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1. Introduction

The purpose of this paper is to derive asymptotic relations giving the error
of a Gauss type quadrature, applied to analytic functions, in terms of certain
coefficients in the orthogonal expansion of the integrand. The Fourier expansions
of the integrand we consider here are those in terms of the Legendre and the
Chebyshev polynomials. In Section 3 we obtain the error of the Gauss-Legendre
quadrature expressed in terms of the Legendre-Fourier coefficients of the inte-
grand. In Section 4 the errors of Gauss-Legendre, Lobatto and Radau quadrature
formulas are obtained, for large n, expressed in terms of the Chebyshev-Fourier
coefficients of the integrand. In deriving these estimates we have used complex
variable methods restricting ourselves to the class of analytic integrands; this
allows us to obtain simple contour integral representations for the errors of these
quadratures for large values of n. However, the form of the estimates obtained
indicate that these are applicable to a much wider class of functions.

Examples are given to illustrate the estimates obtained.
Let P^'f)(t), n = 0, 1, 2, • • •, be the set of Jacobi polynomials which form

an orthogonal system on [—1, 1 ] with respect to the weight function (1— t)x(l+ty

(a > -l,P> -1) and which have been normalized so that P^"lf\l) = ( )
Let S = {0, 1}.

Here we are concerned with the error of the »-point Gauss-Legendre, (n +1)-
point Radau and (n + 2)-point Lobatto quadrature formulas over the interval

[ " l f l ] :

(i) £„(/) = f f(t)dt-+jr\wkf(tm.k)

The abscissas tn<k, k = 1, • • •, n + a + p are the zeros of p{t) = (7 - 1 )a(f +1)".
P{*'fi)(t), a, p e S; and the corresponding weights are given by
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(p(t)l(t-tm,k))dt.

It is known that Xnk are positive. For a detailed discussion of Gaussian quadrature
formulas, see Krylov [1 ] Chapters 7 and 9.

2. Asymptotic formula for the error

Let Sp (p > 1) designate the ellipse z = K^ + T 1 ) , Z = pew, 0 ^ 6 ^ 2n,
with foci at z = ±1 and semiaxes a = ^(p + p'1) and b = i(p-p~l) so that
p = a + b. Let A[— 1, 1] designate the class of functions analytic on the interval
[— 1, 1]. If / e A[— 1,1], then for some p > 1,/can be continued analytically so
as to be regular in the closed ellipse Sp. We shall designate the class of such func-
tions as A(Sp).

Let /"e A{£'p), p > 1, then by combining the results of Theorem 1, p. 161
and Equation (12.2.2), p. 245 of Krylov [1], the error En(f) can be obtained as
a contour integral:

, p ( ) ( ) ^ ( ) 1 z-t

Since

( 3 ) /•• ( 1- ,H1 +,)'f:-"(.M, _ ( . . ^ . ^
J_! Z —t

where Q(
n*

 P)(z) is the Jacobi function of the second kind, the error is given by

See also Davis [2, p. 361].
An asymptotic formula for Qi*'P)(z)/P}l"'n(z) has been obtained by Barrett

(see [3], Equation (1.6); or see Szego [4], Equations (8.21.9) and (8.71.19)). For
z e <a p and for large n,

(5) ^5 \U „ z-(2n+* + IS+l)

valid in the z-plane with the interval [—1, 1] removed. Combining (4) and (5)
we have for large n,

(6) £ n ( / ) ^ ( - i ) 1 +
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3. The Gauss-Legendre quadrature error

For/e A{gp),p> 1, let

(7) / « = f>n-Pn(0
n = O

be the Legendre-Fourier expansion of/ where Pn{t) is the Legendre polynomial
of degree n over [ — 1, 1 ] normalized so that

(8) [\PMfdt^
J -1 2n +

The series (7) converges absolutely and uniformly over [—1, 1]. For expansions
in terms of orthogonal functions and for results on orthogonal polynomials see
Davis [2] Chapters X, XII and Appendix, or see Szego [4].

If EGn(f) denotes the error of the n-point Gauss-Legendre quadrature over
[ -1 , 1], then by construction and definition of the rule, EGn(f) = 0 for every
polynomial/ of degree ^ In — 1. Moreover, EGn{Pm) = 0 for m = 2n+l, 2n + 3,
• • •, due to the symmetry of the Legendre polynomials and the quadrature sums.
Therefore, from (7) we obtain

(9) £ e , a ) = I f l 2 . + 2-ff..2. + 2-
m — 0

where we have put

(10) ffn,2B+2m = EGn(P2n+2m) for m = 0, 1, 2, • • •.

We next evaluate ffn, 2 , + 2 m for m fixed and n large. Now, on S'p, the Legendre
polynomial Pn(z) can be represented [2, Lemma 12.4.1] by

V / n\ / ^^ k n K. ^
* = 0

where

„ _ (2fc)!
* 22*(fc!)2

From (10), (6) (with a = 0, j? = 0) and (11) we have for large n,

(12) cn,2n + 2m * - ^ " c j c ^ ^ j f
2 j=o Jc

Since

(12') f ?d{ = ipk + i f2V
Jcp Jo

we obtain

(13) ffn, 2n + 2m — ^(C2n + m cm ~ C2n+m+ 1 C m - l

2 j=o

Since

if A: # — 1
we obtain
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( c _ ! = 0 ) v a l i d f o r l a r g e n a n d e a c h fixed nt = 0 , 1 , 2 , •••. I n p a r t i c u l a r

( 1 4 ) o * n {An)-
"'2n 24n((2n)!)2

and from Stirling's formula

(14') <Jn,2n'-

It should, however, be noted that an2n can be obtained exactly:

2 (4»)!(n!)4

This is most easily derived as follows: Let Pn(t) = kn Pn(t) where Pn(t) has leading
coefficient unity. Then (Krylov [1 ], Sec. 2.2),

EoSPm) = k2n EGn(P2n) = k2n EGn(t
2") = ^ EGn({Pnf) {kn > 0)

(16) k2~i

h I
Since

k ~ ( 2 " ) !

" 2"(n!)2

(15) now follows from (8) and (16).
For (fixed) m = 1, 2, • • • and for large n, we have from (13),

,._, 2n + l (2m-2)!(4n + 2m)!

and using Stirling's formula and the asymptotic formula r(n + a)/r(n) ~ n" as
n -» oo, we obtain

i 2a—1( )(

From (9), (14) and (18) we obtain the following theorem.

THEOREM 1. For fe A(S'p), p > 1, and for large n,

(19) EGJJ) * l /^(« 2 n - ia 2 n + 2 - ia 2 n + 4 ).
' 2n

Thus, if n is sufficiently large and if the Legendre-Fourier coefficients an

decrease rapidly, we may take as an estimate:

(20) Gn(f)]/^
f In
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But if the coefficients decrease slowly, one or more terms of (19) will have to be
taken to obtain a satisfactory estimate for EGn(f).

REMARK. It should be noted that the coefficients o-n2n+2m (m = 0, 1, 2, • • •)
in (9) depend only on the Gaussian rule of integration and are independent of
the particular function being integrated, and these may be computed for various
n once and for all. It should also be noted that Kronrod [5] gives a table of the
errors EGn(t

2k), k ^ n, for 2 5= n ^ 40 and various k. Knowing the coefficients
of the Pn{t), one could compute the crn_ 2k from Kronrod's table.

Now, from (7) the coefficients an are given by

(21) an =
 2-^C f(t)Pn(t)dt.

), p > 1, (21) can be expressed as a contour integral (see Elliott [7],
Equation (42) with a = jS = 0):

2n + l 1 / ^ T r f{z)dz/oox 2/t + l i/7t f
(22) an ĉ  — 1/ —

2ni " 2n J
where the sign of the square-root is chosen so that Iz + ^z 2 —1| > 1.

EXAMPLE. TO illustrate (20) we consider the function f(t) = exp (t) for which
the corresponding Legendre-Fourier coefficients decrease rapidly. The contour
integral for EGn(f) has been evaluated in [6]; the corresponding contour integral
(22) for the coefficients can bs evaluated in essentially the same way to obtain an's
for this function. We find

where q> = (l + (2n+l)2)i, and

^ /n(2n + l) \*
" \2(n + l ) /

where (p* = (1 +(«+1)2)*. Thus for exp (t),

£
lim ————
n-col/Tt

V — a2n
r In

£
lim ———— = 1.

1
4. Asymptotic errors in terms of Chebyshev-Fourier coefficients of the integrand

LetfeA[-l, I], and let

(23)
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be the Chebyshev-Fourier expansion of/, where the prime on the summation sign
indicates that the first term is to be halved. Since En(f) = 0 whenever/is a poly-
nomial of degree less than N (N = 2n+ % + (}, a, /? G S), from (23) we have

k = 0

"), from (6) we obtain for large n,

(24)

Since on Sp, Tn(z) =

(25)

Evaluating the contour integral in (25) by means of (12'),

e-2N-fc-3\

(26) En\TN+k) a;

2

0,

k = 2

fc ^ 0, 2.

Substituting (26) into (24) we obtain the error, for large n, expressed in terms of
the Chebyshev coefficients of the integrand:

THEOREM 2. Let feA[-l, 1]; N = 2n + a + fi, a J e S . Then for large n,

(27) En{f) c± ( — 1) - (ajy

We note the following special cases of (27). a = 0, j8 = 0: Gauss-Legendre:

(27a) EGn(j) ~ -\ci2n — a2n+2)

a = 1, /? = 1: Lobatto (fixed abscissas ? = ±1):

a = 0, P = 1: Radau (fixed abscissa t = —1):

(27c) £ - ( / ) ~ - ( a * —a* )

a = 1, P = 0: Radau (fixed abscissa i = +1):
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The Chebyshev coefficients for/ are given from (23) by

a* _ 2 r f

and i f /e A{Sp), p > 1, then (Elliott [7]) by

(29) . r - i r >^

EXAMPLES. TO illustrate the estimate (27a) for the error of the Gauss-Legendre
quadrature we consider two functions:

1. f(t) = (2-t)*. For this function (see [6], Equation (17)),

E

and (see [7], Equation (8)),

„. w
so that

2. / ( / ) = (9?2 + l) J. Evaluating the contour integral (29) for this function
we obtain

0 • 32"
a*? = ( - ! ) " _ _

so that

(30) n(a*2 -a*2 + 2 ) = ( 1T27Z 31

The values of the estimate (30) are compared with the actual error in the Table.

TABLE 1 2

n

5
6
7
8
9

10
11
12
16

Estimate (30)

-5.718 (-2)
2.968 (-2)

-1.542 (-2)
8.008 (-3)

-4.160 (-3)
2.161 (-3)

-1.123 (-3)
5.832 (-4)
4.248 (-5)

Actual EGn

-5.787 (-2)
2.891 (-2)

-1.537 (-2)
7.904 (-3)

-4.134 (-3)
2.143 (-3)

-1.116 (-3)
5.794 (-4)
4.227 (-5)

2 Values in the parentheses indicate the power of 10 by which the tabulated values should
be multiplied.
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