Q$.
- If $P \approx Q$ then $P|R \approx Q| R$.
- If $P \approx Q$ then $(v x) P \approx(v x) Q$.
- If $P \approx Q$ then $!P \approx!Q$.
(3) If $P \approx Q$ then $P \sigma \approx Q \sigma$ for any arbitrary substitution σ from names to names.
(4) If $P \equiv Q$ then $P \approx Q$.
(5) If $x \notin f n(P)$ then $(v x) P \approx P$.

Next, we state a non-interference property for communications over a restricted channel. This property plays an important role in the soundness proof of the equational theory developed in section 5 .

Lemma A. 4 (Non-Interference)

If $k \notin\{z\} \cup f n(P)$, then $(v k)(\bar{k}\langle z\rangle \mid k(x) \cdot P) \approx P\{x \leftarrow z\}$.
We also make use of the following algebraic laws.

Lemma A. 5

(1) If $k \notin\left\{x, y_{1}, \ldots, y_{n}\right\}$ then $x\left(y_{1}, \ldots, y_{n}\right) \cdot(v k) P \approx(v k) x\left(y_{1}, \ldots, y_{n}\right) . P$.
(2) If $k \notin f n(Q)$ then $(v k)\left(k\left(x_{1}, \ldots, x_{n}\right) \cdot P \mid Q\right) \approx Q$ and $(v k)\left(!k\left(x_{1}, \ldots, x_{n}\right) \cdot P \mid Q\right) \approx Q$.
(3) If $x \notin f n\left(k^{\prime}(y) \cdot Q\right)$ then $\left(v k^{\prime}\right)\left(k(x) \cdot\left(P \mid k^{\prime}(y) \cdot Q\right)\right) \approx\left(v k^{\prime}\right)\left(k(x) \cdot P \mid k^{\prime}(y) \cdot Q\right)$.

Assume p does not appear free in input position in P, Q, that is, $p \notin \operatorname{inp}(P) \cup \operatorname{inp}(Q)$, let the operator $\operatorname{def} p(x, k)=P$ in Q denote the process $(v p)(!p(x, k) \cdot P \mid Q)$. Such processes are found in encodings of the λ-calculus in the π-calculus and also in our encoding of the region calculus. For example, erase $(\llbracket \lambda(x: A) b$ at $\rho \rrbracket k)$ can be rewritten def $p(x, k)=\llbracket b \rrbracket k$ in $\bar{k}\langle p\rangle$.

Replicated Resources:

For all processes P and Q, such that $p \notin \operatorname{inp}(P) \cup \operatorname{inp}(Q)$, we define the process
def $p\left(y_{1}, \ldots, y_{n}\right)=P$ in Q to be $(v p)\left(!p\left(y_{1}, \ldots, y_{n}\right) . P \mid Q\right)$.

One of the algebraic laws valid in the local π-calculus and not in the full π-calculus is the replication theorem of Milner that, intuitively, states that private resources can be safely duplicated, that is, for example:

$$
\begin{aligned}
& \operatorname{def} p\left(y_{1}, \ldots, y_{n}\right)=P \text { in }(Q \mid R) \approx \\
& \quad\left(\operatorname{def} p\left(y_{1}, \ldots, y_{n}\right)=P \text { in } Q\right) \mid\left(\operatorname{def} p\left(y_{1}, \ldots, y_{n}\right)=P \text { in } R\right)
\end{aligned}
$$

We state below Proposition A.6, which lists a more complete set of replication laws. Milner (1999) proves an equivalent property for the full π-calculus, where the equivalence used is strong ground congruence (Milner et al., 1992). But this equality holds only with the side condition that the link to the resource (the channel x in this example) may not be emitted, that is, does not appear in object position of an output. Merro \& Sangiorgi (1998) prove the same equation, without the first side condition, for barbed congruence in the local π-calculus. Dal Zilio (1999) proves similar laws for a local variant of the blue calculus.

Proposition A. 6 (Replication Laws)

(1) If $p \notin f n(P)$ then $\operatorname{def} p(\vec{y})=R$ in $P \approx P$
(2) $\operatorname{def} p(\vec{y})=R$ in $(P \mid Q) \approx(\operatorname{def} p(\vec{y})=R$ in $P) \mid(\operatorname{def} p(\vec{y})=R$ in $Q)$
(3) If $p \neq q$ and $q \notin f n(R)$ then:

$$
\begin{aligned}
& \text { def } p(\vec{y})=R \text { in }(\operatorname{def} q(\vec{z})=S \text { in } P) \\
& \quad \approx \operatorname{def} q(\vec{z})=(\operatorname{def} p(\vec{y})=R \text { in } S) \text { in }(\operatorname{def} p(\vec{y})=R \text { in } P)
\end{aligned}
$$

(4) If $\{\vec{z}\} \cap f n(p(\vec{y}) \cdot R)=\varnothing$ then:

$$
x(\vec{z}) \cdot(\operatorname{def} p(\vec{y})=R \text { in } P) \approx \operatorname{def} p(\vec{y})=R \text { in } x(\vec{z}) \cdot P
$$

(5) def $p\left(y_{1}, \ldots, y_{n}\right)=P$ in $\left(\bar{p}\left\langle z_{1}, \ldots, z_{n}\right\rangle \mid Q\right)$

$$
\approx \operatorname{def} p\left(y_{1}, \ldots, y_{n}\right)=P \text { in }\left(P\left\{y_{1} \leftarrow z_{1}\right\} \cdots\left\{y_{n} \leftarrow z_{n}\right\} \mid Q\right)
$$

B Proofs

In this appendix, we prove all the propositions stated without proof in the main body of the paper. Proofs for auxiliary results can be found in a technical report (Dal Zilio \& Gordon, 2000b). We split the appendix into several sections. Throughout, with the exception of Appendix B.7, we work with the extended calculi of section 6. Proofs of all the corresponding theorems for the unextended calculi may be obtained by simplifying the proofs for the extended calculi.
(1) In Appendix B. 1 we prove Theorem B.5, the subject reduction property for the extended region calculus, and Proposition B.6, the property that welltyped configurations do not lead to runtime errors. These facts correspond to Theorem 2.1 and Proposition 2.2, respectively, for the unextended region calculus.
(2) In Appendix B.2, we prove Proposition B.17, the subject reduction property for our extended π-calculus, and Proposition B.18, effect soundness, the property that the group of any barb of a process is included in its effect. These facts correspond to Proposition 3.2 and Proposition 3.3, respectively, for the unextended π-calculus.
(3) In Appendix B.3, we prove Proposition B.22, which asserts that the reductions of a typed process according to the typed operational semantics are equivalent to the reductions of the untyped erasure of the process according to the untyped operational semantics. This fact corresponds to Proposition 3.1 for the unextended π-calculus.
(4) In Appendix B.4, we prove Proposition B.27, that barbed congruence for the extended π-calculus satisfies the congruence properties. This fact corresponds to Proposition 3.4(2), for the unextended π-calculus.
(5) In Appendix B.5, we prove Theorem B.30, the garbage collection principle for our extended π-calculus. This fact corresponds to Theorem 4.3 for the unextended π-calculus.
(6) In Appendix B. 6 we prove various properties of the encoding of the region calculus in the π-calculus.
Appendix B.6.1 proves Theorem B.32, which asserts that the encoding preserves the static semantics.
Appendix B.6.2 introduces an auxiliary small-step semantics for the region calculus.
Appendix B. 6.3 exploits the auxiliary small-step semantics in order to prove Theorem B.35, which asserts that the encoding preserves the dynamic semantics.
Appendix B. 6.4 proves Theorem B.36, which asserts that defunct regions make no difference to the behaviour of a program.
The three theorems proved in this appendix correspond to Theorems 4.1, 4.2, and 4.4, respectively, for the unextended calculi.
(7) In Appendix B.7, we prove the auxiliary lemma, Lemma 5.1, and the soundness of the equational theory for the unextended region calculus, Theorem 5.2, as stated in section 5.

B. 1 Subject reduction for the λ-calculus

In this section, we prove Theorem B.5, that in the extended region calculus reduction preserves types. We also prove Proposition B.6, that well-typed values are allocated in live regions and that well-typed function applications invoke closures stored in live regions. Combining these two properties implies that a well-typed expression cannot yield a runtime errors.

The proof of these properties uses a standard series of simple intermediate results, like weakening properties, Lemmas B. 1 and B.2, or substitution lemmas, Lemmas B. 3 to B.4.

In the type and effect system introduced in section 2.3 and section 6.1, each judgment has the form $E \vdash \mathscr{J}$, where E is a typing judgment and \mathscr{J} is an assertion that is either \diamond, for well-formed environments, or a type A, for well-formed types, or $a:^{e} A$, for good expressions a with type A and effect e. In the rest of the section, we use the symbol \mathscr{J} to denote such an assertion.

Lemma B.1

If $E \vdash \mathscr{J}$ and $E, E^{\prime} \vdash \diamond$ then $E, E^{\prime} \vdash \mathscr{J}$.
Lemma B. 2
If $e n v(H) \vdash \mathscr{J}$ and $H \asymp H^{\prime}$ and $H^{\prime} \models \diamond$ then $e n v\left(H+H^{\prime}\right) \vdash \mathscr{J}$.

Lemma B. 3

If $E, x: A, E^{\prime} \vdash \mathscr{J}$ and $E \vdash p: \varnothing A$ then $E, E^{\prime} \vdash \mathscr{J}\{x \leftarrow p\}$.

Lemma B. 4

If $E, \rho, E^{\prime} \vdash \mathscr{J}$ and ρ^{\prime} is a region defined in $\operatorname{dom}(E)$ then $E, E^{\prime}\left\{\rho \leftarrow \rho^{\prime}\right\} \vdash \mathscr{J}\left\{\rho \leftarrow \rho^{\prime}\right\}$.
The following is the subject reduction theorem for our extended region calculus. A proof of Theorem 2.1, subject reduction for the unextended region calculus, can be obtained by simplifying the following proof.

Theorem B. 5

If $H \models S \cdot(a, h): A$ and $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ there is H^{\prime} such that $H \asymp H^{\prime}$ and $H+H^{\prime}=S \cdot\left(p^{\prime}, h^{\prime}\right): A$.

Proof
By induction on the derivation of $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$.
(Eval Var) Then $S \cdot(p, h) \Downarrow(p, h)$, and we have $H \models S \cdot(p, h): A$ by assumption.
Take $H^{\prime}=\varnothing$ and we trivially have $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot(p, h): A$.
(Eval Alloc) Then $S \cdot(v$ at $\rho, h) \Downarrow(p, h+(\rho \mapsto(h(\rho)+(p \mapsto v)))$ with $\rho \in S$ and $p \notin \operatorname{dom}_{2}(h)$.
By (Config Good), $H \models S \cdot(v$ at $\rho, h): A$ means that $e n v(H) \vdash v$ at $\rho:^{e} A$ for some $e \subseteq S$, and that $H \models h$ and $S \subseteq \operatorname{dom}(H)$. Since only (Exp Nil), (Exp Cons) or (Exp Fun) can derive $e n v(H) \vdash v$ at $\rho:^{e} A$, we have $A=V$ at ρ, for some V, and $e=\{\rho\}$.
Let H^{\prime} be the heap typing $\rho \mapsto(p: A)$. Since $p \notin \operatorname{dom}_{2}(H)=\operatorname{dom}_{2}(h)$, we have $e n v\left(H+H^{\prime}\right) \vdash \diamond$. Hence, $e n v\left(H+H^{\prime}\right) \vdash p: \varnothing A$. Moreover $S \subseteq \operatorname{dom}\left(H+H^{\prime}\right)$.
By (Heap Good), $H \models h$ and $\rho \in S$ imply that $\operatorname{env}(H) \vdash h(\rho)$ at $\rho: H(\rho)$.
Therefore, $\operatorname{env}\left(H+H^{\prime}\right) \vdash h(\rho)$ at $\rho+(p \mapsto v$ at $\rho): H(\rho)+(p: A)$. Hence, $H+H^{\prime} \models h+\rho \mapsto(h(\rho)+p \mapsto v)$.
We have $\operatorname{env}\left(H+H^{\prime}\right) \vdash p$ at $\rho: A$ and $S \subseteq \operatorname{dom}\left(H+H^{\prime}\right)$ and $H+H^{\prime} \models h+\rho \mapsto$ $(h(\rho)+p \mapsto v)$. Hence, by (Config Good), $H+H^{\prime} \models S \cdot(p, h): A$, as required.
(Eval Appl) Then $S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ derives from $S \cdot(b\{f \leftarrow p\}\{x \leftarrow q\} \sigma$,
$h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ where $\rho \in S$ and $h(\rho)(p)$ is the function $\mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$ and $\sigma=\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}$ and $F=\forall\left[\rho_{1}, \ldots, \rho_{n}\right]\left(B_{1} \xrightarrow{e^{\prime}} B_{2}\right)$ at ρ.
By (Config Good), $H \models S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h\right): A$ means that env $(H) \vdash p\left[\rho_{1}^{\prime}, \ldots\right.$, $\left.\rho_{n}^{\prime}\right](q):^{e} A$ for some $e \subseteq S$, and that $H \models h$ and $S \subseteq \operatorname{dom}(H)$.
Only (Exp Appl) can derive $e n v(H) \vdash p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q):^{e} A$ and so we have $\operatorname{env}(H) \vdash p: \varnothing F$ and $\operatorname{env}(H) \vdash q: \varnothing B_{1} \sigma$ and $A=B_{2} \sigma$, where $e=\{\rho\} \cup e^{\prime} \sigma$ and $\left\{\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right\} \subseteq \operatorname{dom}(H)$. Since $H \models h$ and $\rho \in \operatorname{dom}(H)$, we have that env $(H) \vdash$ $h(\rho)$ at $\rho: H(\rho)$, and in particular, $\operatorname{env}(H) \vdash \mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$ at $\rho:^{\{\rho\}} F$.
Only (Exp Fun) can derive $e n v(H) \vdash \mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$ at $\rho:{ }^{\{\rho\}} F$, and so $\operatorname{env}(H), f: F, \rho_{1}, \ldots, \rho_{n}, x: B_{1} \vdash b: e^{\prime \prime} B_{2}$ where $e^{\prime \prime} \subseteq e^{\prime} \subseteq \operatorname{dom}\left(E, \rho_{1}, \ldots, \rho_{n}\right)$. By Lemma B. 3 and B.4, since $e n v(H) \vdash q:^{\varnothing} B_{1} \sigma$ and $e n v(H) \vdash p:^{\varnothing} F$, we get that $e n v(H) \vdash b\{f \leftarrow p\}\{x \leftarrow q\} \sigma: e^{\prime \prime} \sigma B_{2} \sigma$.
By (Config Good), $H \models S \cdot(b\{f \leftarrow p\}\{x \leftarrow q\} \sigma, h): A$.
By induction hypothesis, since $S \cdot(b\{f \leftarrow p\}\{x \leftarrow q\} \sigma, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$, we get that there is H^{\prime} with $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$, as required.
(Eval Let) Then $S \cdot($ let $x=b$ in $a, h) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)$ derives from $S \cdot(b, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ and $S \cdot\left(a\left\{x \leftarrow p^{\prime}\right\}, h^{\prime}\right) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)$.

By (Config Good), $H \models S \cdot($ let $x=b$ in $a, h): A$ means that $\operatorname{env}(H) \vdash$ let $x=$ b in $a:^{e} A$ for some $e \subseteq S$, and that $H \models h$ and $S \subseteq \operatorname{dom}(H)$.
Only (Exp Let) can derive env $(H) \vdash$ let $x=b$ in $a:^{e} A$ and so we have $\operatorname{env}(H) \vdash b::_{b} B$ and $\operatorname{env}(H), x: B \vdash a:_{a} A$ for some e_{b}, e_{a} and B, such that $e=e_{a} \cup e_{b}$. By (Config Good), env $(H) \vdash b::_{b} B$ and $e_{b} \subseteq S$ and $H \models h$ and $S \subseteq \operatorname{dom}(H)$ imply that $H \models S \cdot(b, h): B$.
By induction hypothesis, since $S \cdot(b, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$, we get that there is H^{\prime} with $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): B$. By (Config Good), this means that $e n v\left(H+H^{\prime}\right) \vdash p^{\prime}: e^{\prime} B$ for some $e^{\prime} \subseteq S$, and that $H+H^{\prime} \models h^{\prime}$ and $S \subseteq \operatorname{dom}\left(H+H^{\prime}\right)$. Only $(\operatorname{Exp} x)$ or $(\operatorname{Exp} l)$ can derive this and so it must be that $e^{\prime}=\varnothing$.
By Lemma B.2, since env $(H), x: B \vdash a: e_{a} A$, we get that $\operatorname{env}\left(H+H^{\prime}\right), x: B \vdash a::_{a} A$. By Lemma B.3, since $e n v\left(H+H^{\prime}\right) \vdash p^{\prime}:^{\varnothing} B$, we get that $e n v\left(H+H^{\prime}\right) \vdash a\left\{x \leftarrow p^{\prime}\right\}::_{a}$ A. Therefore, by (Config Good), env $\left(H+H^{\prime}\right)=S \cdot\left(a\left\{x \leftarrow p^{\prime}\right\}, h^{\prime}\right): A$.
By induction hypothesis, since $S \cdot\left(a\left\{x \leftarrow p^{\prime}\right\}, h^{\prime}\right) \Downarrow\left(p^{\prime \prime}, h^{\prime \prime}\right)$, we get that there is $H^{\prime \prime}$ such that $H+H^{\prime} \asymp H^{\prime \prime}$ and $\left(H+H^{\prime}\right)+H^{\prime \prime} \models S \cdot\left(p^{\prime \prime}, h^{\prime \prime}\right): A$. To complete the case, note that $H \asymp H^{\prime}+H^{\prime \prime}$ and $H+\left(H^{\prime}+H^{\prime \prime}\right)=S \cdot\left(p^{\prime \prime}, h^{\prime \prime}\right): A$.
(Eval Letregion) Then $S \cdot($ letregion ρ in $a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ derives from $S \cup\{\rho\} \cdot(a, h+\rho \mapsto$ $\varnothing) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ with $\rho \notin \operatorname{dom}(h)$. By (Config Good), $H \models S \cdot($ letregion ρ in $a, h): A$ means that env $(H) \vdash$ letregion ρ in $a:^{e} A$ and $H \models h$ for some $e \subseteq S$.
Only (Exp Letregion) can derive this and so we have $e n v(H), \rho \vdash a: e^{\prime} A$ with $e n v(H) \vdash A$ and $e=e^{\prime}-\{\rho\}$. In particular $\rho \notin \operatorname{dom}(H)$.
Let H^{\prime} be the heap typing $(\rho \mapsto \varnothing)$. We have $H \asymp H^{\prime}$ and $\operatorname{env}\left(H+H^{\prime}\right)=\operatorname{env}(H), \rho$. By (Config Good), env $\left(H+H^{\prime}\right) \vdash a: e^{\prime} A$, and $e^{\prime} \subseteq S \cup\{\rho\}$ and $S \cup\{\rho\} \subseteq \operatorname{dom}\left(H+H^{\prime}\right)$ and $H+H^{\prime} \models h+\rho \mapsto \varnothing$ imply that $H+H^{\prime} \models(S \cup\{\rho\}) \cdot(a, h+\rho \mapsto \varnothing): A$.
By induction hypothesis, since $(S \cup\{\rho\}) \cdot(a, h+\rho \mapsto \varnothing) \Downarrow\left(p^{\prime}, h^{\prime}\right)$, we get that there is $H^{\prime \prime}$ with $H+H^{\prime} \asymp H^{\prime \prime}$ and $\left(H+H^{\prime}\right)+H^{\prime \prime} \models(S \cup\{\rho\}) \cdot\left(p^{\prime}, h^{\prime}\right): A$. To complete the case, note that $H \asymp H^{\prime}+H^{\prime \prime}$ and $H+\left(H^{\prime}+H^{\prime \prime}\right) \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$.
(Eval Case 1) Then $S \cdot\left(\right.$ case p of nil $\left.\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$. This derives from $S \cdot\left(b_{1}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ with $\rho \in S$ and $h(\rho)(p)=$ nil.
By (Config Good), $H \models S \cdot\left(\right.$ case p of nil $\left.\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right): A$ means that env $(H) \vdash$ case p of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}: e A$ and $H \models h$ for some $e \subseteq S$.
Only (Exp Case) can derive this and so we have env $(H) \vdash p: \varnothing[B]$ at ρ and $\operatorname{env}(H) \vdash b_{1}: e_{1} A$ and $\operatorname{env}(H), y_{1}: B, y_{2}:[B]$ at $\rho \vdash b_{2}:^{e_{2}} A$.
By induction hypothesis, since $S \cdot\left(b_{1}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$, we get that there is H^{\prime} with $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$, as required.
(Eval Case 2) Then $S \cdot\left(\right.$ case p of nil $\left.\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$. This derives from $S \cdot\left(b_{2}\left\{y_{1} \leftarrow q_{1}\right\}\left\{y_{2} \leftarrow q_{2}\right\}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ with $\rho \in S$ and $h(\rho)(p)=q_{1}:: q_{2}$.
By (Config Good), $H \models S \cdot\left(\right.$ case p of nil $\left.\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h\right): A$ means that env $(H) \vdash$ case p of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}: e A$ and $H \models h$ for some $e \subseteq S$.
Only (Exp Case) can derive this and so we have env $(H) \vdash p: \varnothing$ [B] at ρ and $\operatorname{env}(H) \vdash b_{1}::_{1} A$ and $\operatorname{env}(H), y_{1}: B, y_{2}:[B]$ at $\rho \vdash b_{2}:^{e_{2}} A$.
Therefore, by hypothesis, $h(\rho)(p)=q_{1}:: q_{2}$ and env $(H) \vdash p:^{\varnothing}[B]$ at ρ. Hence, by (Config Good), $\operatorname{env}(H) \vdash\left(q_{1}:: q_{2}\right)$ at $\rho:\{\rho\}[B]$ at ρ. Only (Exp Cons) can derive this and so we have $E \vdash q_{1}:^{\varnothing} B$ and $E \vdash q_{2}: \varnothing[B]$ at ρ.

By Lemma B.3, since env $(H), y_{1}: B, y_{2}:[B]$ at $\rho \vdash b_{2}: e_{2} A$, we get that $\operatorname{env}(H) \vdash$ $b_{2}\left\{y_{1} \leftarrow q_{1}\right\}\left\{y_{2} \leftarrow q_{2}\right\}::_{2} A$.
By induction hypothesis, since $S \cdot\left(b_{2}\left\{y_{1} \leftarrow q_{1}\right\}\left\{y_{2} \leftarrow q_{2}\right\}, h\right) \Downarrow\left(p^{\prime}, h^{\prime}\right)$, we get that there is H^{\prime} with $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$, as required.

Next, we show that well-typed configurations avoid the runtime errors of allocation or invocation of a closure in a defunct region. A proof of Proposition 2.2, an equivalent property for the unextended region calculus, can be obtained by simplifying the following proof.

Proposition B. 6

(1) If $H \models S \cdot(v$ at $\rho, h): A$ then $\rho \in S$.
(2) If $H \models S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h\right): A$ then there are ρ and v such that $\rho \in S$, $h(\rho)(p)=v$, and v is a function of the form $\mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$, where F is the type $\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] B \xrightarrow{e} A\right)$ at ρ and there is e^{\prime} such that $e^{\prime} \subseteq e \subseteq$ $\operatorname{dom}\left(E, \rho_{1}, \ldots, \rho_{n}\right)$ and $\operatorname{env}(H), f: F, \rho_{1}, \ldots, \rho_{n}, x: B \vdash b: e^{\prime} A$.

Proof

For part (1), assume $H \vDash S \cdot(v$ at $\rho, h): A$. By (Config Good) we get that $e n v(H) \vdash(v$ at $\rho):^{e} A$ for some effect e, with $e \cup f g(A) \subseteq S$. Only (Exp Nil), (Exp Cons) or (Exp Fun) can derive this and so we have $e=\{\rho\}$. Hence, $\rho \in S$.

For part (2), assume $H \models S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h\right): A$. By (Config Good) we get that $H \models h$ and that $e n v(H) \vdash p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q):^{e} A$ for some effects e, with $e \cup f g(A) \subseteq S$. Only (Exp Appl) can derive this and so we have $e n v(H) \vdash p:^{\varnothing} F$ for some region ρ, with $F=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right]\left(B \xrightarrow{e^{\prime}} A\right)\right)$ at ρ and $e=\{\rho\} \cup e^{\prime}\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}$. Only $(\operatorname{Exp} x)$ can derive $e n v(H) \vdash p:^{\varnothing} F$ and so there is a region ρ^{\prime} such that $H\left(\rho^{\prime}\right)(p)=F$. By (Heap Good), $\rho^{\prime}=\rho$ and $\rho \in \operatorname{dom}(H)$ and there is a value v such that $H(\rho)(p)=v$. By (Region Good), env $(H) \vdash v$ at $\rho::^{\{\rho\}} F$. Only (Exp Fun) can derive this. Hence, v is a function of the form $\mu(f: F) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b$ and there is $e^{\prime \prime}$ such that $e^{\prime \prime} \subseteq e^{\prime} \subseteq \operatorname{dom}\left(E, \rho_{1}, \ldots, \rho_{n}\right)$ and $\operatorname{env}(H), f: F, \rho_{1}, \ldots, \rho_{n}, x: B \vdash b: e^{\prime \prime} A$.

B. 2 Subject reduction for the π-calculus

We show that reduction in the π-calculus preserves types and effects. As in the previous section on subject reduction for the λ-calculus, we use intermediate results whose proofs can be found in a technical report (Dal Zilio \& Gordon, 2000b). Again, we use the symbol \mathscr{J} to denote an assertion, that is, either \diamond, a type T, a channel typing $x: T$, or a process typing $P: \mathbf{H}$.

Lemma B. 7
If $E \vdash P: \mathbf{H}$ then $\mathbf{H} \subseteq \operatorname{dom}(E)$.

Lemma B. 8

If $E \vdash \mathscr{J}$ then $f g(\mathscr{J}) \subseteq \operatorname{dom}(E)$.
Lemma B. 9
If $E \vdash x: T_{1}$ and $E \vdash x: T_{2}$, where T_{1} and T_{2} are channel types of the form $G\left(H_{1}, \ldots, H_{m}\right)\left[T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right] \backslash \mathbf{H}$, then $T_{1}=T_{2}$.

Lemma B. 10
If $E, x_{1}: T_{1}, x_{2}: T_{2}, E^{\prime} \vdash \mathscr{J}$ then $E, x_{2}: T_{2}, x_{1}: T_{1}, E^{\prime} \vdash \mathscr{J}$.
Lemma B. 11
If $E, x: T, G, E^{\prime} \vdash \mathscr{J}$ then $E, G, x: T, E^{\prime} \vdash \mathscr{J}$.
Lemma B. 12
If $E, x: T, E^{\prime} \vdash \mathscr{J}$ and $x \notin f n(\mathscr{J})$ then $E, E^{\prime} \vdash \mathscr{J}$.
Lemma B. 13
If $E \vdash \mathscr{J}$ and $E, E^{\prime} \vdash \diamond$ then $E, E^{\prime} \vdash \mathscr{J}$.
Lemma B. 14
If $E, x: T, E^{\prime} \vdash \mathscr{J}$ and $E \vdash y: T$ then $E, E^{\prime} \vdash \mathscr{J}\{x \leftarrow y\}$.
Lemma B. 15
If $E, G, E^{\prime} \vdash \mathscr{J}$ and $H \in \operatorname{dom}(E)$ then we have $E, E^{\prime}\{G \leftarrow H\} \vdash \mathscr{J}\{G \leftarrow H\}$, where $E^{\prime}\{G \leftarrow H\}$ is the result of applying the substitution $\{G \leftarrow H\}$ to each of the types in E^{\prime}.

Lemma B. 16

If $E \vdash P: \mathbf{H}$ and $P \equiv Q$ then $E \vdash Q: \mathbf{H}$.
The following is the subject reduction property for our extended π-calculus. A proof of Proposition 3.2, subject reduction for the unextended π-calculus, can be obtained by simplifying the following proof.

Proposition B. 17
If $E \vdash P: \mathbf{H}$ and $P \rightarrow Q$ then $E \vdash Q: \mathbf{H}$.
Proof
By induction on the derivation of $P \rightarrow Q$.
(Red Interact) Then P is a parallel composition $\bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle \mid x\left(G_{1}, \ldots\right.$, $\left.G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P^{\prime}$ and $Q=P^{\prime} \sigma\left\{y_{1} \leftarrow y_{1}^{\prime}\right\} \cdots\left\{y_{n} \leftarrow y_{n}^{\prime}\right\}$ where σ is the substitution $\left\{G_{1} \leftarrow G_{1}^{\prime}\right\} \cdots\left\{G_{m} \leftarrow G_{m}^{\prime}\right\}$.
Assume $E \vdash P: \mathbf{H}$. By Lemma B.7, $\mathbf{H} \subseteq \operatorname{dom}(E)$. The judgment $E \vdash P: \mathbf{H}$ must have been derived from (Proc Par), with $E \vdash \bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots\right.$, $\left.y_{n}^{\prime}\right\rangle: \mathbf{H}_{1}$, and $E \vdash x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P^{\prime}: \mathbf{H}_{2}$ where $\mathbf{H}=\mathbf{H}_{1} \cup \mathbf{H}_{2}$. The former must have been derived from a number of subsumption steps implying $E \vdash \bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle: \mathbf{H}_{3}$, where $\mathbf{H}_{3} \subseteq \mathbf{H}_{1}$, followed by (Proc Output), with $E \vdash y_{1}^{\prime}: T_{1} \sigma, \cdots, E \vdash y_{n}^{\prime}: T_{n} \sigma$, and $E \vdash x: G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$, and:

$$
\begin{equation*}
\{G\} \cup \mathbf{G} \sigma=\mathbf{H}_{3} \tag{B1}
\end{equation*}
$$

By Lemma B.9, the latter must have been derived from (Proc Input), with E, G_{1}, \ldots, $G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n} \vdash P^{\prime}: \mathbf{H}_{4}$ and $\left(\mathbf{H}_{4}-\mathbf{G}\right) \cap\left\{G_{1}, \ldots, G_{m}\right\}=\varnothing$, followed by a number of subsumption steps implying $\{G\} \cup\left(\mathbf{H}_{4}-\mathbf{G}\right) \subseteq \mathbf{H}_{2} \subseteq \operatorname{dom}(E)$ by transitivity. In particular, we have that:

$$
\begin{equation*}
\left(\mathbf{H}_{4}-\mathbf{G}\right) \sigma=\left(\mathbf{H}_{4}-\mathbf{G}\right) \subseteq \mathbf{H}_{2} \tag{B2}
\end{equation*}
$$

By Lemma B.8, since $E \vdash \bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle$, we have that $\left\{G_{1}^{\prime}, \ldots, G_{m}^{\prime}\right\} \subseteq$ $\operatorname{dom}(E)$. Then, by Lemma B. 15 several times, it follows that $E, y_{1}: T_{1} \sigma, \ldots, y_{n}: T_{n} \sigma \vdash$ $P^{\prime} \sigma: \mathbf{H}_{4} \sigma$. By Lemma B.14, $E \vdash P^{\prime} \sigma\left\{y_{1} \leftarrow y_{1}^{\prime}\right\} \cdots\left\{y_{n} \leftarrow y_{n}^{\prime}\right\}: \mathbf{H}_{4} \sigma$.
By definition of set difference, $\mathbf{H}_{4} \sigma=\left(\mathbf{H}_{4}-\mathbf{G}\right) \sigma \cup \mathbf{G} \sigma$, and therefore $\mathbf{H}_{4} \sigma=$ $\left(\{G\} \cup\left(\mathbf{H}_{4}-\mathbf{G}\right) \sigma\right) \cup(\{G\} \cup \mathbf{G}) \sigma$. Using the different inclusions obtained in this item, and especially equations (B1) and (B2), we get that $\mathbf{H}_{4} \sigma \subseteq\left(\{G\} \cup\left(\mathbf{H}_{4}-\right.\right.$ $\mathbf{G}) \sigma) \cup(\{G\} \cup \mathbf{G} \sigma) \subseteq\left(\mathbf{H}_{2} \cup \mathbf{H}_{3}\right) \subseteq\left(\mathbf{H}_{2} \cup \mathbf{H}_{1}\right)=\mathbf{H} \subseteq \operatorname{dom}(E)$. Then $E \vdash Q: \mathbf{H}$.
(Red Par) Then $P=P^{\prime} \mid R$ and $Q=Q^{\prime} \mid R$ for some $P^{\prime}, Q^{\prime}, R$ such that $P^{\prime} \rightarrow Q^{\prime}$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc Par), with $E \vdash P^{\prime}: \mathbf{H}^{\prime}$ and $E \vdash R: \mathbf{H}^{\prime \prime}$ where $\mathbf{H}=\mathbf{H}^{\prime} \cup \mathbf{H}^{\prime \prime}$. By induction hypothesis $E \vdash Q^{\prime}: \mathbf{H}^{\prime}$. By (Proc Par), $E \vdash Q^{\prime} \mid R: \mathbf{H}^{\prime} \cup \mathbf{H}^{\prime \prime}$. Hence, $E \vdash Q: \mathbf{H}$.
(Red GRes) Then $P=(v G) P^{\prime}$ and $Q=(v G) Q^{\prime}$ for some P^{\prime}, Q^{\prime} such that $P^{\prime} \rightarrow Q^{\prime}$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc GRes), with $E, G \vdash P^{\prime}: \mathbf{H}^{\prime}$ and $\mathbf{H}=\mathbf{H}^{\prime}-\{G\}$. By induction hypothesis, $E, G \vdash Q^{\prime}: \mathbf{H}^{\prime}$. By (Proc GRes), $E \vdash Q: \mathbf{H}$.
(Red Res) Then $P=(v x: T) P^{\prime}$ and $Q=(v x: T) Q^{\prime}$ for some P^{\prime}, Q^{\prime} such that $P^{\prime} \rightarrow Q^{\prime}$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc Res), with $E, x: T \vdash$ $P^{\prime}: \mathbf{H}$. By induction hypothesis, $E, x: T \vdash Q^{\prime}: \mathbf{H}$. By (Proc Res), $E \vdash Q: \mathbf{H}$.
(Red \equiv) Then $P \equiv P^{\prime}$ and $Q \equiv Q^{\prime}$ for some P^{\prime}, Q^{\prime} such that $P^{\prime} \rightarrow Q^{\prime}$. Assume $E \vdash P: \mathbf{H}$. By Lemma B.16, $E \vdash P^{\prime}: \mathbf{H}$. By induction hypothesis, $E \vdash Q^{\prime}: \mathbf{H}$. By Lemma B.16, $E \vdash Q: \mathbf{H}$.
Next, we prove effect soundness for our extended π-calculus, the property that the group of any barb of a process is included in its effect. This fact correspond to Proposition 3.3 for the unextended π-calculus.

Proposition B. 18

If $E \vdash P: \mathbf{H}$ and $P \downarrow \beta$ with $\beta \in\{x, \bar{x}\}$ then there is a type polymorphic channel type $T \triangleq=G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E \vdash x: T$ and $G \in \mathbf{H}$.

Proof

By induction on the derivation of $P \downarrow \beta$.
(Barb Input) Then $P=x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) \cdot P^{\prime}$ and $\beta=x$. Assume $E \vdash$ $P: \mathbf{H}$. This must have been derived from (Proc Input) with $E \vdash P: \mathbf{H}_{1}$ and $E \vdash x: G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ and $G \in \mathbf{H}_{1}$ followed by a number of subsumption steps implying $\mathbf{H}_{1} \subseteq \mathbf{H}$. Hence $G \in \mathbf{H}$.
(Barb Output) Then $P=\bar{x}\left\langle G_{1}^{\prime}, \ldots, G_{m}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\rangle$ and $\beta=\bar{x}$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc Output) with $E \vdash P: \mathbf{H}_{1}$ and $E \vdash$ $x: G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ and $\mathbf{H}_{1}=\{G\} \cup \mathbf{G} \sigma$, where σ is the substitution $\left\{G_{1} \leftarrow G_{1}^{\prime}\right\} \cdots\left\{G_{m} \leftarrow G_{m}^{\prime}\right\}$, followed by a number of subsumption steps implying $\mathbf{H}_{1} \subseteq \mathbf{H}$. Hence, $G \in \mathbf{H}$.
(Barb GRes) Then $P=\left(v G^{\prime}\right) P^{\prime}$ for some P^{\prime} such that $P^{\prime} \downarrow \beta$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc GRes) with $E \vdash P: \mathbf{H}_{1}$ and $E, G^{\prime} \vdash P^{\prime}$: \mathbf{H}_{2} and $\mathbf{H}_{1}=\mathbf{H}_{2}-\left\{G^{\prime}\right\}$, followed by a number of subsumption steps implying $\mathbf{H}_{1} \subseteq \mathbf{H}$. By induction hypothesis, there is a type $W \triangleq G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E \vdash x: W$ and $G \in \mathbf{H}_{2}$. Hence, $G \in \mathbf{H}$.
(Barb Res) Then $P=(v y: T) P^{\prime}$ for some y, P^{\prime} such that $x \neq y$ and $P^{\prime} \downarrow \beta$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc Res) with $E \vdash P: \mathbf{H}_{1}$ and $E, y: T \vdash P^{\prime}: \mathbf{H}_{1}$, followed by a number of subsumption steps implying $\mathbf{H}_{1} \subseteq \mathbf{H}$. By induction hypothesis, there is a type $W \triangleq G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E, y: T \vdash x: W$ and $G \in \mathbf{H}_{1}$. Hence $G \in \mathbf{H}$. By Lemma B.12, $E \vdash x: W$.
(Barb Par) Then $P=\left(P^{\prime} \mid P^{\prime \prime}\right)$ with $P^{\prime} \downarrow \beta$. Assume $E \vdash P: \mathbf{H}$. This must have been derived from (Proc Par) with $E \vdash P: \mathbf{H}_{1}$, and $E \vdash P^{\prime}: \mathbf{H}^{\prime}$, and $E \vdash P^{\prime \prime}: \mathbf{H}^{\prime \prime}$, and $\mathbf{H}_{1}=\mathbf{H}^{\prime} \cup \mathbf{H}^{\prime \prime}$, followed by a number of subsumption steps implying $\mathbf{H}_{1} \subseteq \mathbf{H}$. By induction hypothesis, there is a type $W \triangleq G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E \vdash x: W$ and $G \in \mathbf{H}^{\prime}$. Hence, $G \in \mathbf{H}$.
(Barb \equiv) Then $P \equiv P^{\prime}$ for some P^{\prime} such that $P^{\prime} \downarrow \beta$. Assume $E \vdash P: \mathbf{H}$. By Lemma B.16, $E \vdash P^{\prime}: \mathbf{H}$.
By induction hypothesis, there is a type $W \triangleq G\left(G_{1}, \ldots, G_{m}\right)\left[T_{1}, \ldots, T_{n}\right] \backslash \mathbf{G}$ such that $E \vdash x: W$ and $G \in \mathbf{H}$.

B.3 Correctness of type erasure

In this section, we study the relations between the typed and untyped versions of the π-calculus defined in this paper. We prove Proposition B.22, which gives a simple correspondence between the reductions of a typed process, P, and the reductions of the untyped process obtained by erasing all type information from P. The benefit of this result is that it allows us to use the labelled transition semantics given in Appendix A. 3 to reason about typed processes. This is particularly useful because, in contrast with a labelled transition, a reduction tells us nothing about the possible interactions of a process with an arbitrary environment. Moreover, it is simpler to enumerate the possible transitions of a process than its possible reductions.

Lemma B. 19
For all typed processes P and Q, if $P \equiv Q$ then $\operatorname{erase}(P) \equiv \operatorname{erase}(Q)$.

Lemma B. 20

For all typed processes $P, P \downarrow \beta$ if and only if $\operatorname{erase}(P) \downarrow \beta$.
Lemma B. 21
If $E \vdash P$ and $\operatorname{erase}(P) \xrightarrow{\tau} R$ then there exists a typed process, Q, such that $P \rightarrow Q$ and $\operatorname{erase}(Q)=R$.

The following asserts that the reductions of a typed process, of our extending π-calculus, according to the typed operational semantics are equivalent to the reductions of the untyped erasure of the process according to the untyped operational semantics. A proof of Proposition 3.1, a similar property for the unextended π calculus, can be obtained by simplifying the following proof.

Proposition B. 22

For all typed processes P and Q, if $P \rightarrow Q$ then $\operatorname{erase}(P) \rightarrow \operatorname{erase}(Q)$. If $E \vdash P$ and $\operatorname{erase}(P) \rightarrow R$ then there is a typed process Q such that $P \rightarrow Q$ and $R \equiv \operatorname{erase}(Q)$.

Proof

The first implication is proved by a simple induction on the derivation of $P \rightarrow Q$, with appeal to Lemma B.19.

Assume $E \vdash P$ and $\operatorname{erase}(P) \rightarrow R$. By Proposition A.1, there is an untyped process S such that $\operatorname{erase}(P) \xrightarrow{\tau} S$ and $S \equiv R$. By Lemma B.21, there exists a typed process Q such that $P \rightarrow Q$ and $\operatorname{erase}(Q)=S$. By (Struct Trans), erase $(Q) \equiv R$, as required.

Using Proposition B.22, it is possible to prove that two typed processes with equivalent erasures, according to the untyped barbed congruence defined in Appendix A.4, are barbed congruent.
Proposition B. 23
If $E \vdash P$ and $E \vdash Q$ and $\operatorname{erase}(P) \approx \operatorname{erase}(Q)$ then $E \vdash P \approx Q$.

B.4 Properties of Barbed Congruence

In this section we study some properties of typed barbed congruence. We prove that structurally equivalent processes of the extended π-calculus are barbed congruent. This fact corresponds to Proposition $3.4(4)$ for the unextended π-calculus. We also prove Proposition B.27, that barbed congruence is indeed a compositional equivalence relation. The proof of this property relies on Lemma B.26, that barbed congruence is preserved by arbitrary substitutions of groups for groups. It also relies on the fact that, by definition, barbed congruence is preserved by E-renamings, that is, substitution of names for names that respect the type information.

Lemma B. 24

If $P \equiv Q$ and $E \vdash P$ then $E \vdash P \approx Q$

Proof

Let \mathscr{S} be the smallest relation on typed processes that contains \approx and such that $E \vdash P \mathscr{S} Q$ if $P \equiv Q$ and $E \vdash P$. The relation \mathscr{S} is a well-defined relation on typed processes since \approx is a relation on typed processes and if $P \equiv Q$ and $E \vdash P$ then, by Proposition B.17, $E \vdash Q$. Note that \mathscr{S} is symmetric. We prove that \mathscr{S} is a barbed bisimulation. The only interesting case is when $E \vdash P$ and $P \equiv Q$.
(1) Assume $P \downarrow \beta$. By rule ($\mathrm{Barb} \equiv$), $Q \downarrow \beta$, as required.
(2) Assume $P \rightarrow P^{\prime}$. By (Red \equiv), $Q \rightarrow P^{\prime}$ and, since \approx is reflexive, $P^{\prime} \mathscr{S} P^{\prime}$, as required.

Therefore \mathscr{S} is a barbed bisimulation and for all processes P, Q such that $E \vdash P$ and $P \equiv Q$, we get that $E \vdash P \dot{\approx}$.

Assume $E \vdash P$ and $P \equiv Q$. Let R be an arbitrary typed process, σ be an arbitrary E-renaming and E^{\prime} be an environment such that $E, E^{\prime} \vdash R$. By Lemma B. 14 several times and rule (Struct Par), $E \sigma, E^{\prime} \vdash P \sigma \mid R$ and $P \sigma|R \equiv Q \sigma| R$. Therefore, $E \sigma, E^{\prime} \vdash P \sigma|R \dot{\approx} Q \sigma| R$. Hence, $E \vdash P \approx Q$, as required.

We show that barbed congruence for the extended π-calculus is closed by E renamings, that is, substitutions of names for names that respect types. This fact corresponds to Proposition 3.4(3), for the unextended π-calculus.

Lemma B. 25

If $E \vdash P \approx Q$ and σ is an E-renaming then $E \sigma \vdash P \sigma \approx Q \sigma$.
Proof
Assume $E \vdash P \approx Q$ and σ is an E-renaming. By definition, $E \sigma, E^{\prime} \vdash P \sigma|R \approx Q \sigma| R$ for any process R such that $E \sigma, E^{\prime} \vdash R$. Since $E \sigma \vdash \mathbf{0}$, we get that $E \sigma \vdash P \sigma \mid \mathbf{0} \approx$ $Q \sigma \mid \mathbf{0}$. By Lemma B. 24 and transitivity of \approx, since $P \sigma \mid \mathbf{0} \equiv P \sigma$ and $Q \sigma \mid \mathbf{0} \equiv Q$, we get that $E \sigma \vdash P \sigma \approx Q \sigma$.

We introduce some new notations to simplify the presentation of the following properties. If E is a type environment $G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}$, let $x(E) . P$ be the process $x\left(G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}\right) . P$. In particular, $x(\varnothing) . P=x() . P$. If σ is a substitution of groups for groups, the environment $E \sigma$ is defined as follows: $\varnothing \sigma \stackrel{\Delta}{=} \varnothing ;\left(E^{\prime}, x: T\right) \sigma \stackrel{\Delta}{=} E^{\prime} \sigma, x: T \sigma ;\left(E^{\prime}, G\right) \sigma \stackrel{\Delta}{=} E^{\prime} \sigma, \sigma(G)$ if $\sigma(G) \notin \operatorname{dom}\left(E^{\prime} \sigma\right)$, and $E^{\prime} \sigma$ otherwise. We have:

Lemma B. 26

If $E \vdash P \approx Q$ and σ is a substitution of groups for groups then $E \sigma \vdash P \sigma \approx Q \sigma$.
Next, we prove that barbed congruence for the extended π-calculus satisfies the congruence property. This fact corresponds to Proposition 3.4(2), for the unextended π-calculus.

Proposition B. 27

(1) Let E^{\prime} be the environment $G_{1}, \ldots, G_{m}, y_{1}: T_{1}, \ldots, y_{n}: T_{n}$. If $E, E^{\prime} \vdash P \approx Q$ then $E \vdash x\left(E^{\prime}\right) \cdot P \approx x\left(E^{\prime}\right) \cdot Q$.
(2) If $E \vdash P \approx Q$ and $E \vdash R$ then $E \vdash P|R \approx Q| R$.
(3) If $E, x: T \vdash P \approx Q$ then $E \vdash(v x: T) P \approx(v x: T) Q$.
(4) If $E, G \vdash P \approx Q$ then $E \vdash(v G) P \approx(v G) Q$.
(5) If $E \vdash P \approx Q$ then $E \vdash!P \approx!Q$.

Proof
For the sake of brevity, we only prove the case for input prefix, which is the most difficult case. The proofs for the other cases are similar. As in the proof of Lemma B. 24 , the property follows by defining a candidate barbed bisimulation, \mathscr{S}, that is closed by renamings and parallel composition. Let \mathscr{S} be the smallest relation on typed processes that contains \approx and such that $E \vdash x\left(E^{\prime}\right) \cdot P\left|R \mathscr{S} x\left(E^{\prime}\right) \cdot Q\right| R$ for all processes P, Q, R such that $E, E^{\prime} \vdash P \approx Q$ and $E \vdash R$. Note that \mathscr{S} is a symmetric relation on typed processes. We prove that \mathscr{S} is a barbed bisimulation. The only interesting case is when $E \vdash x\left(E^{\prime}\right) \cdot P\left|R \mathscr{S} x\left(E^{\prime}\right) \cdot Q\right| R$, where $E, E^{\prime} \vdash P \approx Q$.
(1) Assume $x\left(E^{\prime}\right) . P \mid R \downarrow \bar{x}$. By Lemma B.20, Proposition A. 2 and inspection of the possible transitions, it must be the case that $R \downarrow \bar{x}$. By (Barb Par) and (Barb \equiv), since $R \downarrow \bar{x}$, we get that $x\left(E^{\prime}\right) \cdot Q \mid R \downarrow \bar{x}$, as required.
(2) Assume $x\left(E^{\prime}\right) . P \mid R \rightarrow P^{\prime}$. Suppose E^{\prime} is the type environment G_{1}, \ldots, G_{m}, $y_{1}: T_{1}, \ldots, y_{n}: T_{n}$. By Propositions B. 22 and A. 1 and inspection of the possible transitions, either (1) $R \rightarrow R^{\prime}$ and $P^{\prime} \equiv x\left(E^{\prime}\right) . P \mid R^{\prime}$, or (2) $R \equiv\left(v E^{\prime \prime}\right)\left(\bar{x}\left\langle H_{1}, \ldots\right.\right.$, $\left.\left.H_{m}, z_{1}, \ldots, z_{n}\right\rangle \mid R^{\prime}\right)$ and $P^{\prime} \equiv\left(v E^{\prime \prime}\right)\left(P \sigma_{G} \sigma_{y} \mid R^{\prime}\right)$ with $\sigma_{G}=\left\{G_{1} \leftarrow H_{1}\right\} \cdots$ $\left\{G_{m} \leftarrow H_{m}\right\}$ and $\sigma_{y}=\left\{y_{1} \leftarrow z_{1}\right\} \cdots\left\{y_{n} \leftarrow z_{n}\right\}$.

For (1), by (Red Par), $x\left(E^{\prime}\right) . Q\left|R \rightarrow x\left(E^{\prime}\right) \cdot Q\right| R^{\prime}$. By Proposition B.17, $E \vdash R^{\prime}$. Hence, $E \vdash x\left(E^{\prime}\right) . P\left|R^{\prime} \mathscr{S} x\left(E^{\prime}\right) . Q\right| R^{\prime}$, as required.
For (2), let Q^{\prime} be the process $\left(v E^{\prime \prime}\right)\left(Q \sigma_{G} \sigma_{y} \mid R^{\prime}\right)$. By (Red Interact), (Red Par) and ($\mathrm{Red} \equiv$), $x\left(E^{\prime}\right) . Q \mid R \rightarrow Q^{\prime}$. By Lemma B.26, since $E, E^{\prime} \vdash P \approx Q$, we get that $\left(E, E^{\prime}\right) \sigma_{G} \vdash P \sigma_{G} \approx Q \sigma_{G}$. Since the names in E^{\prime} and $E^{\prime \prime}$ are bound, we can assume that $\operatorname{dom}\left(E^{\prime}\right) \cap \operatorname{dom}\left(E^{\prime \prime}\right)=\varnothing$. By Lemma B. 13 several times and since $E, E^{\prime \prime} \vdash \bar{x}\left\langle H_{1}, \ldots, H_{m}, z_{1}, \ldots, z_{n}\right\rangle \mid R^{\prime}$, we get that $E^{\prime \prime \prime} \vdash P \sigma_{G} \approx Q \sigma_{G}$, where $E^{\prime \prime \prime}$ is the type environment $E, E^{\prime \prime}, y_{1}: T_{1} \sigma_{G}, \ldots, y_{n}: T_{n} \sigma_{G}$. Since $E \vdash x\left(E^{\prime}\right) . P \mid R$, $E \vdash x\left(E^{\prime}\right) . Q \mid R$ and $E, E^{\prime \prime} \vdash \bar{x}\left\langle H_{1}, \ldots, H_{m}, z_{1}, \ldots, z_{n}\right\rangle \mid R^{\prime}$, the substitution σ_{y} is an $E^{\prime \prime \prime}$-renaming. By Lemma B.25, since $\left(E, E^{\prime}\right) \sigma_{G} \vdash P \sigma_{G} \approx Q \sigma_{G}$ and $z_{i} \in \operatorname{dom}\left(E, E^{\prime \prime}\right)$ for each $i \in 1 . . n$, we get that $E, E^{\prime \prime} \vdash P \sigma_{G} \sigma_{y} \approx Q \sigma_{G} \sigma_{y}$. Therefore, using laws (2), (3) and (4), we get that $E \vdash\left(v E^{\prime \prime}\right)\left(P \sigma_{G} \sigma_{y} \mid R^{\prime}\right) \approx$ $\left(v E^{\prime \prime}\right)\left(Q \sigma_{G} \sigma_{y} \mid R^{\prime}\right)$. Hence, since the relation \approx (and then also $\left.\equiv\right)$ is in \mathscr{S}, we get that $E \vdash P^{\prime} \mathscr{S} Q^{\prime}$, as required.

Therefore \mathscr{S} is a barbed bisimulation and if $E, E^{\prime} \vdash P \approx Q$ then $E \vdash x\left(E^{\prime}\right) . P \mid$ $R \dot{\approx} x\left(E^{\prime}\right) \cdot Q \mid R$ for any process R such that $E \vdash R$. Assume $E, E^{\prime} \vdash P \approx Q$. Let R be an arbitrary typed process, σ be an arbitrary E-renaming and $E^{\prime \prime}$ be an environment such that $E, E^{\prime \prime} \vdash R$. Since the names in E^{\prime} are bound we can assume that $\operatorname{dom}\left(E^{\prime}\right) \cap \operatorname{dom}\left(E^{\prime \prime}\right)=\varnothing$. Therefore, by Lemmas B. 13 and B.14, $E \sigma, E^{\prime \prime}$, $E^{\prime} \vdash P \sigma \approx Q \sigma$, and then $E \sigma, E^{\prime \prime} \vdash x\left(E^{\prime}\right) \cdot P \sigma\left|R \dot{\approx} x\left(E^{\prime}\right) . Q \sigma\right| R$. Hence, $E \vdash x\left(E^{\prime}\right) \cdot P \approx x\left(E^{\prime}\right) \cdot Q$, as desired.

B. 5 Garbage collection for the π-calculus

In this section we prove Theorem B.30, the garbage collection principle used to prove the soundness of the region analysis. This property follows from several intermediate lemmas that prove that processes with non-intersecting effects cannot interact. For example, Lemma B. 28 shows that these processes cannot synchronize. In the sense that their parallel composition do not introduce new silent transitions. This property is essential in the proof of Lemma B. 29 , an equivalent of the garbage collection property for the barbed bisimilarity relation.

Lemma B. 28

For any processes P and R such that $E, G, E^{\prime} \vdash P: \mathbf{H}$ and $E, G, E^{\prime} \vdash R:\{G\}$ and $G \notin \mathbf{H}$, if $\operatorname{erase}(P \mid R) \xrightarrow{\alpha} A$ then there is an agent A^{\prime} such that $\operatorname{erase}(P) \xrightarrow{\alpha} A^{\prime}$ and $A=A^{\prime} \mid \operatorname{erase}(R)$, or such that $\operatorname{erase}(R) \xrightarrow{\alpha} A^{\prime}$ and $A=\operatorname{erase}(P) \mid A^{\prime}$.

Lemma B. 29
For any processes P, R such that $E, G, E^{\prime} \vdash R:\{G\}$ and $E, G, E^{\prime} \vdash P: \mathbf{H}$ and $G \notin \mathbf{H}$, we have: $E \vdash(v G)\left(v E^{\prime}\right)(P \mid R) \dot{\approx}(v G)\left(v E^{\prime}\right) P$.

The following is the garbage collection principle for our extended π-calculus. A proof of Theorem 4.3, garbage collection for the unextended π-calculus, can be obtained by simplifying the following proof.

Theorem B. 30
Suppose $E, G, E^{\prime} \vdash P: \mathbf{H}$ and $E, G, E^{\prime} \vdash R:\{G\}$ where $G \notin \mathbf{H}$. Then $E \vdash$ $(v G)\left(v E^{\prime}\right)(P \mid R) \approx(v G)\left(v E^{\prime}\right) P$.

Proof
To show that $(v G)\left(v E^{\prime}\right)(P \mid R)$ and $(v G)\left(v E^{\prime}\right) P$ are barbed congruent, and hence prove the theorem, we consider an arbitrary process Q, type environment $E^{\prime \prime}$ and E-renaming σ such that $E \sigma, E^{\prime \prime} \vdash Q$, and show that $E \sigma, E^{\prime \prime} \vdash(v G)\left(v E^{\prime}\right)(P \mid R) \sigma \mid$ $Q \dot{\approx}\left((v G)\left(v E^{\prime}\right) P\right) \sigma \mid Q$.

Assume $E \sigma, E^{\prime \prime} \vdash Q: \mathbf{G}$. Since the names in $\operatorname{dom}\left(G, E^{\prime}\right)$ are bound, we may assume that $\operatorname{dom}\left(G, E^{\prime}\right) \cap\left(\operatorname{dom}\left(E^{\prime \prime}\right) \cup \operatorname{dom}(\sigma) \cup \operatorname{ran}(\sigma)\right)=\varnothing$. Hence, since $f n(Q) \subseteq$ $\operatorname{dom}\left(E \sigma, E^{\prime \prime}\right)$ and $\mathbf{G} \subseteq \operatorname{dom}\left(E \sigma, E^{\prime \prime}\right)$, we get that $f n(Q) \cap \operatorname{dom}\left(G, E^{\prime}\right)=\varnothing$ and $G \notin \mathbf{G}$. By Lemma B. 14 several times, and since $E, G, E^{\prime} \vdash P: \mathbf{H}$, we get that $E \sigma, E^{\prime \prime}, G, E^{\prime} \vdash$ $P \sigma:$ H. By Lemma B.13, $E \sigma, E^{\prime \prime}, G, E^{\prime} \vdash Q: \mathbf{G}$. By (Proc Par), $E \sigma, E^{\prime \prime}, G, E^{\prime} \vdash(P \sigma \mid$ $Q): \mathbf{G} \cup \mathbf{H}$ with $G \notin \mathbf{G} \cup \mathbf{H}$. Since $\operatorname{dom}\left(G, E^{\prime}\right) \cap\left(\operatorname{dom}\left(E^{\prime \prime}\right) \cup \operatorname{dom}(\sigma) \cup \operatorname{ran}(\sigma)\right)=\varnothing$, we get that:

$$
\begin{aligned}
(v G)\left(v E^{\prime}\right)(P \mid R) \sigma \mid Q & \equiv(v G)\left(v E^{\prime}\right)(P \sigma|Q| R \sigma) \\
\left((v G)\left(v E^{\prime}\right) P\right) \sigma \mid Q & \equiv(v G)\left(v E^{\prime}\right)(P \sigma \mid Q)
\end{aligned}
$$

By Lemma B.29, $E \sigma, E^{\prime} \vdash(v G)\left(v E^{\prime}\right)(P \mid R) \sigma\left|Q \dot{\approx}\left((v G)\left(v E^{\prime}\right) P\right) \sigma\right| Q$, as required.

B.6 Properties of the encoding

In this section we prove the soundness of the region analysis for the extended region calculus. For the sake of clarity, this proof is divided into simpler goals as follows.

In section B.6.1, we prove that our encoding of the extended region calculus in the extended π-calculus preserves the static semantics given in section 6.1.

In section B.6.3, we prove Theorem B.35, a similar result for the dynamic semantics. Results of dynamic adequacy are often difficult to prove directly when the source calculus is defined with a big-step semantics. To circumvent this difficulty, we follow a standard method and define an equivalent small-step semantics for the region calculus. This semantics is given in section B. 6.2 where we also prove Theorem B.33, which relates the small-step and big-step semantics.

In section B.6.4, we prove that defunct regions make no difference to the behaviour of a well-typed program. This result is essentially based on the garbage collection theorem proved in section B.5, which is used to prove that the encoding of a welltyped configuration is behaviourally equivalent to the process obtained by erasing from the heap all the references stored in defunct regions.

B.6.1 Proof of static adequacy

We prove Theorem B.32, that the encoding of the extended region calculus in our extended π-calculus preserves the static semantics. This fact corresponds to Theorem 4.1 for the unextended calculi. The proof of this property uses an intermediate
result, Lemma B.31, that the encoding of a well-typed value stored in region ρ is a well-typed process with effect $\{\rho\}$.

Lemma B. 31
If $H \models h$ and $h(\rho)(p)=v$ then $\llbracket e n v(H) \rrbracket \vdash \llbracket p \mapsto v \rrbracket:\{\rho\}$.
Theorem B. 32 (Static Adequacy)
(1) If $E \vdash \diamond$ then $\llbracket E \rrbracket \vdash \diamond$.
(2) If $E \vdash A$ then $\llbracket E \rrbracket \vdash \llbracket A \rrbracket$.
(3) If $E \vdash a:^{e} A$ and $k \notin \operatorname{dom}(\llbracket E \rrbracket)$ then $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e \cup\{K\}$
(4) If $H \models h$ and $\rho \in \operatorname{dom}(H)$ then $\llbracket e n v(H) \rrbracket \vdash \llbracket h(\rho) \rrbracket:\{\rho\}$
(5) If $H \models S \cdot(a, h): A$ and $k \notin \llbracket e n v(H) \rrbracket$ then

$$
\llbracket e n v(H) \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \mid \llbracket h \rrbracket: \operatorname{dom}(H) \cup\{K\}
$$

and also $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot(a, h) \rrbracket k: S \cup\{K\}$
Proof
Parts (1) and (2) follow easily by induction on the structure of E. We prove part (3) by induction on the derivation of $E \vdash a: e A$. Recall that $G\left[T_{1}, \ldots, T_{n}\right]$ is a shorthand for the type $G()\left[T_{1}, \ldots, T_{n}\right] \backslash \varnothing$.
$(\operatorname{Exp} x)$ Then $a=x$ and $E=E_{1}, x: A, E_{2}$ and $e=\varnothing$. Assume $k \notin L \cup \operatorname{dom}(E)$. Then $\llbracket E \rrbracket \vdash x: \llbracket A \rrbracket$. By (Proc Output) and Lemma B.13, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \bar{k}\langle x\rangle:\{K\}$, as required.
$\mathbf{(\operatorname { E x p } l)}$ Then $a=l$, where $l \in L$ and $A=$ Lit. By definition, $\llbracket E \rrbracket \vdash l:$ Lit $\llbracket]$. Assume $k \notin L \cup \operatorname{dom}(E)$. By (Proc Output) and Lemma B.13, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \bar{k}\langle l\rangle:\{K\}$, as required.
(Exp Appl) Then $a=x\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](y)$ and $e=\{\rho\} \cup e^{\prime} \sigma$, with $E \vdash x: \varnothing \quad F$ and $E \vdash y: \varnothing B_{1} \sigma$ and $F=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] B_{1} \xrightarrow{e^{\prime}} B_{2}\right)$ at ρ and $\sigma=\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}$ and $A=B_{2} \sigma$ and $\left\{\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right\} \subseteq \operatorname{dom}(E)$. Then $\llbracket E \rrbracket \vdash x: \llbracket F \rrbracket$ and $\llbracket E \rrbracket \vdash y: \llbracket B_{1} \sigma \rrbracket$. Assume $k \notin L \cup \operatorname{dom}(E)$. By (Exp Unfold) and Lemma B.13:

$$
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash x: \rho\left(\rho_{1}, \ldots, \rho_{n}\right)\left[\llbracket B_{1} \rrbracket, K\left[\llbracket B_{2} \rrbracket\right]\right] \backslash\left(e^{\prime} \cup\{K\}\right)
$$

By (Proc Output), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \bar{x}\left\langle\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}, y, k\right\rangle: e^{\prime} \sigma \cup\{K\}$, as required.
$\left(\operatorname{Exp}\right.$ Let) Then $a=\left(\right.$ let $x=b_{B}$ in c) and $e=e^{\prime} \cup e^{\prime \prime}$, with $E \vdash b . e^{\prime} B$ and $E, x: B \vdash c: e^{\prime \prime} A$. Assume $k \notin L \cup \operatorname{dom}(E)$. By induction hypothesis:

$$
\left\{\begin{array}{l}
\llbracket E \rrbracket, k^{\prime}: K[\llbracket B \rrbracket] \vdash \llbracket b \rrbracket k^{\prime}: e^{\prime} \cup\{K\} \\
\llbracket E \rrbracket, x: \llbracket B \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket c \rrbracket k: e^{\prime \prime} \cup\{K\}
\end{array}\right.
$$

By (Proc Input) and Lemmas B. 12 and B.10:

$$
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], k^{\prime}: K[\llbracket B \rrbracket] \vdash k^{\prime}(x: \llbracket B \rrbracket) \cdot \llbracket c \rrbracket k:\{K\} \cup\left(e^{\prime \prime} \cup\{K\}\right)
$$

By (Proc Par) and (Proc Res):

$$
\begin{aligned}
& \llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash\left(v k^{\prime}: K[\llbracket B \rrbracket]\right)\left(\llbracket b \rrbracket k^{\prime} \mid\right. \\
& \left.\quad k^{\prime}(x: \llbracket B \rrbracket) . \llbracket c \rrbracket k\right):\left(e^{\prime} \cup\{K\}\right) \cup\left(e^{\prime \prime} \cup\{K\}\right)
\end{aligned}
$$

Hence, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e \cup\{K\}$, as required.
$\left(\operatorname{Exp}\right.$ Letregion) Then $a=$ letregion ρ in b and $e=e^{\prime}-\{\rho\}$, with $E, \rho \vdash b: e^{\prime} A$ and $E \vdash A$. Assume $k \notin L \cup \operatorname{dom}(E)$. By induction hypothesis, $\llbracket E \rrbracket, \rho, k: K[\llbracket A \rrbracket] \vdash$ $\llbracket b \rrbracket k: e^{\prime} \cup\{K\}$. By part (2), $\llbracket E \rrbracket \vdash \llbracket A \rrbracket$. Therefore, since $\rho \notin \operatorname{dom}(E)$, we have that $\rho \notin f g(K[\llbracket A \rrbracket])$ and, by Lemma B.11, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], \rho \vdash \llbracket b \rrbracket k: e^{\prime} \cup\{K\}$. By (Proc GRes), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash(v \rho) \llbracket b \rrbracket k:\left(e^{\prime} \cup\{K\}\right)-\{\rho\}$, as required.
(Exp Case) Then $a=$ case $x_{[B] a t \rho}$ of nil $\Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}$ and $e=\{\rho\} \cup e_{1} \cup e_{2}$, with $E \vdash x: \varnothing[B]$ at ρ and $E \vdash b_{1}::^{e_{1}} A$ and $E, y_{1}: B, y_{2}:[B]$ at $\rho \vdash b_{2}:^{\cdot e_{2}} A$. Assume $k \notin L \cup \operatorname{dom}(E)$. By induction hypothesis:

$$
\left\{\begin{array}{l}
\llbracket E \rrbracket \vdash x: \llbracket[B] \text { at } \rho \rrbracket \\
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket b_{1} \rrbracket k: e_{1} \cup\{K\} \\
\llbracket E \rrbracket, y_{1}: \llbracket B \rrbracket, y_{2}: \llbracket[B] \text { at } \rho \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket b_{2} \rrbracket k: e_{2} \cup\{K\}
\end{array}\right.
$$

By (Exp Unfold), $\llbracket E \rrbracket \vdash x: \rho[\rho[], \rho[\llbracket B \rrbracket, \llbracket[B]$ at $\rho \rrbracket]]$. By Lemma B. 13 and (Proc Output):

$$
\left\{\begin{array}{l}
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], z_{1}: \rho[], z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash \bar{x}\left\langle z_{1}, z_{2}\right\rangle:\{\rho\} \\
\left.\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], z_{1}: \rho \llbracket\right], z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash z_{1}() \cdot \llbracket b_{1} \rrbracket k: e_{1} \cup\{K\} \\
\left.\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], z_{1}: \rho \llbracket\right], z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash \\
z_{2}\left(y_{1}: \llbracket B \rrbracket, y_{2}: \llbracket[B] \text { at } \rho \rrbracket\right) . \llbracket b_{2} \rrbracket k: e_{2} \cup\{K\}
\end{array}\right.
$$

By (Proc Par) and (Proc Res), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k:\{\rho\} \cup\left(e_{1} \cup\{K\}\right) \cup\left(e_{2} \cup\{K\}\right)$, as required.
(Exp Fun) Then $a=v$ at ρ and $e=\{\rho\}$ and $A=\left(\forall\left[\rho_{1}, \ldots, \rho_{n}\right] B_{1} \xrightarrow{e} B_{2}\right)$ at ρ, where v is the function $\left(\mu(f: A) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b\right)$ and $E, f: A, \rho_{1}, \ldots, \rho_{n}, x: B_{1} \vdash b: e^{\prime} B_{2}$ and $e^{\prime} \subseteq e \subseteq \operatorname{dom}\left(E, \rho_{1}, \ldots, \rho_{n}\right)$. Assume $k \notin L \cup \operatorname{dom}(E) \cup\{p\}$. Since f and p are bound names, we can also assume that $k \notin\{f, p\}$. By induction hypothesis and Lemma B.13:

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, f: \llbracket A \rrbracket, \rho_{1}, \ldots, \rho_{n}, x: \llbracket B_{1} \rrbracket, k: K\left[\llbracket B_{2} \rrbracket\right] \vdash \llbracket b \rrbracket k: e^{\prime} \cup\{K\}
$$

By Lemma B.14:

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, \rho_{1}, \ldots, \rho_{n}, x: \llbracket B_{1} \rrbracket, k: K\left[\llbracket B_{2} \rrbracket\right] \vdash \llbracket b\{f \leftarrow p\} \rrbracket k: e^{\prime} \cup\{K\}
$$

By $(\operatorname{Exp} x)$ and (Exp Unfold):

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket \vdash p: \rho\left(\rho_{1}, \ldots, \rho_{n}\right)\left[\llbracket B_{1} \rrbracket, K\left[\llbracket B_{2} \rrbracket\right]\right] \backslash(e \cup\{K\})
$$

By (Proc Input), $\llbracket E \rrbracket, p: \llbracket A \rrbracket \vdash \llbracket p \mapsto v \rrbracket:\{\rho\}$. By (Proc Output) and Lemma B.13, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], p: \llbracket A \rrbracket \vdash \bar{k}\langle p\rangle:\{K\}$. By (Proc Par) and (Proc Res), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash$ $(v p: \llbracket A \rrbracket)(\llbracket p \mapsto v \rrbracket \mid \bar{k}\langle p\rangle):\{K, \rho\}$, as required.
$(\operatorname{Exp}$ Nil) Then $a=$ nil at ρ and $e=\{\rho\}$ and $A=[B]$ at ρ, where $E \vdash[B]$ at ρ. By part (2), $\llbracket E \rrbracket \vdash \llbracket[B]$ at $\rho \rrbracket$. By Lemma B.13:

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, z_{1}: \rho \llbracket, z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash \overline{z_{1}}\langle \rangle:\{\rho\}
$$

By $(\operatorname{Exp} x)$ and (Exp Unfold):

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, z_{1}: \rho[], z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash p: \rho[\rho[], \rho[\llbracket B \rrbracket, \mathbb{\llbracket}[B] \text { at } \rho \rrbracket]]
$$

By (Proc Input), $\llbracket E \rrbracket, p: \llbracket A \rrbracket \vdash \llbracket p \mapsto n i l_{[B] a t p} \rrbracket:\{\rho\}$. Assume $k \notin L \cup \operatorname{dom}(E) \cup\{p\}$. By (Proc Output) and Lemma B.13, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], p: \llbracket A \rrbracket \vdash \bar{k}\langle p\rangle:\{K\}$. By (Proc Par) and (Proc Res), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash(v p: \llbracket A \rrbracket)\left(\llbracket p \mapsto n i l_{A} \rrbracket \mid \bar{k}\langle p\rangle\right):\{K, \rho\}$, as required.
(Exp Cons) Then $a=\left(x_{1}:: x_{2}\right)$ at ρ and $e=\{\rho\}$ and $A=[B]$ at ρ, where $E \vdash x_{1}: \varnothing B$ and $E \vdash x_{2}: \varnothing[B]$ at ρ. By part (1), $\llbracket E \rrbracket \vdash x_{1}: \llbracket B \rrbracket$ and $\llbracket E \rrbracket \vdash x_{2}: \llbracket[B]$ at $\rho \rrbracket$. By ($\operatorname{Exp} x$), (Exp Unfold) and Lemma B.13:

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, z_{1}: \rho \llbracket, z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash p: \rho[\rho \rrbracket, \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket]]
$$

By (Proc Output):

$$
\llbracket E \rrbracket, p: \llbracket A \rrbracket, z_{1}: \rho \rrbracket, z_{2}: \rho[\llbracket B \rrbracket, \llbracket[B] \text { at } \rho \rrbracket] \vdash \overline{z_{2}}\left\langle x_{1}, x_{2}\right\rangle:\{\rho\}
$$

By (Proc Input), $\llbracket E \rrbracket, p: \llbracket A \rrbracket \vdash \llbracket p \mapsto\left(x_{1}:: x_{2}\right)_{A} \rrbracket:\{\rho\}$. Assume $k \notin L \cup \operatorname{dom}(E) \cup$ $\{p\}$. By (Proc Output) and Lemma B.13, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket], p: \llbracket A \rrbracket \vdash \bar{k}\langle p\rangle:\{K\}$. By (Proc Par) and (Proc Res), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash(v p: \llbracket A \rrbracket)\left(\llbracket p \mapsto\left(x_{1}:: x_{2}\right)_{A} \rrbracket \mid \bar{k}\langle p\rangle\right)$: $\{K, \rho\}$, as required.
We prove part (4) by case analysis. Assume $H \models h$ and $\rho \in \operatorname{dom}(H)$. The judgment $H \models h$ must have been derived from (Heap Good) with env $(H) \vdash h(\rho)$ at $\rho: H(\rho)$. This must have been derived from (Region Good) with $h(\rho)=\left(p_{i} \mapsto v_{i}\right)^{i \in 1 . . n}$ and $H(\rho)=\left(p_{i}: A_{i}\right)^{i \in 1 . n}$ and $\operatorname{env}(H) \vdash v_{i}$ at $\rho:\left\{{ }^{\{\rho\}} A_{i}\right.$ for all $i \in 1$..n. By (Exp $\left.x\right)$, since $H(\rho)=\left(p_{i}: A_{i}\right)^{i \in 1 . n}$, we get that $\operatorname{env}(H) \vdash p_{i}:{ }^{\varnothing} A_{i}$ for each $i \in 1$ 1..n. Then $\llbracket e n v(H) \rrbracket \vdash p_{i}: \llbracket A_{i} \rrbracket$. By Lemma B.31, $\llbracket e n v(H) \rrbracket \vdash \llbracket p_{i} \mapsto v_{i} \rrbracket:\{\rho\}$ for each $i \in 1 . . n$. By (Proc Par), $\llbracket e n v(H) \rrbracket \vdash \prod_{i \in 1 . . n} \llbracket p_{i} \mapsto v_{i} \rrbracket:\{\rho\}$. Hence, $\llbracket e n v(H) \rrbracket \vdash \llbracket h(\rho) \rrbracket:\{\rho\}$.

We prove part (5) by case analysis. Assume $H \models S \cdot(a, h): A$ and $k \notin \operatorname{dom}_{2}(H) \cup L$. Only (Config Good) can derive this judgment and so $e n v(H) \vdash a:^{e} A, e \cup f g(A) \subseteq S$, $H \models h$, and $S \subseteq \operatorname{dom}(H)$. By part (3), $\llbracket e n v(H) \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e \cup\{K\}$. By part (4) and (Proc Par), $\llbracket e n v(H) \rrbracket \vdash \llbracket h \rrbracket: \bigcup_{\rho \in \operatorname{dom}(H)}\{\rho\}$. By (Proc Par) and Lemma B.13, $\llbracket e n v(H) \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \mid \llbracket h \rrbracket: \operatorname{dom}(H) \cup e \cup\{K\}$. Since $e \subseteq \operatorname{dom}(H)$, we get that $\llbracket e n v(H) \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \mid \llbracket h \rrbracket: \operatorname{dom}(H) \cup\{K\}$, as desired.

By (Proc Res) and (Proc GRes), since $\operatorname{env}(H)=\operatorname{dom}(H), p t r(H)$, we get that $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash(v(\operatorname{dom}(H)-S))(v \llbracket p \operatorname{tr}(H) \rrbracket)(\llbracket a \rrbracket k \mid \llbracket h \rrbracket): S \cup\{K\}$, that is, $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot\left(a, h_{H}\right) \rrbracket k: S \cup\{K\}$.

B.6.2 An auxiliary small-step semantics

This section defines an auxiliary small-step semantics for the region calculus. We prove Theorem B.33, that relates small-step reductions to evaluations in the big-step semantics.
Continuations and Control Stack:

$c::=$	continuations
	popregion ρ
	$(x: A) b$
$C:=\left[c_{1}, \ldots, c_{n}\right]$	marker to deallocate region ρ

The reduction relation, $S \cdot(a, h, C) \rightarrow S^{\prime} \cdot\left(a^{\prime}, h^{\prime}, C^{\prime}\right)$, may be read: in an initial heap h, with control stack C and live regions S, the expression a reduces to a^{\prime} with updated heap h^{\prime}, control stack C^{\prime}, and live regions S^{\prime}.

Reduction: $S \cdot(a, h, C) \rightarrow S^{\prime} \cdot\left(a^{\prime}, h^{\prime}, C^{\prime}\right)$
(Red Alloc)
$\frac{\rho \in S \quad p \notin \operatorname{dom}_{2}(h)}{S \cdot(v \text { at } \rho, h, C) \rightarrow S \cdot(p, h+(\rho \mapsto(h(\rho)+(p \mapsto v))), C)}$
(Red Appl)
$\frac{\rho \in S \quad h(\rho)(p)=\mu(f: A) \lambda\left[\rho_{1}, \ldots, \rho_{n}\right](x) b}{S \cdot\left(p\left[\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right](q), h, C\right) \rightarrow S \cdot\left(b\{f \leftarrow p\}\left\{\rho_{1} \leftarrow \rho_{1}^{\prime}\right\} \cdots\left\{\rho_{n} \leftarrow \rho_{n}^{\prime}\right\}\{x \leftarrow q\}, h, C\right)}$
(Red Let)

$$
S \cdot\left(\text { let } x=a_{A} \text { in } b, h, C\right) \rightarrow S \cdot(a, h,(x: A) b:: C)
$$

(Red Pop Let)

$$
S \cdot(p, h,(x: A) b:: C) \rightarrow S \cdot(b\{x \leftarrow p\}, h, C)
$$

(Red Letregion)
$\frac{\rho \notin(S \cup \operatorname{dom}(h))}{S \cdot(\text { letregion } \rho \text { in } a, h, C) \rightarrow(S \cup\{\rho\}) \cdot(a, h+\rho \mapsto \varnothing, C)}$
(Red Pop Letregion)
$\frac{\rho \in S}{S \cdot(p, h, \text { popregion } \rho:: C) \rightarrow(S-\{\rho\}) \cdot(p, h, C)}$
(Red Case 1)
$\frac{\rho \in S \quad h(\rho)(p)=\text { nil }}{S \cdot\left(\text { case } p \text { of nil } \Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h, C\right) \rightarrow S \cdot\left(b_{1}, h, C\right)}$
(Red Case 2)
$\frac{\rho \in S \quad h(\rho)(p)=q_{1}:: q_{2}}{S \cdot\left(\text { case p of nil } \Rightarrow b_{1} \mid\left(y_{1}:: y_{2}\right) \Rightarrow b_{2}, h, C\right) \rightarrow S \cdot\left(b_{2}\left\{y_{1} \leftarrow q_{1}\right\}\left\{y_{2} \leftarrow q_{2}\right\}, h, C\right)}$

The static semantics defines new heap judgments used to type the elements in the control stack.

Heap Judgments:

$\vec{B}::=\left[A_{1}, \ldots, A_{n}\right]$	stack of types
$H \models S \cdot C: \vec{B}$	the control stack C has type \vec{B}
$H \models S \cdot(a, h, C): A$	in H, the configuration (a, h, C) returns A

Region and Heap Rules:

(Control Good Empty)

$$
\frac{\operatorname{env}(H) \vdash A \quad f g(A) \subseteq S}{H \models S \cdot[]:[A]}
$$

(Control Good Mark)

$$
\frac{H \models S \cdot C: \vec{B} \quad \rho \notin S}{H \models(S \cup\{\rho\}) \cdot(\text { popregion } \rho:: C): \vec{B}}
$$

(Control Good Cont)

$$
\frac{\operatorname{env}(H), x: A \vdash b: e B \quad f g(A) \cup e \subseteq S \quad H \models S \cdot C:(B:: \vec{B})}{H \models S \cdot((x: A) b:: C):(A:: B:: \vec{B})}
$$

(Small Config Good)

$$
\frac{H \models S \cdot(a, h): A \quad H \models S \cdot C:(A:: \vec{B})}{H \models S \cdot(a, h, C): \operatorname{last}(A:: \vec{B})}
$$

Theorem B. 33
Suppose $H \models S \cdot(a, h): A$. Then $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ if and only if $S \cdot(a, h,[]) \rightarrow^{*}$ $S \cdot\left(p^{\prime}, h^{\prime},[]\right)$.

B.6.3 Proof of dynamic adequacy

- The length of a control stack, length (C), is the number of continuations contained in C, that is, length $([])=0$, and length (popregion $\rho:: C)=\operatorname{length}(C)$, and length $((x: A) b:: C)=$ length $(C)+1$.
- The types of a control stack, types (C), is the sequence of types inductively defined from C by the following rules, types ([]) is the empty sequence, types $($ popregion $\rho:: C)=\operatorname{types}(C)$, and types $((x: A) b:: C)=A$, types (C).

Translation Rules:

Let \vec{k} be a stack, $\left[k_{1}, \ldots, k_{n}\right]$, of n pairwise distinct names.
$\llbracket(x: A) b:: C \rrbracket \vec{k} \stackrel{\Delta}{=} k_{1}(x: K[\llbracket A \rrbracket]) . \llbracket b \rrbracket k_{2} \mid \llbracket C \rrbracket\left[k_{2}, \ldots, k_{n}\right]$
\llbracket popregion $\rho:: C \rrbracket \vec{k} \triangleq \llbracket C \rrbracket \vec{k}$
$\llbracket[] \rrbracket \vec{k} \triangleq \mathbf{0}$

Let $\{\vec{\rho}\}=\operatorname{dom}(H)-S$, and $n=$ length (C), and $\left[A_{1}, \ldots, A_{n}\right]=\operatorname{types}(C)$,
and k_{1}, \ldots, k_{n+1} be a sequence of $n+1$ pairwise distinct names.
$\llbracket S \cdot\left(a, h_{H}, C\right) \rrbracket k_{n+1} \triangleq(v \vec{\rho})(v \llbracket p \operatorname{tr}(H) \rrbracket)\left(v k_{1}: K\left[\llbracket A_{1} \rrbracket\right]\right) \cdots\left(v k_{n}: K\left[\llbracket A_{n} \rrbracket\right]\right)$
$\left(\llbracket a \rrbracket k_{1}|\llbracket h \rrbracket| \llbracket C \rrbracket\left[k_{1}, \ldots, k_{n+1}\right]\right)$

In the case of an empty control stack, $C=[]$, the translation of a small-step configuration, $S \cdot\left(a, h_{H}, C\right)$, equals the translation of the big-step configuration $S \cdot\left(a, h_{H}\right)$. That is, we have $\llbracket S \cdot\left(a, h_{H},[]\right) \rrbracket k=\llbracket S \cdot\left(a, h_{H}\right) \rrbracket k$.

Lemma B. 34

If $H \models S \cdot(a, h, C): A$ and $S \cdot(a, h, C) \rightarrow S^{\prime} \cdot\left(a^{\prime}, h^{\prime}, C^{\prime}\right)$, then there is a heap typing H^{\prime}, with $H \asymp H^{\prime}$, such that $H+H^{\prime} \models S^{\prime} \cdot\left(a^{\prime}, h^{\prime}, C^{\prime}\right): A$ and that, for all channel k with $k \notin\left(\operatorname{dom}_{2}\left(H+H^{\prime}\right) \cup L\right)$, we have $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot\left(a, h_{H}, C\right) \rrbracket k \approx$ $\llbracket S^{\prime} \cdot\left(a^{\prime}, h_{H+H^{\prime}}^{\prime}, C^{\prime}\right) \rrbracket k$.

The following asserts that the encoding of the extended region calculus preserves the dynamic semantics. A proof of Theorem 4.2, dynamic adequacy for the unextended calculi, can be obtained by defining an auxiliary (unextended) small-step semantics for the region calculus and simplifying the following proof.

Theorem B. 35

If $H \models S \cdot(a, h): A$ and $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$ then there is H^{\prime} such that $H \asymp H^{\prime}$ and $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime}\right): A$ and for all $k \notin \operatorname{dom}_{2}\left(H+H^{\prime}\right) \cup L, \llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash$ $\llbracket S \cdot\left(a, h_{H}\right) \rrbracket k \approx \llbracket S \cdot\left(p^{\prime}, h_{H+H^{\prime}}^{\prime}\right) \rrbracket k$.

Proof
Assume $H \models S \cdot(a, h): A$ and $S \cdot(a, h) \Downarrow\left(p^{\prime}, h^{\prime}\right)$. By Theorem B.33, we have $S \cdot(a, h,[]) \rightarrow^{*} S \cdot\left(p^{\prime}, h^{\prime},[]\right)$. By rule (Control Good Empty) and (Small Config Good), we have $H \models S \cdot(a, h,[]): A$. By Lemma B.34, there is a heap typing H^{\prime}, with $H \asymp H^{\prime}$, such that $H+H^{\prime} \models S \cdot\left(p^{\prime}, h^{\prime},[]\right): A$ and that, for all channel k with $k \notin\left(\operatorname{dom}_{2}\left(H+H^{\prime}\right) \cup L\right)$, we have $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket(H, S, a, h,[]) \rrbracket k \approx$ $\llbracket\left(H+H^{\prime}, S, p^{\prime}, h^{\prime},[]\right) \rrbracket k$.

Since for all big-step configuration $S \cdot\left(a, h_{H}\right)$ we have $\llbracket S \cdot\left(a, h_{H},[]\right) \rrbracket k=\llbracket S \cdot\left(a, h_{H}\right) \rrbracket k$, it follows that $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot\left(a, h_{H}\right) \rrbracket k \approx \llbracket\left(S, H+H^{\prime}, p^{\prime}, h^{\prime}\right) \rrbracket k$.

B.6.4 Proof of garbage collection for the λ-calculus

The following property asserts that defunct regions make no difference to the behaviour of a program. It corresponds to Theorem 4.4 for the unextended calculi.

Theorem B. 36

Suppose $H \equiv S \cdot(a, h): A$ and $k \notin \operatorname{dom}_{2}(H) \cup L$. Let $\left\{\vec{\rho}_{\text {defunct }}\right\}=\operatorname{dom}(H)-S$. Then $\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot(a, h) \rrbracket k \approx\left(v \vec{\rho}_{\text {defunct }}\right)(v \llbracket p \operatorname{tr}(H) \rrbracket)\left(\llbracket a \rrbracket k \mid \prod_{\rho \in S} \llbracket H(\rho) \rrbracket\right)$.

Proof
Let $\vec{\rho}$ be a sequence of groups, $\rho_{1}, \ldots, \rho_{m}$, such that $\{\vec{\rho}\}=S$. Let $\vec{\rho}_{\text {defunct }}$ be a sequence of groups, $\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}$, such that $\left\{\vec{\rho}_{\text {defunct }}\right\}=\operatorname{dom}(H)-S$. For the sake of
brevity, we use the symbol $\vec{\rho}_{\times}$instead of $\vec{\rho}_{\text {defunct }}$ in the remainder of this proof. In particular $(\{\vec{\rho}\} \cup\{K\}) \cap\left\{\vec{\rho}_{\times}\right\}=\varnothing$. Let:

$$
\begin{aligned}
h & =\vec{\rho} \mapsto \vec{r}, \vec{\rho}_{\times} \mapsto \vec{r}_{\times} \\
H & =\vec{\rho} \mapsto \vec{R}, \vec{\rho}_{\times} \mapsto \vec{R}_{\times} \\
\operatorname{env}(H) & =\vec{\rho}, \vec{\rho}_{\times}, \vec{r} \text { at } \vec{\rho}, \vec{r}_{\times} \text {at } \vec{\rho}_{\times}
\end{aligned}
$$

By (Config Good), $H \models S \cdot(a, h): A$ implies $e n v(H) \vdash a:^{e} A$ and $e \cup f g(A) \subseteq S$ and $H \models S \cdot h$. By Theorem 4.1, we have that:

$$
\begin{aligned}
& \llbracket \varnothing \rrbracket, \vec{\rho}, \vec{\rho}_{\times}, \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket, \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e \cup\{K\} \\
& \llbracket \varnothing \rrbracket, \vec{\rho}, \vec{\rho}_{\times}, \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket, \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket \vec{\rho} \mapsto \vec{r} \rrbracket:\{\vec{\rho}\} \\
& \llbracket \varnothing \rrbracket, \vec{\rho}, \vec{\rho}_{\times}, \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket, \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket \vec{\rho}_{\times} \mapsto \vec{r}_{\times} \rrbracket:\left\{\vec{\rho}_{\times}\right\}
\end{aligned}
$$

Let $P=\llbracket a \rrbracket k \mid \llbracket \vec{\rho} \mapsto \vec{r} \rrbracket$. By an exchange lemma, we get:

$$
\begin{aligned}
& \llbracket \varnothing \rrbracket, \vec{\rho}, k: K[\llbracket A \rrbracket], \vec{\rho}_{\times}, \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket, \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket \vdash P:\{\vec{\rho}, K\} \\
& \llbracket \varnothing \rrbracket, \vec{\rho}, k: K[\llbracket A \rrbracket], \vec{\rho}_{\times}, \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket, \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket \vdash \llbracket \vec{\rho}_{\times} \mapsto \vec{r}_{\times} \rrbracket:\left\{\vec{\rho}_{\times}\right\}
\end{aligned}
$$

By Theorem B. 30 several times, we get:

$$
\begin{aligned}
& \llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash\left(v \vec{\rho}_{\times}\right)(v \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket)\left(v \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket\right) \\
& \quad\left(P \mid \llbracket \vec{\rho}_{\times} \mapsto \vec{r}_{\times} \rrbracket\right) \approx\left(v \vec{\rho}_{\times}\right)(v \llbracket \vec{r} \text { at } \vec{\rho} \rrbracket)\left(v \llbracket \vec{r}_{\times} \text {at } \vec{\rho}_{\times} \rrbracket\right) P
\end{aligned}
$$

But this is:

$$
\llbracket \varnothing \rrbracket, S, k: K[\llbracket A \rrbracket] \vdash \llbracket S \cdot(a, h) \rrbracket k \approx\left(v \vec{\rho}_{\text {defunct }}\right)(v \llbracket p \operatorname{tr}(H) \rrbracket)\left(\llbracket a \rrbracket k \mid \prod_{\rho \in S} \llbracket H(\rho) \rrbracket\right)
$$

B. 7 An equational theory

We now prove that the equational theory for the region calculus is sound with respect to our encoding in the π-calculus with groups. This property is given by Theorem 5.2, that the encoding of equivalent expressions are (barbed) equivalent processes. In this appendix we consider the simple region calculus introduced in section 2. For the sake of brevity we have not considered the details of how to extend this theory to the polymorphic region calculus.

We start by proving Lemma B.37, that the encoding of an expression obtained by substituting an allocation v at ρ for a variable x in an expression b is equivalent to the process obtained by substituting for x in $\llbracket b \rrbracket$ a private link to a replicated copy of the process $\llbracket v \rrbracket$. This property is used in the proof of Theorem 5.2. More precisely, it is needed to show that the encoding of β-equivalent terms are equivalent processes.

Lemma B. 37 is the only result of this article that directly depends on the locality restriction imposed on the π-calculus.

Lemma B. 37

Consider two expressions a and b such that a is an allocation, v at ρ, with $E \vdash a::^{\{\rho\}} A$ and $E, x: A \vdash b:^{e} B$. If $p \notin f n(v) \cup f n(b)$ and $k \notin \operatorname{dom}(E) \cup L$ then:

$$
\llbracket E \rrbracket, k: K[\llbracket B \rrbracket] \vdash \llbracket b\{x \leftarrow a\} \rrbracket k \approx(v p: \llbracket A \rrbracket)(\llbracket p \mapsto v \rrbracket \mid \llbracket b\{x \leftarrow p\} \rrbracket k)
$$

Proof of Lemma 5.1 If $E \vdash a_{1} \leftrightarrow a_{2}: A$ then there are e_{1}, e_{2} such that for each $i \in 1 . .2, e_{i} \subseteq \operatorname{dom}(E)$ and $E \vdash a_{i}: e_{i} A$.

Proof
By induction on the derivation of $E \vdash a_{1} \leftrightarrow a_{2}: A$.
(Eq Refl), (Eq Symm) and (Eq Trans) Trivial.
(Eq Fun) Then $E, x: A^{\prime} \vdash b_{i}: e_{i}^{\prime} B^{\prime}$ for each $i \in 1 . .2$ and $A \triangleq\left(A^{\prime} \xrightarrow{e^{\prime}} B^{\prime}\right)$ at ρ, where $a_{i} \triangleq\left(\lambda\left(x: A^{\prime}\right) b_{i}\right.$ at ρ) and $e_{i}^{\prime} \subseteq e^{\prime}$ and $E \vdash A$. Take $e_{1}=e_{2}=\{\rho\}$. By (Type \rightarrow), since $E \vdash A$, we get that $e_{i} \subseteq \operatorname{dom}(E)$ for each $i \in 1 . .2$. By (Exp Fun), $E \vdash a_{i}:^{\cdot e_{i}} A$ for each $i \in 1 . .2$, as required.
(Eq Fun β) and (Eq Let β) Then $a_{1} \triangleq$ let $y=(\lambda(x: B) b$ at $\rho)$ in $y(a)$ and $a_{2} \triangleq$ $b\{x \leftarrow a\}$ where a is a name or an allocation, and $y \notin f n(a)$, and $E \vdash a:^{e_{1}} B$, and $E, x: B \vdash b:^{e_{2}} A$, and $E \vdash b\{x \leftarrow a\}:^{e_{3}} A$ (that is, $E \vdash a_{2}:^{e_{3}} A$), and $\rho \in \operatorname{dom}(E)$. By (Exp Appl) and (Exp Let), we get that $E \vdash a_{1}:^{e_{1} \cup\{\rho\}} A$, as required. The case for $(\mathrm{Eq}$ Let β) is similar.
(Eq Let) and (Eq Letregion Let) Then $a_{1} \triangleq$ let $x=a$ in b and $a_{2} \triangleq$ let $x=a^{\prime}$ in b^{\prime} where $E \vdash a \leftrightarrow a^{\prime}: B$ and $E, x: B \vdash b \leftrightarrow b^{\prime}: A$. By induction hypothesis, there are $e_{1}^{1}, e_{2}^{1}, e_{1}^{2}, e_{2}^{2} \subseteq \operatorname{dom}(E)$ such that $E \vdash a: e_{1}^{1} B, E \vdash a^{\prime}: e_{2}^{1} B, E, x: B \vdash b: e_{1}^{2} A$ and $E, x: B \vdash b^{\prime}: e_{2}^{2} A$. Take $e_{i}=e_{1}^{i} \cup e_{2}^{i}$ for each $i \in 1$..2. By (Exp Let), we get that $E \vdash a_{i}:^{e_{i}} A$ and $e_{i} \subseteq \operatorname{dom}(E)$ for each $i \in 1 . .2$, as required. The case for (Eq Letregion Let) is similar.
(Eq Let Assoc) Then $a_{1} \triangleq$ let $x=a$ in (let $y=b$ in $\left.c\right)$ and $a_{2} \triangleq$ let $y=($ let $x=$ a in b) in c where $E \vdash a::_{a} A$ and $E, x: A \vdash b::_{b} B$ and $E, y: B \vdash c:^{e_{c}} C$. In particular, since $x \notin \operatorname{dom}(E, y: B)$, we get that $x \notin f n(c)$ and $E, y: B, x: A \vdash \diamond$. Take $e_{1}=e_{2}=e_{a} \cup e_{b} \cup e_{c}$. By (Exp Let) and Lemma B.1, we get that $E \vdash a_{i}: e_{i} C$ for each $i \in 1 . .2$, as required.
(Eq Letregion) and (Eq Swap) Then $a_{i}=(v \rho) b_{i}$ for each $i \in 1 . .2$ where $E, \rho \vdash$ $b_{1} \leftrightarrow b_{2}: A$ and $\rho \notin f r(A)$. By induction hypothesis, there are f_{1}, f_{2} such that $f_{i} \subseteq \operatorname{dom}(E, \rho)$ and $E, \rho \vdash b_{i}::_{i} A$ for each $i \in 1 . .2$. Take $e_{i}=f_{i}-\{\rho\}$ for each $i \in 1 . .2$. By (Exp Letregion), $E \vdash a_{i}:^{e_{i}} A$ for each $i \in 1 . .2$, as required. Case (Eq Swap) is similar.
(Eq Drop) Then $a_{1}=(v \rho) a_{2}$ where $E \vdash a: e A$ and $\rho \notin \operatorname{dom}(E)$. Take $e_{1}=e_{2}=e$. Since $e \subseteq \operatorname{dom}(E)$, we get that $e=e-\{\rho\}$ and $\rho \notin f r(A)$. By (Exp Letregion), $E \vdash a_{1}:^{e} A$, as required.

Proof of Theorem 5.2 Suppose $E \vdash a \leftrightarrow b: A$ and $k \notin \operatorname{dom}(E) \cup L$. Then $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \llbracket b \rrbracket k$.

Proof

By induction on the derivation of $E \vdash a \leftrightarrow b: A$. By Lemma 5.1, there are e_{1}, e_{2} such that $e_{i} \subseteq \operatorname{dom}(E)$ for each $i \in 1 . .2$ and $E \vdash a:^{e_{1}} A$ and $E \vdash b:^{e_{2}} A$. Let $k \notin \operatorname{dom}(E) \cup L$. By Theorem 4.1(3), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k: e_{1} \cup\{K\}$ and $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket b \rrbracket k: e_{2} \cup\{K\}$. Hence, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k, \llbracket b \rrbracket k$.

For the sake of brevity, we omit the type annotations in the encoding of region calculus terms in the remainder of this proof.
($\mathbf{E q} \mathbf{R e f f}),(\mathbf{E q} \mathbf{S y m m})$ and (Eq Trans) Trivial, since \approx is an equivalence relation.
($\mathbf{E q} \mathbf{F u n}$), ($\mathbf{E q}$ Let) and ($\mathbf{E q}$ Letregion) Trivial, since \approx is a congruence.
(Eq Fun β) and (Eq Let β) Then $a \triangleq$ let $y=\left(\lambda(x: B) b^{\prime}\right.$ at ρ) in $y\left(a^{\prime}\right)$ and $b \triangleq$ $b^{\prime}\left\{x \leftarrow a^{\prime}\right\}$ where a^{\prime} is a name or an allocation, and $y \notin f n\left(a^{\prime}\right)$. Hence, $\llbracket a \rrbracket k \triangleq\left(v k^{\prime}\right)$ def $p(x, k)=\llbracket b^{\prime} \rrbracket k$ in $\left(\overline{k^{\prime}}\langle p\rangle \mid k^{\prime}(y) . \llbracket y\left(a^{\prime}\right) \rrbracket k\right)$ where k^{\prime} and p are fresh names. By Lemma A.4, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k$ in $\llbracket p\left(a^{\prime}\right) \rrbracket k$. We have two possible cases depending on the shape of a^{\prime}.
Assume a^{\prime} is a name, say q. Hence, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k$ in $\bar{p}\langle q, k\rangle$. By Proposition A.6(5):

$$
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k \text { in } \llbracket b^{\prime}\left\{x \leftarrow a^{\prime}\right\} \rrbracket k
$$

By Proposition A.6(1), since $p \notin f n\left(b\left\{x \leftarrow a^{\prime}\right\}\right)$, we get that:

$$
\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \llbracket b^{\prime}\left\{x \leftarrow a^{\prime}\right\} \rrbracket k
$$

Assume a^{\prime} is an allocation, say $\left(\lambda(y) c\right.$ at $\left.\rho^{\prime}\right)$. Hence:

$$
\begin{aligned}
& \llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k \text { in } \\
& \left(v k^{\prime}\right)(\operatorname{def} q(y, k)=\llbracket c \rrbracket k \text { in } \\
& \left.\left(\overline{k^{\prime}}\langle q\rangle \mid k^{\prime}(y) \cdot \bar{p}\langle y, k\rangle\right)\right) \\
& \text { (By Lemma A.4) } \\
& \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k \text { in } \\
& (\operatorname{def} q(y, k)=\llbracket c \rrbracket k \text { in } \bar{p}\langle q, k\rangle) \\
& \text { (By Proposition A.6(5)) } \\
& \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k \text { in } \\
& \left(\operatorname{def} q(y, k)=\llbracket c \rrbracket k \text { in } \llbracket b^{\prime}\{x \leftarrow q\} \rrbracket k\right) \\
& \text { (By Lemma B.37) } \\
& \approx \operatorname{def} p(x, k)=\llbracket b^{\prime} \rrbracket k \text { in } \llbracket b^{\prime}\left\{x \leftarrow a^{\prime}\right\} \rrbracket k
\end{aligned}
$$

Case (Eq Let β) is similar.
(Eq Let Assoc) Then $a \triangleq$ let $x=a^{\prime}$ in (let $y=b^{\prime}$ in $\left.c^{\prime}\right)$ and $b \triangleq$ let $y=($ let $x=$ a^{\prime} in b^{\prime}) in c^{\prime} where $E \vdash a^{\prime}: e_{1} A$ and $E, x: A \vdash b^{\prime}: e_{2} B$ and $E, y: B \vdash$ $c^{\prime}:^{e_{3}} C$. In particular, since $x \notin \operatorname{dom}(E, y: B)$, we get that $x \notin f n\left(c^{\prime}\right)$. Hence, $\llbracket a \rrbracket k \triangleq\left(v k_{1}\right)\left(\llbracket a^{\prime} \rrbracket k_{1} \mid k_{1}(x) .\left(v k_{2}\right)\left(\llbracket b^{\prime} \rrbracket k_{2} \mid k_{2}(y) . \llbracket c^{\prime} \rrbracket k\right)\right)$ and $\llbracket b \rrbracket k \equiv\left(v k_{1}\right)\left(\llbracket a^{\prime} \rrbracket k_{1} \mid\right.$ $\left.\left(v k_{2}\right)\left(k_{1}(x) . \llbracket b^{\prime} \rrbracket k_{2} \mid k_{2}(y) . \llbracket c^{\prime} \rrbracket k\right)\right)$, where k_{1}, k_{2} are two fresh names.
By Lemma A.5(1), $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx\left(v k_{1}\right)\left(\llbracket a^{\prime} \rrbracket k_{1} \mid\left(v k_{2}\right) k_{1}(x) .\left(\llbracket b^{\prime} \rrbracket k_{2} \mid\right.\right.$ $\left.k_{2}(y) . \llbracket c^{\prime} \rrbracket k\right)$). By Lemma A.5(3), we get that $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \llbracket b \rrbracket k$, as desired.
($\mathbf{E q} \mathbf{D r o p}$), ($\mathbf{E q}$ Swap) and (Eq Letregion Let) In each of this cases we have the following three relations: $\operatorname{erase}(\llbracket a \rrbracket k)=\operatorname{erase}(\llbracket b \rrbracket k)$, and $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k$ and $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket b \rrbracket k$. By Proposition B.23, $\llbracket E \rrbracket, k: K[\llbracket A \rrbracket] \vdash \llbracket a \rrbracket k \approx \llbracket b \rrbracket k$.

References

Abadi, M. \& Gordon, A. D. (1999) A calculus for cryptographic protocols: The spi calculus. Information and computation, 148, 1-70. (An extended version appears as Research Report 149, Digital Equipment Corporation Systems Research Center, January 1998.)

Aiken, A., Faehndrich, M. \& Levien, R. (1995) Better static memory management: Improvements to region-based analysis of higher-order languages. Proc. PLDI'95, pp. 174-185. ACM Press.
Banerjee, A., Heintze, N. \& Riecke, J. (1999) Region analysis and the polymorphic lambda calculus. Proc. LICS'99.
Benton, N. \& Kennedy, A. (1999) Monads, effects and transformations. Proc. HOOTS'99, Electronic Notes in Theoretical Computer Science, 26, pp. 1-18. Elsevier.
Birkedal, L., Tofte, M. \& Vejlstrup, M. (1996) From region inference to von Neumann machines via region representation inference. Proc. POPL'96, pp. 171-183. ACM Press.

Boudol, G. (1992) Asynchrony and the π-calculus. Research Report 1702, INRIA.
Calcagno, C. (2001) Stratified operational semantics for safety and correctness of the region calculus. Proc. POPL'01, pp. 155-165. ACM Press.
Cardelli, L., Ghelli, G. \& Gordon, A. D. (2000a) Ambient groups and mobility types. In Proc. IFIP TCS 2000: Lecture Notes in Computer Science 1872, pp. 333-347. Springer-Verlag.
Cardelli, L., Ghelli, G. \& Gordon, A. D. (2000b) Group creation and secrecy. In Proc. CONCUR 2000: Lecture Notes in Computer Science 1877, pp. 365-379. Springer-Verlag.
Crary, K., Walker, D. \& Morrisett, G. (1999) Typed memory management in a calculus of capabilities. Proc. POPL'99, pp. 262-275. ACM Press.
Dal Zilio, S. (1999) A bisimulation for the blue calculus. Research Report 3664. INRIA.
Dal Zilio, S. \& Gordon, A. D. (2000a) Region analysis and a π-calculus with groups. Proc. MFCS 2000: Lecture Notes in Computer Science 1893, pp. 1-20. Springer-Verlag.
Dal Zilio, S. \& Gordon, A. D. (2000b) Region analysis and a π-calculus with groups. Technical Report MSR-TR-2000-57, Microsoft Research.
Flanagan, C. \& Abadi, M. (1999) Object types against races. In Proc. CONCUR'99: Lecture Notes in Computer Science 1664, pp. 288-303. Springer-Verlag.
Fournet, C. \& Gonthier, G. (1996) The reflexive CHAM and the Join-calculus. Proc. POPL'96, pp. 372-385. ACM Press.
Gifford, D. K. \& Lucassen, J. M. (1986) Integrating functional and imperative programming. Proc. L\&FP'86, pp. 28-38.
Helsen, S. \& Thiemann, P. (2000) Syntactic type soundness for the region calculus. Proc. HOOTS 2000, Electronic Notes in Theoretical Computer Science, 41(3), pp. 1-19. Elsevier.
Honda, K. (1992) Two bisimilarities for the v-calculus. Technical Report 92-002, Department of Computer Science, Keio University.
Hughes, J. \& Pareto, L. (1999) Recursion and dynamic data-structures in bounded space: Towards embedded ML programming. Proc. ICFP'99, pp. 70-81. ACM Press.
Kobayashi, N. (1998) A partially deadlock-free typed process calculus. ACM Trans. Programming Languages and Systems, 20, 436-482.
Launchbury, J. \& Peyton Jones, S. (1995) State in Haskell. Lisp \& Symbolic Computation, 8(4), 293-341.

Merro, M. \& Sangiorgi, D. (1998) On asynchrony in name-passing calculi. Proc. ICALP'98: Lecture Notes in Computer Science 1443, pp. 856-867. Springer-Verlag.
Milner, R. (1999) Communicating and Mobile Systems: The π-calculus. Cambridge University Press.
Milner, R. \& Sangiorgi, D. (1992) Barbed bisimulation. Proc. ICALP'92: Lecture Notes in Computer Science 623, pp. 685-695. Springer-Verlag.
Milner, R., Parrow, J. \& Walker, D. (1992) A calculus of mobile processes, parts I and II. Information \& Computation, 100, 1-77.

Milner, R., Tofte, M., Harper, R. \& MacQueen, D. (1997) The Definition of Standard ML (revised). MIT Press.
Moggi, E. (1989) Notions of computations and monads. Theoretical Computer Science, 93, 55-92.
Moggi, E. \& Palumbo, F. (1999) Monadic encapsulation of effects: a revised approach. Proc. HOOTS'99, pp. 119-136. Electronic Notes in Theoretical Computer Science, 26. Elsevier.
Nielson, F. \& Nielson, H. R. (1993) From CML to process algebras. Proc. CONCUR'93: Lecture Notes in Computer Science 715, pp. 493-508. Springer-Verlag.
Nielson, H. R. \& Nielson, F. (1994) Higher-order concurrent programs with finite communication topology. Proc. POPL'94, pp. 84-97. ACM Press.
Pierce, B. C. \& Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Mathematical Structures in Computer Science, 6(5), 409-454.
Pierce, B. C. \& Sangiorgi, D. (1997) Behavioral equivalence in the polymorphic pi-calculus. Proc. POPL'97, pp. 242-255. ACM Press. (Also appears as INRIA-Sophia Antipolis Rapport de Recherche 3042 and as Indiana University Computer Science Technical Report 468.)

Pierce, B. C. \& Turner, D. N. (2000) Pict: A programming language based on the pi-calculus. In: G. Plotkin, C. Stirling and M. Tofte (editors), Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 455-494. MIT Press.
Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1, 125-159.
Sangiorgi, D. \& Walker, D. (2001) The pi-calculus: A theory of mobile processes. Cambridge University Press.
Semmelroth, M. \& Sabry, A. (1999) Monadic encapsulation in ML. Proc. ICFP'99, pp. 8-17. ACM Press.
Talpin, J.-P. (1993) Aspects théoretiques et pratiques de l'inférence de types et d'effets. Thèse de doctorat, Université Paris VI and Ecole des Mines de Paris.
Talpin, J.-P. (2001) A simplified account of region inference. Research Report 4104, INRIA, Rennes.
Talpin, J.-P. \& Jouvelot, P. (1992) Polymorphic type, region and effect inference. J. Functional Programming, 2(3), 245-271.
Talpin, J.-P. (1993) Aspects théoriques et pratiques de l'inférence de types et d'effets. Thèse de Doctorat, Université Paris VI and Ecole des Mines de Paris, May 1993.
Tofte, M. \& Talpin, J.-P. (1997) Region-based memory management. Information \& Computation, 132(2), 109-176.
Turner, D. N. (1995) The polymorphic pi-calculus: theory and implementation. PhD thesis, University of Edinburgh.
Wadler, P. (1998) The marriage of effects and monads. Proc. ICFP'98, pp. 63-74. ACM Press.
Walker, D. (1995) Objects in the pi-calculus. Information \& Computation, 116(2), 253-271.
Yoshida, N. (1996) Graph types for monadic mobile processes. Foundations of Software Technology and Theoretical Computer Science (TSTTCS'96): Lecture Notes in Computer Science 1180, pp. 371-386. Springer-Verlag.

