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Abstract
This paper proposes a methodology to define and quantify the precision uncertainties in aerothermodynamic cycle
model comparisons. The total uncertainty depends on biases and random errors commonly found in such compar-
isons. These biases and random errors are classified and discussed based on observations found in the literature. The
biases account for effects such as differences in model inputs, the configurations being simulated, and thermody-
namic packages. Random errors consider the effects on the physics modeling and numerical methods used in cycle
models. The methodology is applied to a comparison of two cycle models, designated as the model subject to com-
parison and reference model, respectively. The former is the so-called Aerothermodynamic Generic Cycle Model
developed in-house at the Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity
(LARCASE); the latter is an equivalent model programmed in the Numerical Propulsion System Simulation
(NPSS). The proposed methodology is intended to quantify the bias and random errors effects on different cycle
parameters of interest, such as thrust, specific fuel consumption, among others. Each bias and random errors are
determined by deliberately preventing the effects from other biases and random errors. The methodology presented
in this paper can be extended to other cycle model comparisons. Moreover, the uncertainty figures derived in this
work are recommended to be used in other model comparisons when no better reference is available.

Nomenclature
A flow area
b bias
B bias uncertainty
B mxn Broyden matrix
Cp specific heat at constant pressure
Cv specific heat at constant volume
CV velocity coefficient
E m-vector of mass and energy imbalances
Fg gross thrust
Fn net thrust
h specific enthalpy
J mxn Jacobian matrix
ṁ mass flow
MN Mach number
n sample size
N rotational speed
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NL rotational speed for the LP spool
NH rotational speed for the HP spool
P pressure
PR pressure ratio
Rline auxiliary coordinate in compressor maps
s specific entropy
sp precision index
SFC specific fuel consumption
t95 inverse of student’s t distribution (95% confidence)
T temperature
U uncertainty
WAR water-to-air ratio
Ẇ shaft power
x n-vector of independent parameters
x∗ solution n-vector
Y generic cycle parameter
z̄ sample average

Greek letters
φ random errors
� random errors uncertainty
β bypass ratio
θ nondimensional temperature
η efficiency
� difference
τ convergence tolerance
γ specific heat ratio
ε error(s)

Subscripts
A accuracy
conf corresponding to engine configuration/architecture
corr corrected
fuel parameter associated with the fuel entering the combustor
ICAO − SA ICAO standard atmosphere
input corresponding to model inputs
map corresponding to turbomachinery map
num corresponding to numerical methods
p precision
pri engine primary stream
phy corresponding to physics modeling
phy&num corresponding to physics and numeric modeling
thermo corresponding to thermodynamic properties
sec engine secondary (or bypass) stream
std standard day condition
0 total (or stagnation) thermodynamic property (e.g. h0, T0, P0)

Abbreviations
AGCM Aerothermodynamic Generic Cycle Model
DP design point
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GTE gas turbine engine
HPC high-pressure compressor
HPT high-pressure turbine
LARCASE Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity
LPC low-pressure compressor
LPT low-pressure turbine
MSC model subject of comparison
NPSS numerical propulsion system simulation
OD off-design
RM reference model

1.0 Introduction
Gas turbine engines (GTEs) have been the prime method to power commercial and military aircraft for
the past several decades. Understanding how such engines work and being able to predict their key per-
formance characteristics, e.g. net thrust (Fn) and specific fuel consumption (SFC), has been an important
topic in industry, research laboratories and academia.

The Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity
(LARCASE) has developed several multidisciplinary aircraft and engine models [1]. Novel method-
ologies have been explored via these models to predict the performance of real engines, such as the
Rolls-Royce (RR) AE3007C and the General Electric (GE) CF34-8C5B1. These novel techniques
include system identification [2–4], empirical equations [5] and neural networks [6, 7]. Additionally,
physics-based aerothermodynamic cycle models are explored [8–10], which are considered the most
all-encompassing method with which to predict the performance characteristics of GTEs.

Cycle models can be used for engine design point (DP) studies or to understand the engine behaviour
under off-design (OD) conditions. The former is typically utilised to find the best engine aerothermody-
namic DP, e.g. the one that minimises SFC, achievable within technological limitations. DP simulations
also help to define the optimal engine size, for example, the engine frontal and exhaust nozzle areas.
Examples of DP models are discussed in Refs. [9, 10]. In contrast, OD models predict the performance
of already-sized engines (i.e. fixed frontal and exhaust areas) at different power regimes (take-off, climb,
cruise, idle, etc.) across the flight envelope; examples of OD models are further discussed later in this
section.

Regardless of the model intent (DP or OD), cycle model developers must ensure the model shows
a reasonable precision, i.e. an acceptable error vs. a known reference model. Once the precision is
acceptable, further steps can be taken, such as improving the model accuracy, i.e. an acceptable error
vs. experimental engine data. In this paper, as already suggested, precision and accuracy have different
meanings and will be clearly differentiated throughout the discussion.

Determining the cycle model precision is an essential intermediate step that must occur before match-
ing the model to the desired engine data or making any predictions about an engine’s absolute level of
performance. If the cycle model precision is not addressed beforehand, the model predictions (SFC, Fn,
etc.) for any purpose (preliminary design, engine matching, etc.) could be significantly in error, and thus,
compromised. The precision of a cycle model is affected by both systematic biases and random errors.
Most of the models found in the literature pay little to no attention to these effects; moreover, they are
not acknowledged as biases and random errors.

The availability of cycle models has significantly increased over the years. The first models found in
our literature review date from the late 1960s to the beginning of the 1970s [11–13]. At that time, it was
difficult to find other models or an excerpt of their results to serve as a reference for comparison. Thus,
assessment via engine data was the best way to build confidence in the model predictions (e.g. Ref. [13]).
However, in such comparisons, detecting a bias was a real challenge. Model predictions vs. engine data
may disagree for many reasons, one of which concerns the assumptions used in the model to represent
the engine data. Incorrect assumptions will cause systematic errors that can go unnoticed without the
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help of a reference model; thus, an erroneous perception of the model’s precision and accuracy will be
generated.

Powerful professional platforms now make it possible to build high-fidelity cycle models, such as the
Numerical Propulsion System Simulation (NPSS) [14], GasTurb [15], GSP [16], PROOSIS [17]. These
platforms can be used to build a model to serve as reference, however, they have limited availability (e.g.
due to licensing costs).

A comprehensive set of cycle models was found in the literature. For this research, they were classified
into three groups based on the means utilised to compare/validate their predictions: (1) models that do
not use a reference for comparison (e.g. other model or engine data) [18–21]; (2) models compared only
with engine data [4, 22, 23]; and (3) models compared with other reference models [9, 10, 24–30]. For
simplicity, those references that used both a reference model and engine data were considered in the last
group.

Models in group 1 [18–21] present detailed information about the thermodynamic modeling and
their main assumptions. While they present excerpts of their predictions analysing different scenarios,
no conclusion can be drawn about their precision or whether the performance trends predictions are
within expectations.

Concerning group 2 [4, 22, 23], although their intent is to represent the experimental data as much as
possible, it is not clear if their accuracy (the error relative to the engines being matched) is affected, as
noted previously, by systematic bias or random errors. Indeed, biases and random errors are likely to be
present when comparing either two cycle models ‘vis-à-vis’ or a model vs. engine data. The biases or
random errors affecting cycle model comparisons, as detailed in this paper, are associated with differ-
ences in the engine architecture being modeled, assumptions in the thermodynamic process modeling,
the numerical methods, etc.

For the cycle models in group 3 [9, 10, 24–30], their precision was compared to a reference model;
however, the criterion used for defining the precision acceptability was arguably subjective in all cases.
For example, in Ref. [10], a generic turbofan cycle model programmed in Matlab is compared with an
equivalent model programmed in NPSS. A validation criterion of ±0.5% (maximum absolute error)
was established for the high-level performance (Fn, SFC, etc.). While a validation criterion is defined,
no rationale is presented about how it was established. Similarly, in Ref. [26], the proposed model,
the so-called T-MATS, is compared with an equivalent NPSS model. The criterion used for the model
acceptability was anything less 1.0% error. Chapman et al. [26] acknowledged that their validation cri-
terion was arbitrarily chosen. In Ref. [27], the proposed dynamic model for a power generation engine
is compared with an equivalent GasTurb 10 model. For steady-state simulations, up to 2.0% errors were
deemed acceptable for OD compressor characteristics (e.g. PR, η, ṁcorr). However, up to 6.0% error was
acceptable when comparing parameters linked to the engine’s control system (i.e. fuel flow).

The acceptability criteria established in Refs. [10, 26, 27] seems to be drawn, not prior, but after
comparing the precision of the proposed models against their respective references. Indeed, imposing
the desired acceptability criterion beforehand without knowledge of the expected errors could jeopardise
the validation exercise, i.e. the criterion could be too restrictive, and thus, could not be representative of
the errors’ variation, or it could be too wide, causing large errors to go undetected. Oftentimes, the best
way to define the acceptability criterion, as in Refs. [10, 26, 27], is to test the model against its reference,
and to then decide whether the errors are acceptable.

A weak aspect found in the models discussed in both groups (2) and (3) is expressed in terms of their
validation methodologies. In essence, validating a model’s precision is done by comparing the outcome
from one model with another used as a reference. However, the outcomes are influenced by various
input variables and/or other effects that, when not considered, may cause a misleading perception of the
model precision, either too pessimistic or too optimistic.

A methodology should be utilised to identify those effects (i.e. bias and/or random errors) that could
affect the model precision, and thus, define a way to preclude or to quantify them. Such a methodology
is a fundamental part of establishing the precision interval that a given cycle model can achieve.
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Figure 1. Turbofan generic model schematic.

Based on the literature review, no comprehensive methodology to determine cycle models’ preci-
sion uncertainty was found. However, it is recognised the work done by Refs [9, 26], in which explicit
actions were taken to avoid biases in their cycle model comparisons. For example, Gurrola-Arrieta and
Botez [9] acknowledged the effect caused by using different thermodynamic packages in their model
comparisons. They proposed to use thermodynamic packages that show consistency in the derivatives
used to compute �h and �s, which allow to minimise the influence of the thermodynamic packages
in their model comparisons. Chapman et al. [26], recognised the influence caused by the numerical
methods used by T-MATS and NPSS models. They considered precluding the effect of the numerical
method when executing the cycle model calculations. It is worth noting that the aforementioned effect
considered in Ref. [26] was not in Ref. [9], and vice-versa.

The first objective of this work is to propose a comprehensive methodology to define the uncertainty
of the precision of a model subject of comparison (MSC) relative to a reference model (RM), both of
which are cycle models.

The second objective is to apply the methodology for deriving the uncertainty figures compar-
ing vis-à-vis the MSC and the RM. The former is a zero-dimensional, steady-state, the so-called
Aerothermodynamic Generic Cycle Model (AGCM) developed at the LARCASE [9], while the latter is
an equivalent model programmed in the high-fidelity platform, NPSS.

Once the total uncertainty (U) is determined, it is possible to objectively define the expected level(s)
of error(s) between the MSC and the RM. Moreover, the U computed and presented in this paper for
different performance parameters could serve as a reference for future model comparisons whenever the
proposed methodology cannot be implemented, and henceforth, the corresponding Us cannot readily be
established.

2.0 Model description
Both the MSC and the RM are intended to represent a generic two-spool turbofan engine with separate
exhausts (see Fig. 1) and their details are treated in Ref. [9]. In Fig. 1, the gas path thermodynamic
properties (i.e. T , P, ṁ, etc.) are identified using numerals across the different stations throughout the
engine. For example, the total pressure at the high-pressure compressor (HPC) exit and the maximum
cycle total temperature are referred to as P0,030 and T0,040, respectively.

The MSC and the RM are both composed of two sub-models, one for DP and the other for OD
performance analyses. These sub-models encompass the exact thermodynamic modeling, e.g. mass and
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energy balances. For the purpose of this work, the MSC-OD and RM-OD were considered and their
necessary inputs, e.g. aerothermodynamic DP, turbomachinery maps and scaling factors, were taken
from Ref. [9].

The aerothermodynamic DP encompasses assumptions to define the engine power (β, PRs, T0,040), the
engine component efficiencies (ηs, CVs, etc.), and the off-takes (HPC bleed and shaft(s) power extrac-
tions) of a middle-class thrust turbofan engine (about 12,700 lbf/56,492 N of take-off thrust). These
assumptions permit the computation of the nozzle exhaust areas (i.e. A080 and A180) and the turboma-
chinery component maps scaling factors. A map encompasses a series of correlations that relate the
overall thermodynamic characteristics of the turbomachinery (e.g. ṁcorr, PR, η) to its rotational speed
(Ncorr). For this work, the same maps were used by both the MSC and the RM. The maps are modified
by their scaling factors to represent the intended middle-class thrust engine.

One essential capability of any cycle model is to determine the values of its relevant thermodynamic
properties (T , P, h, γ, etc.) across the engine gas path. Cycle models typically use a set of equations
or tabulated values to obtain the desired thermodynamic properties for air and combustion products.
Herein, the names given to these equations or tabulated values are thermodynamic packages. The RM
(i.e. NPSS) has preloaded four thermodynamic packages to choose from: allFuel, GasTbl, CEA and
JANAF; their descriptions are presented in Ref. [31]. For this work, only allFuel and GasTbl were
considered, as they are typically used in GTE analyses for propulsion applications, and their setup
is seamless and straightforward. The MSC has two thermodynamic packages, thermo_package1 and
thermo_package2. These packages were put together based on the thermodynamic properties’ tabulated
values presented in Refs. [32, 33], respectively. For this research, only thermo_package1 is treated.
Moreover, a subset of the NPSS allFuel and GasTbl were obtained by reverse engineering. These tables
were implemented in the MSC and labeled as AGCM_allFuel and AGCM_GasTbl, respectively, to avoid
any confusion from their original source in the NPSS. The errors in the calculated thermodynamic prop-
erties between AGCM_allFuel vs. allFuel and AGCM_GasTbl vs. GasTbl were about 1x10–10; thus the
former tables were deemed equivalent to the latter. Finally, for the scope of this work only dry air and
combustion products were considered (WAR = 0.0).

3.0 Uncertainty, bias and random errors
Throughout this discussion, the definitions of uncertainty, bias and random errors presented in Ref.
[34] are taken as reference. These definitions were presented for experimental measurements in GTEs,
however, they were adapted for this work, as explained next.

The total uncertainty (U) is the maximum error expected between the MSC and the RM, and is a
measure of the precision of the former, as depicted in Fig. 2. According to Ref. [34], the U provides an
estimate of the largest error that might reasonably be expected. In our case, the U represents an estimate
of the interval where the largest error is expected to fall for a given performance parameter (e.g. Fn,
SFC, etc.).

The U in Equation (1) is expressed as the sum of the uncertainty due to biases (B) and the correspond-
ing to precision random errors (�). The expression in Equation (1) was presented in Ref. [34] and it is
adopted in this work due to its simplicity. The biases (b) are systematic or repeated errors that appear
when comparing two models, hence they produced an uncertainty (B). In the case of thermodynamic
cycle models, the B might be a function of power setting, e.g. engine rotational corrected speed (NLcorr),
OPR, etc., and they may not be symmetric, i.e. their magnitude and sign may vary with engine power.
The first term on the right side of Equation (1) must be interpreted as the net sum of the uncertainty
biases, positive (B+) and negative (B−). As stated in Ref. [34], a bias cannot be determined unless it
is compared with the true value to be characterised. In this paper, the true value is defined as the true
relative value, obtained from the RM (i.e. for checking precision). The term true value is reserved in
this paper to the performance obtained from engine testing (i.e. for checking accuracy), as depicted in
Fig. 2.

U = B ± � (1)
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Figure 2. Graphical interpretation of precision and accuracy.

The � in Equation (2), is the uncertainty associated with random errors (φ) in any process. The �

typically follow a bell shape probability distribution around the true relative value being characterised
(as depicted in Fig. 2). In the absence of any B, a measurement process is only influenced by the �,
which establish a measurement of the error prediction’s closeness (i.e. precision). Random errors might
appear due to different sources; thus, the total � in Equation (2) is determined by the root sum squared
of j = 1, . . ., m sources. The precision index (sp), Equation (3), is the sample standard deviation of the
errors (ε), in which z̄ is the average sample error. Given that the datapoints (n) available for the models’
comparison might be limited (n ≤ 30), the �j need to be corrected due to a reduced sample; thus, the
statistic called inverse student t-test (t95) is used. For large samples, t95 tends to converge asymptotically
to that of a normal distribution, t95 = 2.0. The B and � can be estimated based on the ε established
between the MSC and the RM, as shown in Equation (4); where Y represents any cycle parameter of
interest (e.g. Fn, SFC, etc.) computed in both the MSC and the RM.

� =
√√√√ m∑

j=1

(
t95sp

)2

j
(2)

sp =
√∑n

i (εi − z̄)2

n − 1
(3)

ε =
(

YMSC − YRM

YRM

)
× 100% (for all parameters but T) (3)

ε = YMSC − YRM (for T) (4)

The cycle model accuracy is measured relative to its true value, e.g. relative to a specific engine
test or engines’ sample (see Fig. 2). Original engine manufacturers (OEMs) might use a test from a
development campaign, i.e. specific test(s); or data from acceptance test production engines (engine
sample) to establish the true value. This process is typically called engine matching and is outside the
scope of this work. For more information about engine matching accuracy, the reader is referred to Roth
et al. [35].

Someone facing an engine matching task should first validate the cycle model precision, provided
it has yet to be validated, then deal with the engine matching itself. Due to the scope of this work, the
accuracy uncertainties due to bias (BA) and random errors (�A), presented in Fig. 2, are considered to
be zero.
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Next, the proposed definitions for the B and � are discussed. These definitions are accompanied by
examples observed in the literature from the so-called groups 2 and 3 discussed in Section 1.

Configuration bias uncertainty (Bconf ). This uncertainty is associated with differences in the engine
configuration/architecture being simulated, i.e. the number of components (compressors, turbines,
ducts, etc.), spools (one, two, three), exhaust type (e.g. mixed or separate), off-takes (bleed and power
extractions) and cooling type (cooled vs. uncooled turbines, chargeable vs. non-chargeable cooling).

A Bconf may occur, among other scenarios, when assumptions such as HPC bleed extraction and shaft
power extraction used to satisfy parasitic (i.e. engine) and aircraft demands during actual engine opera-
tion are ignored. In the case of parasitic needs, the HPC bleed extraction is used to cool down the parts
in the hot section, and the shaft power extraction is needed to drive accessories systems such as engine
oil and fuel pumps. Concerning the aircraft, HPC bleed extraction is used to meet the demands of its
environmental control system (ECS). Ignoring, deliberately or by omission, the assumptions concerning
HPC bleed and shaft power extractions (for engine and aircraft) would impose non-negligible errors (i.e.
bias) in the comparisons between the two models.

In various studies reported in the literature, Bconf are embedded in the results; however, they are not
always explicitly acknowledged. One example in which a Bconf might occur is when comparing two sig-
nificantly different configurations. For example, in Ref. [36], a turbofan engine model with separate
exhaust was designed to match a mixed stream turbofan engine data, such as the RR AE3007C. An opti-
misation technique was used to minimise the error between the model and the experimental engine data.
Although the optimisation technique solved the problem, the thermodynamic processes of single vs.
separate exhaust turbofan engines differ. For a single exhaust engine, the primary (hot) and secondary
(cold) streams are mixed before expanding in a single exhaust nozzle. The thermodynamic mixing pro-
cess is not accounted for within the boundaries of a separate exhaust turbofan, such as the one depicted
in Fig. 1. The result is the induction of a Bconf , however, this is not explicitly acknowledged by Bardela
and Botez [36]. It is believed that a Bconf influenced the values of the independent parameters used to
minimise the errors between the model and the engine data.

Input bias uncertainty (Binput). This uncertainty is caused by differences in input parameters to the
cycle model, e.g. in DP analyses: total engine flow (ṁ0), β, ηs, PRs, T0,040. In OD analyses, Binput could
arise due to differences in the nozzle exhaust areas (A080, A180), and in turbomachinery component maps
or their scaling factors, as well as due to differences in power setting (NLcorr, OPR, etc.).

An example of a Binput effect is found in Ref. [27] for the steady-state compressor operating line
validation, where a consistent discrepancy was found in the operating lines obtained from the MSC and
RM (GasTurb 10). According to Gaudet [27], the discrepancy’s root cause was the differences in the
input demanded shaft power, variable in the MSC, and constant in RM. Once the input discrepancy
was amended (considering constant input power in both models), the operating lines from both models
seemed to overlap.

Bconf and Binput can lead to large, systematic errors of possibly unknown magnitudes that are difficult
to reconcile and which must be avoided. As discussed in the different examples in this paper, using a
known RM is an excellent way to detect bconf and binput. The researcher in charge of the model comparison
must ensure that all due diligence has been exercised to prevent these type of biases.

Thermodynamic bias uncertainty (Bthermo). This uncertainty is due to differences in the assumptions
used to define thermodynamic properties, such as h, Cp, γ, etc. Differences in assumptions, such as air
and fuel composition (number of moles and species included in the chemical reaction), gas dissociation,
the coefficients of the equations (e.g. high-order polynomials) used to set the Cp(T ) and Cv(T ), ideal vs.
non-ideal gas behaviour; all these differences could cause a Bthermo.

The potential influence of the thermodynamic package (i.e. Bthermo) in model comparisons has been
acknowledged in the literature [9, 24, 27, 30]; however, the fact that Bthermo can significantly impact
their cycle model comparisons has only been partially addressed. For example, in Ref. [27], the Bthermo
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influence is acknowledged after significant errors in fuel flow (e.g. 3.19%) and delivered shaft power
(e.g. 1.18%) were found between the MSC (dynamic model) and the RM (GasTurb 10). These errors
were attributed to gas dissociation in combustion products not accounted for in the former. In Ref.
[9], the differences in thermodynamic packages between the MSC (AGCM) and the RM (NPSS)
are discussed. Gurrola-Arrieta and Botez [9] observed that while the absolute values of the thermo-
dynamic properties, e.g. specific enthalpy (h), between packages are not the same, their derivatives
(e.g. ∂h

∂T
) are overall consistent; thus, a small impact due to thermodynamic package differences was

expected.

Physics modeling random errors uncertainty (�phy). This uncertainty concerns the thermodynamic
modeling differences between the MSC and the RM (i.e. mass, energy, entropy and momentum balances)
that occur either at the component or engine level. Provided that no misconception of the underlying
physics exists, and assuming no other B or � are present, two different thermodynamic models should
give close enough results.

The �phy is a good measure to identify shortcomings in MSC thermodynamic modeling; however,
it is difficult to measure/quantify alone. High-fidelity cycle model calculations use numerical meth-
ods to solve the unknowns posed by either DP or OD simulations. For example, in the case of OD
simulations, for finding the appropriate operating point in the turbomachinery engine components (e.g.
compressors, turbines, etc.) that vanish the mass and energy imbalances within the engine. If the aim is to
neatly quantify �phy, the influence of the numerical method must be forestalled, which brings significant
complexity. From the literature review, only in Ref. [26], a methodology was proposed to preclude the
numerical method influence between the model comparisons (T-MATS vs. NPSS). However, given that
Chapman et al. [26] only used one data point in their comparisons, no conclusions can be drawn about
the �phy.

Numeric random errors uncertainty (�num). This uncertainty is associated with the mathematical
formulation to solve the imbalances in the model (e.g. mass, energy, etc.). Both the formulation and the
method to solve the problem might differ between the MSC and the RM; however, it is expected that
both models solve the mass and energy imbalances.

In the case of the MSC used in the present work, the problem to be solved is formulated in Equation
(5), in which the m-vector E(x) represents the mass and energy imbalance errors, ‖·‖2 represents the
Euclidian norm, and τ represents a numerical tolerance. The n-vector x of independent parameters,
Equation (6), represents those parameters that are varied by the numerical method to find the solution
to Equation (5). These parameters include the total engine flow (ṁ0), engine bypass ratio (β), fuel flow
(ṁfuel) and the turbomachinery maps parameters such as Rlines, NHcorr, PRs.

||E(x)||2 ≤ τ (5)

xT = [
ṁ0, β, Rlinefan, RlineLPC, RlineHPC, NHmap,corr, ṁfuel, PRmap,HPT , PRmap,LPT

]
(6)

The numerical method programmed and implemented in the MSC is a quasi-Newton type-class
method, which is intended to find a solution vector (x∗) that satisfies Equation (5). As discussed in
Ref. [8], this method presents significant advantages in terms of execution speed compared to other
gradient-based methods.

Regarding the RM, some solver characteristics can be inferred, though still uncertain, based on the
information extracted from some model’s files and the information presented in Ref. [37]. It is worth
mentioning that most of the time, it is unlikely that the details of the numerical methods used in the
MSC or the RM are known, as they may be proprietary and thus not readily available. Instead, it is
likely that two different models will use different formulations and or numerical methods to solve the
engine imbalances, thereby creating the possibility of �num, or even a Bnum to exist, as discussed later in
this paper.
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Table 1. Flight conditions for model comparison

Parameter Ground Flight 1 Flight 2
Altitude, ft (m) sea-level 20,000 (6,096) 35,000 (10,668)
MN (none) 0.00 and 0.25 0.50 and 0.60 0.70 and 0.80
�TICAO−SA, oF (oC) 0.0 and +27.0 (+15.0) 0.0 and +18.0 (+10.0) 0.0 and +18.0 (+10.0)

4.0 Cycle model precision uncertainty methodology
This section defines the methodology to estimate the figures of the biases and random errors uncer-
tainties discussed in Section 3. When developing this methodology, it was assumed that the RM is a
well-known model/platform, meaning that the researcher has confidence in its results. Moreover, it is
assumed that the RM can be manipulated to some extent, which may not be the case with a limited
privileges RM (e.g. trial licenses with restricted functionalities). For this research, the available NPSS
license allowed manipulation of the model to add or remove engine components, customise its solver,
and select different thermodynamic packages, which was sufficient for the scope of this work.

The total uncertainty (U) in a given performance parameter is proposed to be established from
Equation (1) along with the biases and random errors uncertainties discussed in the previous section;
thus, the U can be computed by the sum of the individual uncertainties, B and �, as expressed in
Equation (7).

U = Bconf + Binput + Bthermo ± (
�phy + �num

)
(7)

As noted in Section 3, bconf and binput could induce large systematic errors of unknown magnitude and
should be avoided. In this work, both Bconf and Binput have been implicitly forestalled from the model
comparisons. The MSC and the RM were intended to represent the turbofan engine depicted in Fig. 1
(hence, Bconf = 0.0). Both models were given the same inputs: aerothermodynamic DP, turbomachinery
component maps and their scaling factors; henceforth, Binput = 0.0. Moreover, it is assumed that Bconf

and Binput = 0.0 hold throughout this discussion, given that the engine configuration and the main engine
assumptions discussed in Section 2 remain invariant.

To establish the remaining uncertainties, i.e. Bthermo, �phy, and �num, it was necessary to define the
methodology that allows to compute one uncertainty while supressing the effects of the remaining ones.
For example, to compute �phy, both Bthermo and �num had to be forestalled (i.e. Bthermo and �num = 0.0). A
similar rationale can be devised when computing the effects of the other two uncertainties.

To calculate Bthermo, �phy and �num, a sample of data points was proposed (see Table 1). This sample
encompasses several flight conditions (altitude, MN and �TICAO−SA) and power setting scenarios tested
in both the MSC and the RM. The power setting was selected as the LP spool corrected speed (NLcorr),
defined as the ratio of the rotational speed of the LP spool (NL) to the square root of the nondimensional
temperature (θ ) at the fan inlet (station 120 in Fig. 1). The nondimensional temperature (θ120) is the ratio
of T0,120 and Tstd = 518.67 R (288.15 K). The NLcorr ranged from 52.5-100.0% with �NLcorr = 2.5% for
Ground; the lower limit of the NLcorr range had to be adjusted for Flight 1 and Flight 2 altitudes to avoid
convergence troubles.

4.1 Random errors uncertainty (�phy and �num)
To compute �phy, the effects of �num and Bthermo first need to be supressed. A specific running mode
was used in both the MSC and the RM to preclude �num. A running mode is defined, informally herein,
as a way of modifying the cycle model execution to meet the desired intent. This mode will be called
one-pass, the name given in the RM, which was also adopted in this paper.

The thermodynamic calculations execution on each component depicted in Fig. 1 requires several
passes on each iteration. These calculations are performed left-to-right in Fig. 1 during each pass, first
on the secondary stream and then on the primary. The numerical method might call for several passes, in
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Figure 3. Uncertainty methodology summary.

which the vector x is perturbed by small amounts (�x), to construct either the Jacobian (J) or Broyden
(B) matrix. The J (or B) is then used to compute an updated x. The one-pass mode, on the other hand,
allows to execute the model calculations, for a given x, only once, thus avoiding the call to the numerical
method (henceforth �num = 0.0). In this work, the solution vector (x∗) was provided deliberately to both
models. The x∗ on the flight conditions considered in Table 1 were obtained from an independent run
of the RM. Additionally, to preclude Bthermo (i.e. Bthermo = 0.0), both the MSC and the RM considered
equivalent thermodynamic packages, i.e. AGCM_allFuel and allFuel, respectively (discussed at the end
of Section 2).

To isolate the �num effect, it is required to forestall all other terms in Equation (7). Assuming equiv-
alent thermodynamic package are used during the comparison, then Bthermo = 0.0. Moreover, to make
�phy = 0.0, the same model (either MSC or RM) must be considered during the comparisons. However,
to determine the influence of the numerical method (i.e. �num), it is needed that the chosen model run
with its own numerical method and the others.

Isolating �num was deemed cumbersome, impractical and, most likely, impossible to achieve. The
programming code of the numerical method used by the RM cannot be exported to be used in the
MSC. On the other hand, the RM does not allow for the addition of another solver than its own. To
overcome the shortcomings in determining �num its uncertainty was combined with �phy, and the lumped
uncertainty was designated as �phy&num. The �phy&num was obtained by comparing the runs from both
the MSC and the RM using their corresponding numerical methods and only precluding Bthermo, i.e.
considering AGCM_allFuel and allFuel, respectively.

It is worth noting that when allowing the numerical methods to find x∗, the uncertainty in �num is
combined with �phy, and cannot be separated. In other words, �phy and �num are not linearly independent,
i.e. �phy&num �= �phy + �num. Based on the previous discussion, Equation (7) had to be rewritten to account
for �phy&num, as shown in Equation (8).

U = Bconf + Binput + Bthermo ± �phy&num (8)

4.2 Thermodynamic bias uncertainty( Bthermo)
To establish Bthermo alone, the influence of the last term in Equation (8) must be eliminated, i.e. deliber-
ately making �phy&num = 0.0. The Bthermo was assessed by using solely the MSC, thus precluding �phy&num.
The physics modeling and mathematical formulation to define the engine mass and energy imbalances
and the numerical method to find x∗ remain invariant when using the same model. To compute Bthermo,
the AGCM_allFuel package was taken as reference when comparing the other two thermodynamic pack-
ages of interest, namely, AGCM_GasTbl and thermo_package1. A similar approach could be followed
to determine the Bthermo for any other thermodynamic package of interest. For thermo_package1, the ther-
modynamic properties were normalised based on the corrections provided by Gurrola and Botez [9].
These corrections allowed to reduce the Bthermo between thermo_package1 and AGCM_allFuel. Finally,
a summary of the overall proposed methodology is presented in Fig. 3.

https://doi.org/10.1017/aer.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.64


The Aeronautical Journal 103

(a) (b) (c)

(f)(e)(d)

Figure 4. Errors (ε) in percentage between MSC and RM (Bthermo and �num = 0.0, �phy �= 0.0). (a) SFC,
(b) Fn, (c) Fg,pri, (d) Fg,ec, (e) ẆHP, (f) ẆLP.

5.0 Results and discussion
This paper discusses a handful of parameters that are of interest in GTE performance analyses for propul-
sion. The set of parameters encompasses SFC, the net thrust (Fn), the primary and secondary nozzles
gross thrusts (Fg,pri and Fg,sec, respectively), the temperature at the HPC exit (T0,030), the inter-turbine
temperature (T0,046), the shaft power in both high-pressure (HP) and low-pressure (LP) spools, ẆHP and
ẆLP, respectively; the fuel flow (ṁfuel), and the HP spool corrected rotational speed (NHcorr).

In Section 4, the physics and numerical modeling uncertainties were combined into one, �phy&num;
however, for the purpose of the discussion, the results for �phy are also presented. Although �phy will
not be considered to compute the overall U, as per Equation (8), its assessment was deemed beneficial
to derive insights concerning �phy&num.

5.1 Physics modeling random errors uncertainty (�phy)
To determine �phy, first, the errors (ε) between the MSC and the RM were computed. These errors
were obtained from cycle runs depicted in Table 1. The ε are presented in Figs 4 and 5; the former in
percentage, the latter in absolute units.

The ε presented in Figs 4 and 5 are observed to be randomly distributed around zero and exhibit no
observable bias or correlation trend with either engine power (OPR) or flight condition (i.e. altitude, MN ,
�TICAO−SA). The average error (z̄) on each parameter of interest, denoted by the continuous horizontal
line in Figs 4 and 5, was calculated from the complete sample of points considering the three flight
conditions in Table 1. Given that z̄ ≈ 0.0, therefore, the ε are indeed random errors (i.e. not affected by
any bias).

It is worth noting that the data scatter in Fig. 4 for the εSFC, εFn
, εFg,pri

at high power (OPR ≥ 25.0)
is tighter than at low power (OPR ≈ 10.0). For example, in Fig. 4(c), regardless of the flight condition,
the εFg,pri

scatter increases when reducing OPR. The increased scatter is because the Fg,pri absolute val-
ues tend to become small at lower power settings. For example, at 35k/MN = 0.8/�TICAO−SA = 0.0 and
OPR = 10.6, Fg,pri = 380.6 lbf (1,693 N); whereas at OPR = 28.1, Fg,pri = 1,941.2 lbf (8,635 N). In con-
trast, the absolute εFg,pri

(Fig. 5(c)) at each flight condition remained fairly constant throughout variable
power levels.
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Table 2. Precision indexes and �phy

sp

Parameter Ground Flight 1 Flight 2 Overall �phy(±)
SFC (%/lbmh–1lbf

–1) 0.22/1.2×10−3 0.35/4.2×10−3 0.38/4.0×10−3 0.32/3.3×10−3 0.63/6.5×10−3

Fn (%/lbf) 0.22/9.7 0.35/4.6 0.38/3.4 0.32/6.9 0.63/13.6
Fg,pri (%/lbf) 0.66/8.0 0.39/3.4 0.45/3.2 0.52/5.7 1.02/11.2
Fg,sec (%/lbf) 0.11/4.7 0.062/2.9 0.041/1.4 0.08/3.5 0.16/6.9
ẆHP (%/hp) 0.17/21.6 0.13/8.7 0.19/8.1 0.17/15.2 0.34/29.9
ẆLP (%/hp) 0.18/10.7 0.15/5.3 0.19/4.4 0.17/7.8 0.34/15.3
T0,030 (R) 0.71 0.55 0.71 0.67 1.3
T0,046 (R) 0.59 0.45 0.67 0.57 1.1
n 83 68 56 207
t95 1.989 1.995 2.003 1.971

(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 5. Errors (ε) in absolute units between MSC and RM (Bthermo and �num = 0.0, �phy �= 0.0).
(a) SFC, (b) Fn, (c) Fg,pri, (d) Fg,sec, (e) ẆHP, (f) ẆLP, (g) T0,030, (h) T0,046.

For simplicity and summarisation, it was decided to express the �phy as invariant relative to the OPR.
The precision indexes (sp) for the three flight conditions and an overall index are presented in Table 2,
the latter encompassed the scatter from the three flight conditions combined. The �phy are also presented
in Table 2, computed from the overall sp, n, and t95, as per Equation (2).

The �phy is the uncertainty expected for a given performance parameter when only comparing the
thermodynamic calculations between the MSC and the RM. About 95% of the ε are expected to fall
within the range imposed by the �phy, i.e. ±t95sp. For example, per Table 2, the εFn are expected to lie
within ±0.63% or ±13.6 lbf (±60.5 N). In other words, any εFn (i.e. single data point) within this range
would be considered within the expected uncertainty limit.

One should be careful with those ε outside the precision uncertainty (�phy). Additional analysis is
recommended for such points before drawing conclusions or discarding them. Moreover, it is also helpful
to consider the data scatter based on the absolute ε, as shown in Fig. 5, in which it can be observed that
they behave similarly across flight conditions and engine power-settings. Furthermore, both percentage
and absolute values could be helpful when establishing a potential outlier, i.e. a data point conspicuously

https://doi.org/10.1017/aer.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.64


The Aeronautical Journal 105

outside of the data variation. For example, in Fig. 4, for both εFn
and εSFC at Flight 1 altitude, a data point

far from the data family variation is observed, e.g. εSFC = +1.87% and εFn
= −1.84% both at OPR = 9.2.

However, in Fig. 5, for the same data point, εSFC = +0.027 lbm/h/lbf (+0.0028 kg/h/N) and εFn
= −8.0 lbf

(−35.6 N), and so is well within the data variation; it was therefore kept in the sample when computing
the statistics, i.e. t95, sp, and z̄. Finally, regarding the �Fn

and �SFC presented in percentage in Table 2,
both showed the exact same figure (±0.63%). These uncertainties are an exclusive function of εFn

given
that ṁfuel is a constant input provided in x∗.

Some final remarks about the �phy are discussed next. The most fundamental uncertainty to which
any two (or more) models should be compared is the �phy. However, it is recognised that the process for
obtaining the �phy is cumbersome, and for many cycle model comparisons, it might be impractical to
obtain, given that precluding Bthermo and �num may not be possible. As already discussed, only Chapman
et al. [26] made an effort to test the errors concerning the thermodynamic calculations, the so-called
system level testing without a solver. However, the shortcoming in Ref. [26] is that only one data point
was used in their comparison, thus, the uncertainties (�phy) cannot be computed. The uncertainty figures
presented in this paper overcome the lack of data in Ref. [26], and thus, can be used as reference for
cycle model comparisons when no better reference is granted. For example, let us take the Fg,pri error
reported in Ref. [26] (at sea-level), εFg,pri

= −0.178%, and let us assume that their Bthermo is negligible.
Indeed, this data point is within the uncertainty reported in Table 2 (±1.02%), although the uncertainty
might seem too wide relative to the individual error. However, the uncertainties in this work have been
defined based on three flight conditions and the whole range of power-settings presented in Section 4.
It is worth noting that at high-power (OPR ≈ 28.0), the εFg,pri

are observed to be smaller in Fig. 4(c); at
sea-level, the εFg,pri

are about −0.12% and +0.04% which is in better agreement with the values reported
in Ref. [26].

5.2 Physics modeling and numerical lumped uncertainty (�phy& num)
To determine ε, both the MSC and the RM are allowed to use their numerical methods to find their
corresponding x∗, as in a typical GTE model simulation. The ε are presented in Figs 6 and 7 in percentage
and absolute units, respectively. It should be noted that εṁfuel

and εNHcorr
are now included in the error

comparisons (Figs 6(d) and (h) and 7(d) and (h)), since the numerical methods on each model need to
find their corresponding values of ṁfuel and NHcorr.

During the �phy discussion, the errors were centred on zero; now, when adding the effect of the numer-
ical methods, the errors consistently shifted slightly away from zero. In both Figs 6(b), (c) and (d) and
7(b), (c) and (d) it is discernable that εFn

, εFg,pri
, and εṁfuel

consistently shifted upwards, i.e. throughout
OPR for the three altitude levels. Thus, their average values (z̄) are not centred on zero. These results
suggest that a bias (bphy&num), albeit small, was inadvertently induced due to the numerical method imple-
mented in the MSC. It was decided to account for this bias in the total uncertainty (U) determination
as an additional term in Equation (8), which was designated as Bphy&num. The magnitude of Bphy&num was
set to the corresponding average values (z̄) and are presented in Table 3. The Bphy&num values are associ-
ated with the MSC in this paper and should not be generalised to other model comparisons. Finally, the
Bphy&num are constant and non-negative for all parameters; thus, care must be taken when adding these
values to the other uncertainty terms. For brevity, the values of sp, were omitted, and only the �phy&num

are presented in Table 3. However, knowing that n and t95 are the same as in Table 2, thus the sp can be
easily computed.

The �phy&num for most of the parameters shown in Table 3 are smaller than their corresponding �phy

shown in Table 2; for example, in the case of Fg,pri, the �phy&num is approximate half than �phy (±0.57
vs. ±1.02). Given that, in general, �phy&num < �phy, the earlier statement concerning the non-linear
dependency between �phy and �num, i.e. �phy&num �= �phy + �num is supported.

The �phy&num presented in Table 3 are the best reference hitherto found in the literature with which to
compare two or more MSCs against a RM in which each model uses its own numerical method. These
values might be used as generic acceptability criteria, provided that no other bias is present. From the
models’ comparison found in the literature (discussed in Section 1), it was found that their reported
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(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 6. Errors (ε) in percentage between MSC and RM (Bthermo = 0.0; �phy&num �= 0.0). (a) SFC,
(b) Fn, (c) Fg,pri, (d) ṁfuel, (e) Fg,sec, (f) ẆHP, (g) ẆLP, (h) NHcorr.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Figure 7. Errors (ε) in absolute units between MSC and RM (Bthermo = 0.0; �phy&num �= 0.0). (a) SFC,
(b) Fn, (c) Fg,pri, (d) ṁfuel, (e) Fg,sec, (f) ẆHP, (g) ẆLP, (h) NHcorr, (i) T0,030, (j) T0,046.

errors fall within the uncertain values of the �phy&num shown in Table 3. For example, assuming the
Bthermo is negligible, the εFn reported in Ref. ([24] are about +0.15% (at sea-level, static) and −0.40%
(at Top-of-Climb). In Ref. [26], the εFg,pri and εFg,sec for the so-called system level testing with solver
validation were +0.53% and −0.0370% (at sea-level, static), respectively.

5.3. Thermodynamic bias uncertainty (Bthermo)
Figure 8 shows the Bthermo computed for thermo_package1 and AGCM_GasTbl, taking as reference
AGCM_allFuel. These Bthermo are presented as functions of OPR, given that their magnitudes and signs
were noted to vary with engine power, thus, a fixed figure was deemed inadequate as for other biases
already discussed. The Bthermo were computed using a suitable linear fit representing the ε = f (OPR).
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Table 3. Bphy&num and �phy&num

Parameter Bphy&num �phy&num (±)
SFC (%/lbmh–1lbf

–1) 0.00 0.47/5.0x10–3

Fn (%/lbf) +0.17/+3.7 0.57/10.2
Fg,pri (%/lbf) +0.31/+4.0 0.57/8.1
Fg,sec (%/lbf) 0.00 0.22/8.6
ẆHP (%/hp) 0.00 0.41/32.4
ẆLP (%/hp) +0.07/+2.6 0.53/17.3
T0,030 (R) +0.24 1.3
T0,046 (R) +0.94 3.2
ṁfuel +0.12/+3.1 0.53/11.4
NHcorr 0.00 0.06/8.3

(a) (b)

Figure 8. Bthermo vs OPR. (a) thermo_package1 vs. AGCM_allFuell, (b) AGCM_GasTbl vs.
AGCM_allFuell.

In Fig. 8(a), it is observed that the Bthermo are significantly smaller than those in Fig. 8(b). For exam-
ple, BFn

in Fig. 8(a) is between −0.070% and +0.080%, whereas in Fig. 8(b) is between −0.42% and
−0.50%. The factors that caused the Bthermo presented in Fig. 8(a) to be small-to-negligible compared to
those in Fig. 8(b) have been already introduced, i.e. the allFuel is consistent (according to Ref. [37]) with
the thermodynamic tables provided by Gordon [32], the thermo_package1 was built exactly from the
tables presented in Ref. [32]. Moreover, the normalisation constants provided in Ref. [9] made possible
to reduce the difference in the thermodynamic properties’ absolute values between thermo_package1
and allFuel.

5.4 Uncertainty analysis study case
Let us consider a scenario in which the Us are already known, for example the Us proposed in this
paper, provided that no better reference has been granted. This scenario would be the case if a new
MSC is being compared with the RM, such as an equivalent NPSS model. Moreover, let us assume
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Table 4. Flight conditions for uncertainty testing

Parameter (a) (b) (c)
Altitude, ft (m) 2,500 (762) 28,000 (8,534) 40,000 (12,192)
MN (none) 0.10 0.65 0.85
�TICAO-SA, oF (oC) +13.5 (+7.5) +9 (+5) +9 (+5)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. thermos_package1 (AGCM) vs. GasTbl (NPSS) errors. (a) SFC, (b) Fn, (c) Fg,pri, (d) Fg,sec,
(e) ṁfuel, (f) T0,030, (g) T0,046, (h) ẆHP, (i) ẆLP, (j) NHcorr.

that the same DP assumptions, turbomachinery component maps and scaling factors are used in the
MSC and the RM, thus, Bconf and Binput = 0.0. Let us further assume that both the MSC and the RM are
executed for the matrix of test points defined as shown in Table 4, considering NLcorr = 52.0−100.0%
with �NLcorr = 2.0%. It is worth noting that the conditions in Table 4 do not match those used to derive
the uncertainties in this paper (i.e. Table 1), neither do the power setting points, except for the nodes
at NLcorr = 60, 70, 80, 90 and 100.0%. Additionally, let us assume the MSC is used by a party that has
defined thermo_package1 as their baseline thermodynamic package, and the RM is used by a different
party that considers the so-called GasTbl. Finally, each model is expected to use their own numerical
method to find a solution that solves the engine’s mass and energy imbalances.

The results are then compared vis-à-vis, by computing the errors (ε) using Equation (4). The errors
obtained from these comparisons and their respective uncertainties’ limits are presented in Fig. 9. The
solid line in Fig. 9 represents the sum of the Bthermo and Bphy&num. For this exercise, the Bthermowas cal-
culated from the methodology proposed in Section 4; however, a close estimation can be computed by
subtracting Fig. 8(b) from Fig. 8(a). The dashed lines in Fig. 9 represent the interval defined by �phy&num.
It is worth noting that the �phy&num are centred on the bias line (solid). The errors shown in Fig. 9 follow
the bias slope, and overall, they are within the uncertainty defined by the random errors.

In a cycle model comparison, knowing the magnitudes of the expected B and � in advance will make
the decision process (accept or reject) easier. On the contrary, by ignoring them, the errors’ assessment
could easily become a dubious exercise, especially for those parameters following a discernable trend,
such as SFC, ṁfuel, or T0,046 in Fig. 9. In other words, the data points would look conspicuously biased
without the aid of the B and � lines constructed from the methodology and figures presented in this
work. Indeed, while the data points are biased, which is known beforehand, the figures presented in this
paper helped to objectively define the expected uncertainty limit.
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6.0 Conclusions and recommendations
In this work, a thorough literature review was performed to establish the lack of objective criteria with
which to define precision acceptability when comparing aerothermodynamic cycle models. The pre-
cision of a cycle model is affected by biases and random errors. The biases account for differences in
model inputs, engine configuration and thermodynamic properties calculations. Random errors account
for differences in physics modeling and numerical methods. The proposed methodology was applied to
derive the uncertainty figures for several performance parameters of interest from which the following
conclusion/recommendations were drawn:

• A reference cycle model is the best mean to mitigate and manage the uncertainties. However, the
researcher must be aware of the type of uncertainties that may be encountered in practice, and
devise ways to preclude/reduce them.

• It is highly recommended to take a sample of data points for comparison, making sure different
flight conditions and power levels are surveyed.

• If the errors in the sample data points are within the maximum expected error (i.e. uncertainty)
then, the errors should be deemed as acceptable. For Fn, SFC, and T0,046 (of paramount interest in
aero GTEs), the maximum expected errors are: ±0.57%, ±0.47%, and ±3.2 R (±1.8 K). These
maximum errors account for random variation encountered in the thermodynamic modeling and
the numerical method used to solve the engine imbalances.

• Given the lack of a comprehensive methodology to define precision uncertainties in cycle
model comparisons, it is recommended to use the proposed methodology to define the specific
uncertainties for other model comparisons.

• In case the proposed methodology cannot be implemented, it is recommended to use the
uncertainty figures provided in this paper as a generic acceptability criteria.
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