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Abstract
Let K be an infinite field of characteristic p> 0 and let λ,μ be partitions, where μ has two parts. We find sufficient
arithmetic conditions on p, λ,μ for the existence of a nonzero homomorphism �(λ) →�(μ) of Weyl modules
for the general linear group GLn(K). Also, for each p we find sufficient conditions so that the corresponding
homomorphism spaces have dimension at least 2.

1. Introduction

In the representation theory of the general linear group GLn(K), where K is an infinite field of charac-
teristic p> 0, the Weyl modules �(λ) are of central importance. These are parameterized by partitions
λ with at most n parts. Over a field of characteristic zero, the modules �(λ) are irreducible. However
over fields of positive characteristics, this is no longer true and determining their structure is a major
problem. In particular, very little is known about homomorphisms between them.

For GL3(K), all homomorphisms between Weyl modules have been classified when p> 2 by
Cox and Parker [5]. Some of the few general results are the nonvanishing theorems of Carter and
Payne [4] and Koppinen [11], and the row or column removal theorems of Fayers and Lyle [14] and
Kulkarni [12].

In [17], we examined homomorphisms into hook Weyl modules and obtained a classification result.
This has been obtained also by Loubert [13] for p> 2. In the present paper, we consider homomorphisms
�(λ) →�(μ), where μ has two parts. The main result, Theorem 3.1, provides sufficient arithmetic
conditions on λ,μ, and p so that HomS(�(λ),�(μ)) �= 0, where S is the Schur algebra for GLn(K) of
appropriate degree. An explicit map is provided that corresponds to the sum of all standard tableaux of
shape μ and weight λ. The main tool of the proof is the description of Weyl modules by generators and
relations of Akin et al. [2].

The first examples of pairs of Weyl modules with homomorphism spaces of dimension greater than 1
were obtained by Dodge [6]. Shortly after, more were found by Lyle [14]. In Corollary 6.2, we find
sufficient conditions on λ,μ and p so that dim HomS(�(λ),�(μ))> 1 and thus we have new examples
of homomorphism spaces between Weyl modules of dimension greater than 1.

By a classical theorem of Carter and Lusztig [3], the results in Theorem 3.1 and Corollary 6.2 have
analogues for Specht modules for the symmetric group when p> 2, see Remark 3.2 and the Remark
after Corollary 6.2.

Section 2 is devoted to notation and preliminaries. In Section 3, we state the main result, and in
Section 4, we consider the straightening law needed later. The proof of the main result is in Section 5.
In Section 6, we consider homomorphism spaces of dimension greater than 1.
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2. Preliminaries
2.1. Notation

Throughout this paper, K will be an infinite field of characteristic p> 0. We will be working with homo-
geneous polynomial representations of GLn(K) of degree r, or equivalently, with modules over the Schur
algebra S = SK(n, r). A standard reference here is [8].

In what follows we fix notation and recall from Akin and Buchsbaum [1], and also Akin et al. [2]
important facts.

Let V = Kn be the natural GLn(K)-module. The divided power algebra DV =∑
i≥0 DiV of V is defined

as the graded dual of the Hopf algebra S(V∗), where V∗ is the linear dual of V and S(V∗) is the symmetric
algebra of V∗, see [2], I.4. For v ∈ V and i, j nonnegative integers, we will use many times relations of
the form

v(i)v(j) = (
i+j

j

)
v(i+j),

where
(

i+j
j

)
is the indicated binomial coefficient.

By ∧(n, r), we denote the set of sequences a = (a1, . . . , an) of nonnegative integers that sum to r
and by ∧+(n, r) we denote the subset of ∧(n, r) consisting of sequences λ= (λ1, . . . , λn) such that λ1 ≥
λ2 · · · ≥ λn. Elements of ∧+(n, r) are referred to as partitions of r with at most n parts. The transpose
partition λt = (λt

1, ..., λt
q) ∈ ∧+(λ1, r), q = λ1, of a partition λ= (λ1, ..., λn) ∈ ∧+(n, r) is defined by λt

j =
#{i : λi ≥ j}.

If a = (a1, . . . , an) ∈ ∧(n, r), we denote by D(a) or D(a1, . . . , an) the tensor product Da1 V ⊗ · · · ⊗
Dan V . All tensor products in this paper are over K .

The exterior algebra of V is denoted �V =∑
i≥0 �

iV . If a = (a1, . . . , an) ∈ ∧(n, r), we denote by
�(a) the tensor product �a1 V ⊗ · · · ⊗�an V .

For λ ∈ ∧+(n, r), we denote by �(λ) the corresponding Weyl module for S. In [2], Definition II.1.4,
the module�(λ) (denoted KλF there), was defined as the image a particular map d′

λ
: D(λ) →�(λt). For

example, if λ= (r), then �(λ) = DrV , and if λ= (1r), then �(λ) =�rV .

2.2. Relations for Weyl modules.

We recall from [2], Theorem II.3.16, the following description of �(λ) in terms of generators and
relations.

Theorem 2.1 ([2]). Let λ= (λ1, . . . , λm) ∈ ∧+(n, r), where λm > 0. There is an exact sequence of
S-modules

m−1∑
i=1

λi+1∑
t=1

D(λ1, . . . , λi + t, λi+1 − t, . . . , λm)
�λ−→ D(λ)

d′
λ−→�(λ) → 0,

where the restriction of �λ to the summand Mi(t) = D(λ1, . . . , λi + t, λi+1 − t, . . . , λm) is the
composition

Mi(t)
1⊗···⊗�⊗···1−−−−−−→ D(λ1, . . . , λi, t, λi+1 − t, . . . , λm)

1⊗···⊗η⊗···1−−−−−→ D(λ),

where � : D(λi + t) → D(λi, t) and η : D(t, λi+1 − t) → D(λi+1) are the indicated components of the
comultiplication and multiplication, respectively, of the Hopf algebra DV and d′

λ
is the map in [2],

Def.II.13.

2.3. Standard basis of �(μ)

We will record here and in the next subsection two important facts from [2] and [1] specified to the case
of partitions consisting of two parts.
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Let us fix the order e1 < e2 < ...< en on the set {e1, e2, ..., en} of the canonical basis elements of the
natural module V of GLn(K). We will denote each element ei by its subscript i. For a partition μ=
(μ1,μ2) ∈ ∧+(n, r), a tableau of shape μ is a filling of the diagram of μ with entries from {1, ..., n}.
Such a tableau is called standard if the entries are weakly increasing across the rows from left to right
and strictly increasing in the columns from top to bottom. (The terminology used in [2] is ’co-standard’).

The set of standard tableaux of shape μ will be denoted by ST(μ). The weight of a tableau T is the
tuple α= (α1, ..., αn), where αi is the number of appearances of the entry i in T . The subset of ST(μ)
consisting of the (standard) tableaux of weight α will be denoted by STα(μ).

For example, the following tableau of shape μ= (6, 4).

T = 1 1 1 2 2 4

2 2 3 4

is standard and has weight α = (3, 4, 1, 2).
We will use ‘exponential’ notation for standard tableaux. Thus for the above example, we write

T = 1(3)2(2)4

2(2)34
.

To each tableau T of shape μ= (μ1,μ2), we may associate an element
xT = xT(1) ⊗ xT(2) ∈ D(μ1,μ2),

where xT(i) = 1(ai1) · · · n(ain) and aij is equal to the number of appearances of j in the i-th row of T . For
example, the T depicted above yields xT = 1(3)2(2)4 ⊗ 2(2)34. According to [2], Theorem II.2.16, we have
the following.

Theorem 2.2 ([2]). The set {d′
μ
(xT) : T ∈ ST(μ)} is a basis of the K-vector space �(μ).

If x = 1(a1)2(a2) · · · n(an) ⊗ 1(b1)2(b2) · · · n(bn) ∈ D(μ), we will denote the element d′
μ
(x) ∈�(μ) by[

1(a1)2(a2) · · · n(an)

1(b1)2(a2) · · · n(bn)

]
.

2.4. Weight subspaces of �(μ)

Suppose n ≥ r. Let ν ∈ ∧(n, r) and μ= (μ1,μ2) ∈ ∧+(2, r). According to [1], equation (11), a basis of
the K-vector space HomS(D(ν),�(μ)) is in 1-1 correspondence with set STν(μ) of standard tableaux of
shape μ and weight ν.

For the computations to follow, we need to make the above correspondence explicit. Let ν =
(ν1, ..., νn) ∈ ∧(n, r) and T ∈ STν(μ). Let ai (respectively, bi) be the number of appearances of i in the first
row (respectively, second row) of T . We note that νi = ai + bi for each i. In particular, we have a1 = ν1

because of standardness of T . Define the map
φT : D(ν) →�(μ),

x1 ⊗ x2 ⊗ · · · ⊗ xn �→
∑
i2,...,in

d′
μ

(
x1x2i2 (a2) · · · xnin(an) ⊗ x2i2 (b2)′ · · · xnin (bn)′) ,

where
∑

is
xsis (as) ⊗ xsis (bs)′ is the image of xs under the component

D(νs) → D(as, bs),

of the diagonalization � : DV → DV ⊗ DV of the Hopf algebra DV for s = 2, ..., n. Thus we have that a
basis of the K-vector space HomS(D(ν),�(μ)) is the set

{φT : T ∈ STν(μ)}.
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In particular, suppose λ= (λ1, ..., λm) ∈ ∧+(n, r) is a partition and μ= (μ1,μ2) ∈ ∧+(2, r) satisfies
μ2 ≤ λ1. This inequality means that each tableau of shape μ that has the form

1(λ1)2(a2) · · · m(am)

2(b2) · · · m(bm)

is standard. Hence, we have the following result.

Lemma 2.3. Suppose n ≥ r. Let λ,μ ∈ ∧+(n, r), where λ= (λ1, ..., λm) and μ= (μ1,μ2). If μ2 ≤ λ1,
than a basis of the K- vector space HomS(D(λ),�(μ)) is given by the elements φT , where

T = 1(λ1)2(a2) · · · m(am)

2(b2) · · · m(bm) ,

are such that

ai, bi ≥ 0, ai + bi = λi, (i = 2, ..., m),

a2 + · · · + am =μ1 − λ1, b2 + · · · + bm =μ2.

Example. Suppose λ= (λ1, 3, 3) and μ= (λ1 + 4, 2), where λ1 ≥ 3. Then {[T1], [T2], [T3]} is a basis of
HomS(D(λ),�(μ)), where

T1 = 1(λ1)2(3)3
3(2) , T2 = 1(λ1)2(2)3(2)

23
, T3 = 1(λ1)23(3)

2(2) .

For x = 1(λ1) ⊗ 1(2)2 ⊗ 3(3) ∈ D(λ) and T = T2, we have

φT(x) =
(
λ1 + 2

2

)[
1(λ1+2)3(2)

23

]
+
(
λ1 + 1

1

)[
1(λ1+1)23(2)

13

]
,

where the binomial coefficients come from multiplication in the divided power algebra DV .

3. Main result

In order to state the main result of this paper, we use the following notation. If x, y are positive integers,
let

R(x, y) = gcd

{(
x

1

)
,

(
x + 1

2

)
, ...,

(
x + y − 1

y

)}
.

If x is a positive integer, let R(x, 0) = 0.

Theorem 3.1. Let K be an infinite field of characteristic p> 0 and let n ≥ r be positive integers. Let
λ,μ ∈ ∧+(n, r) be partitions such that λ= (λ1, ..., λm) and μ= (μ1,μ2), where λm �= 0, m ≥ 2 and μ2 ≤
λ1 ≤μ1. If p divides all of the following integers

R(λ1 −μ2 + 1, l), l = min{λ2,μ1 − λ1}
R(λi + 1, λi+1), i = 2, ..., m − 1,

then the map

ψ =
∑

T∈STλ(μ)

φT

induces a nonzero homomorphism �(λ) →�(μ).

Remark 3.2. Consider the symmetric group Sr on r symbols. For a partition λ of r, let Sp(λ) be the
corresponding Specht module defined in Section 6.3 of [8]. From Theorem 3.7 of [3], we have

dim HomS(�(λ),�(μ)) ≤ dim HomSr (Sp(μ), Sp(λ)),
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for all partitions λ,μ of r. (In fact we have equality if p> 2 according to loc. cit.) Hence, our Theorem
3.1 may be considered as a nonvanishing result for homomorphisms between Specht modules.

Remark 3.3. Here we make some comments concerning the inequalities n ≥ r, m ≥ 2 and μ2 ≤ λ1 ≤μ1

in the statement of the above theorem.

(1) The assumption n ≥ r is needed so that the Weyl modules �(λ),�(μ) are nonzero. As is usual
with such results, it turns out that this assumption may be relaxed to n ≥ m, since m is the
maximum number of parts of the partitions λ,μ. This follows from the proof of the theorem to
be given in Section 5.

It is well known that if HomS(�(λ),�(μ)) �= 0, then λ�μ in the dominance ordering,
meaning in particular that λ1 ≤μ1.

If m = 1, then by the previous remark, HomS(�(λ),�(μ)) = 0, unless μ= λ, in which case
HomS(�(λ),�(μ)) = K by [10], the analogue for Weyl modules of II.2.8 Proposition.

(2) In the above remarks, the corresponding inequalities were needed to avoid trivial situations.
The nature of the assumption μ2 ≤ λ1 is different. There are cases where nonzero homomor-
phisms �(λ) →�(μ) exist if μ2 >λ1. For example, let n = 3, p = 2, λ= (2, 2, 2) and μ=
(3, 3). One may check that the map φT , where T = 1(2)2

23(2) , induces a nonzero map�(λ) →�(μ).

It would be interesting to find general results.
The main point for us of the assumption μ2 ≤ λ1 is that every tableau T in Lemma 2.3 is

standard.
(3) If λ1 =μ1, then R(λ1 −μ2 + 1, l) = 0 and the first divisibility condition of the theorem

holds for all p. The remaining divisibility conditions are exactly those for which we have
HomS

′ (�(λ2, ..., λm),�(μ2)) �= 0, where S′ = SK(n, r − λ1). This follows, for example, from
Theorem 3.1 of [17]. Hence, in this case, we have an instance of row removal which
states that dim HomS(�(λ),�(μ)) = dim HomS

′ (�(λ2, ..., λm),�(μ2)). See the paper by Fayers
and Lyle [7], Theorem 2.2 (stated for Specht modules), or the paper by Kulkarni [12],
Proposition 1.2.

For further use, we note that the divisibility assumptions of Theorem 3.1 may be stated in a different
way. For a positive integer y, let lp(y) be the least integer i such that pi > y. From James [9], Corollary
22.5, we have the following result.

Lemma 3.4 ([9]). Let x ≥ y be positive integers. Then p divides R(x, y) if and only if plp(y) divides x.

4. Straightening

For the proof of Theorem 3.1, we will need the following identities involving binomial coefficients. Our
convention is that

(
a
b

)= 0 if b> a or b< 0.

Lemma 4.1.

(1) Let a, m1, ..., ms be nonnegative integers and m = m1 + · · · + ms.
a. We have ∑

j1+···+js=a

(
m1

j1

)
· · ·

(
ms

js

)
=
(

m

a

)
,

where the sum ranges over all nonnegative integers j1, ..., js such that j1 + · · · + js = a.
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b. If m> 0, then ∑
j0+···+js=m

(− 1)j0

(
m1

j1

)
· · ·

(
ms

js

)
= 0,

where the sum ranges over all nonnegative integers j0, ..., js such that j0 + · · · + js = m.
(2) Let a, b, c be nonnegative integers such that b ≤ a. Then

c∑
j=0

(− 1)c−j

(
a + j

j

)(
b

c − j

)
=
(

a − b + c

c

)
=

c∑
j=0

(− 1) j

(
a + c − j

c − j

)(
b

j

)
.

Proof.

(1) The identity in (a) is Vandermonde’s identity. For (b), we have

∑
j0+···+js=m

(− 1)j0

(
m1

j1

)
· · ·

(
ms

js

)
=

m∑
j0=0

∑
j1+···+js=m−j0

( −1)j0

(
m1

j1

)
· · ·

(
ms

js

)

=
m∑

j0=0

(− 1)j0
∑

j1+···+js=m−j0

(
m1

j1

)
· · ·

(
ms

js

)

=
m∑

j0=0

(− 1)j0

(
m

m − j0

)

= 0.

(2) The second identity is Lemma 2.6 of [14] for q = 1. The first follows from the second with the
substitution j �→ c − j.

We will also need the following explicit form of the straightening law concerning violations of
standardness in the first column.

Lemma 4.2. Let μ= (μ1,μ2) ∈ ∧+(n, r), (a1, ..., an) ∈ ∧(n,μ1) and (b1, ..., bn) ∈ ∧(n,μ2).

(1) If a1 + b1 >μ1, then
[

1(a1) · · · n(an)

1(b1) · · · n(bn)

]
= 0.

(2) If a1 + b1 ≤μ1, then in �(μ) we have[
1(a1) · · · n(an)

1(b1) · · · n(bn)

]
= (− 1)b1

∑
i2,...,in

(
b2 + i2

b2

)
· · ·

(
bn + in

bn

) [
1(a1+b1)2(a2−i2) · · · n(an−in)

2(b2+i2) · · · n(bn+in)

]
,

where the sum ranges over all nonnegative integers i2, ..., in such that i2 + · · · + in = b1 and
is ≤ as for all s = 2, ..., n.

Proof.

(1) This is clear since there is no element in �(μ) of weight (ν1, ..., νn) satisfying ν1 >μ1.
(2) We proceed by induction on b1, the case b1 = 0 being clear. Suppose b1 > 0. Consider the

element x ∈ D(μ1 + b1,μ2 − b1), where
x = 1(a1+b1)2(a2) · · · n(an) ⊗ 2(b2) · · · n(bn),

and the map

δ : D(μ1 + b1,μ2 − b1)
�⊗1−−→ D(μ1, b1,μ2 − b1)

1⊗η−→ D(μ1,μ2).
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According to the analogue of Lemma II.2.9 of [2] for divided powers in place of exterior powers,
we have d′

μ
(δ(x)) = 0 in �(μ1,μ2). Thus

[
1(a1) · · · n(an)

1(b1) · · · n(bn)

]
= −

∑
j1,...,jn

(
b2 + j2

b2

)
· · ·

(
bn + jn

bn

) [
1(a1+b1−j1)2(a2−j2) · · · n(an−jn)

1(j1)2(b2+j2) · · · n(bn+jn)

]
,

where the sum ranges over all nonnegative integers j1, ..., jn such that j1 + · · · + jn = b1, j1 < b1 and js ≤ as

for all s = 2, ..., n. Let X be the right hand side of the above equality. By induction, we have

X = −
∑
j1,...,jn

(
b2 + j2

b2

)
· · ·

(
bn + jn

bn

)
(− 1)j1

∑
k2,...,kn

(
b2 + j2 + k2

b2 + j2

)
· · ·

(
bn + jn + kn

bn + jn

)
[

1(a1+b1)2(a2−j2−k2) · · · n(an−jn−kn)

2(b2+j2+k2) · · · n(bn+jn+kn)

]
,

where the new sum ranges over all nonnegative integers k2, ..., kn such that k2 + · · · + kn = j1 and ks ≤
as − js for all s = 2, ..., n. Using the identities(

bs + js

bs

)(
bs + js + ks

bs + js

)
=
(

bs + js + ks

bs

)(
js + ks

js

)
,

for s = 2, ..., n, we obtain

X = −
∑

j1,...,jn ,k2,...,kn

(− 1)j1

(
b2 + j2 + k2

b2

)
· · ·

(
bn + jn + kn

bn

)(
j2 + k2

j2

)
· · ·

(
jn + kn

jn

)
[

1(a1+b1)2(a2−j2−k2) · · · n(an−jn−kn)

2(b2+j2+k2) · · · n(bn+jn+kn)

]
.

The coefficient c of [
1(a1+b1)2(a2−i2) · · · n(an−in)

2(b2+i2) · · · n(bn+in)

]

in the right hand side of the above equation is equal to

−
∑

j1,...,jn ,k2,...,kn
js+ks=is

(− 1)j1

(
b2 + j2 + k2

b2

)
· · ·

(
bn + jn + kn

bn

)(
j2 + k2

j2

)
· · ·

(
jn + kn

jn

)
,

where the sum is restricted over those j1, ..., jn and k2, ..., kn that satisfy the additional conditions
js + ks = is for all s = 2, ..., n. Hence

c = −
∑
j1,...,jn

(− 1)j1

(
b2 + i2

b2

)
· · ·

(
bn + in

bn

)(
i2

j2

)
· · ·

(
in

jn

)

= −
(

b2 + i2

b2

)
· · ·

(
bn + in

bn

) ∑
j1,...,jn

(− 1)j1

(
i2

j2

)
· · ·

(
in

jn

)
.

Remembering that in the last sum we have j1 < b1, Lemma 4.1 (1)(b) yields∑
j1,...,jn

(− 1)j1

(
i2

j2

)
· · ·

(
in

jn

)
= 0 − (− 1)b1 .

Thus c = (− 1)b1
(

b2+i2
b2

) · · · (bn+in
bn

)
.
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5. Proof of the main theorem

Consider the map ψ ∈ HomS(D(λ),�(μ)) given by the sum

ψ =
∑

T∈STλ(μ)

φT ,

in the statement of Theorem 3.1 We will show, according to Theorem 2.1, that ψ(x) = 0 for every x ∈
Im(�λ). First we look at the relations corresponding to rows 1 and 2 of �(λ).

Relations from rows 1 and 2
Let x = 1(λ1) ⊗ 1(t)2(λ2−t) ⊗ 3(λ3) · · · m(λm) ∈ Im(�λ), where t ≤ λ2, and let T ∈ STλ(μ). Then T is of the

form

T = 1(λ1)2(a2) · · · m(am)

2(b2) · · · m(bm) ∈ STλ(μ),

where the ai, bi satisfy the conditions of Lemma 2.3. Using the definition of φT from 2.4, we have

φT(x) =
∑

i≤t

(
λ1 + i

i

) [
1(λ1+i)2(a2−i)3(a3) · · · m(am)

1(t−i)2(λ2−t−a2+i)3(b3) · · · m(bm)

]
.

If (λ1 + i) + (t − i) ≥μ1, then by the first part of Lemma 4.2 we obtain φT(x) = 0. Hence we may assume
that t ≤ min{λ2,μ1 − λ1}. Using the second part of Lemma 4.2, we have

φT(x) =
∑

i≤t

(
λ1 + i

i

)
(− 1)t−i

∑
k2+···+km=t−i

(
b2 − k3 − · · · − km

k2

)(
b3 + k3

k3

)
· · ·

(
bm + km

km

)
[

1(λ1+t)2(a2+k3+···+km)3(a3−k3) · · · m(am−km)

2(b2−k3−···−km)3(b3+k3) · · · m(bm+km)

]
.

Let c ∈ K be the coefficient of
[

1(λ1+t)2(a2+k3+···+km)3(a3−k3) · · · m(am−km)

2(b2−k3−···−km)3(b3+k3) · · · m(bm+km)

]
in the right hand side of the last

equation and let k = k3 + · · · + km. Then

c =
(

t∑
i=0

(
λ1 + i

i

)
(− 1)t−i

(
b2 − k

t − k − i

))(
b3 + k3

k3

)
· · ·

(
bm + km

km

)

= (− 1)k

(
t−k∑
i=0

(
λ1 + i

i

)
(− 1)t−k−i

(
b2 − k

t − k − i

))(
b3 + k3

k3

)
· · ·

(
bm + km

km

)

= (− 1)k

(
λ1 − b2 + t

t − k

)(
b3 + k3

k3

)
· · ·

(
bm + km

km

)
,

where in the third equality we used the first identity of Lemma 4.1 (2). Thus

φT(x) =
∑

k3,...,km

(− 1)k

(
λ1 − b2 + t

t − k

)(
b3 + k3

k3

)
· · ·

(
bm + km

km

) [
1(λ1+t)2(a2+k)3(a3−k3) · · · m(am−km)

2(b2−k)3(b3+k3) · · · m(bm+km)

]
,

where k = k3 + · · · + km and the sum ranges over all nonnegative integers k3, ..., km such that k ≤ b2 and
ks ≤ as for all s = 3, ..., m.

By summing with respect to T ∈ STλ(μ) and using Lemma 2.3, we obtain

ψ(x) =
∑

b2,...,bm

∑
k3,...,km

(− 1)k

(
λ1 − b2 + t

t − k

)(
b3 + k3

k3

)
· · ·

(
bm + km

km

)
(1)

[
1(λ1+t)2(a2+k)3(a3−k3) · · · m(am−km)

2(b2−k)3(b3+k3) · · · m(bm+km)

]
,
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where the new sum is over all nonnegative integers b2, ..., bm such that bi ≤ λi(i = 2, ..., m) and b2 + · · · +
bm =μ2.

Fix

[S] =
[

1(λ1+t)2(a2+k)3(a3−k3) · · · m(am−km)

2(b2−k)3(b3+k3) · · · m(bm+km)

]
∈�(μ),

in the right hand side of (1) and let q =μ2 − (b3 + k3) − · · · − (bm + km). Then q = b2 − k. The
coefficient of [S] in (1) is equal to

∑
k

(− 1)k

(
λ1 − q − k + t

t − k

) ∑
k3+···+km=k

(
b3 + k3

k3

)
· · ·

(
bm + km

km

)

=
∑

k

(− 1)k

(
λ1 − q − k + t

t − k

)(
μ2 − q

k

)

=
(
λ1 −μ2 + t

t

)
= 0,

where in the first equality we used Lemma 4.1 (1)(a) and in the second equality we used the second
identity of Lemma 4.1 (2).
Relations from rows i and i + 1 (i> 1).

This computation is similar to the previous one but simpler as there is no straightening. Let y =
1(λ1) ⊗ · · · ⊗ i(λi) ⊗ i(t)(i + 1)(λi+1−t) ⊗ · · · ⊗ m(λm) ∈ Im(�λ), where i> 1 and t ≤ λi+1. As before let

T = 1(a1) · · · m(am)

2(b2) · · · m(bm) ∈ STλ(μ).

The definition of φT yields

φT(y) =
∑

j≤t

(
ai + j

j

)(
bi + t − j

t − j

) [
1(λ1)2(a2) · · · i(ai+j)(i + 1)(ai+1−j) · · · m(am)

2(b2) · · · i(bi+t−j)(i + 1)(bi+1−t+j) · · · m(bm)

]
.

By summing with respect to T ∈ STλ(μ) and using Lemma 2.3, we have

ψ(y) =
∑

b2,...,bm

∑
j≤t

(
λi − bi + j

j

)(
bi + t − j

t − j

)
(2)

[
1(λ1)2(λ2−b2) · · · i(λi−bi+j)(i + 1)(λi+1−bi+1−j) · · · m(λm−bm)

2(b2) · · · i(bi+t−j)(i + 1)(bi+1−t+j) · · · m(bm),

]

where the new sum ranges over all nonnegative integers b2, ..., bm such that bi ≤ λi (i = 2, ..., m) and
b2 + · · · + bm =μ2.

Fix

[S] =
[

1(λ1)2(λ2−b2) · · · i(λi−bi+j)(i + 1)(λi+1−bi+1−j) · · · m(λm−bm)

2(b2) · · · i(bi+t−j)(i + 1)(bi+1−t+j) · · · m(bm)

]
∈�(μ),

in the right hand side of (2) and let q = bi − j. The coefficient of [S] in (2) is equal to

∑
j≤t

(
λj − q

j

)(
t + q

t − j

)
=
(
λi + t

t

)
= 0,

where in the first equality we used Lemma 4.1 (1)(a).
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We have shown thus far that the map ψ =∑
T∈ST(λ,μ) φT induces a homomorphism of S-modules

ψ̄ :�(λ) →�(μ) and it remains to be shown that ψ̄ �= 0. Let z = 1(λ1) ⊗ · · · ⊗ m(λm) ∈ D(λ) and T ∈
STλ(μ). Then from the definition of φT we have φT(x) = [T] and hence

ψ(x) =
∑

T∈STλ(μ)

[T].

The right hand side is a sum of distinct basis elements in �(μ) (each with coefficient 1) according to
Theorem 2.2 and hence nonzero. The proof is complete.

Remark 5.1 Lyle has shown in [15], Propositions 2.19 through 2.27 and subsection 3.3, that the homo-
morphism spaces between Specht modules corresponding to partitions λ= (λ1, ..., λn),μ= (μ1,μ2) of
r with μ2 ≤ λ1, over the complex Hecke algebra H=HC,q(Sr) of the symmetric group Sr, where q is a
complex root of unity, are at most 1 dimensional. Furthermore, she proves exactly when they are nonzero
and provides a generator which turns out to correspond to the sum of all standard tableaux in STλ(μ).
(Note that our λ,μ are reversed). In the statement of Theorem 3.1, a similar map is considered and there
are some technical similarities between the proof of our main result and [15]. However, we show in the
next section, our modular homomorphism spaces may have dimension greater than 1.

6. Homomorphism spaces of dimension greater than 1

As mentioned in Introduction, the first examples of Weyl modules �(λ),�(μ) such that
dim HomS(�(λ),�(μ))> 1 were obtained by Dodge [6]. More examples were found by Lyle [14], in
fact in the q-Schur algebra setting. The purpose of this section is to observe that the homomorphism
spaces of Theorem 3.1 may have dimension > 1, see Corollary 6.2 and Example 6.4 below.

We recall the following special case of the classical nonvanishing result of Carter and Payne [4].
Here, boxes are raised between consecutive rows. See [16], 1.2 Lemma, for a proof of this particular
case in our context.

Proposition 6.1. ([4]). Let n ≥ r. Let λ,μ ∈ ∧+(n, r) such that for some some d> 0 we have μ= (λ1 +
d, λ2 − d, λ3, ..., λm), where λ= (λ1, ..., λm). Suppose p divides R(λ1 − λ2 + d + 1, d). Then the map

α : D(λ1, λ2, ..., λm)
1⊗�⊗1−−−→ D(λ1, d, λ2 − d, ..., λm)
η⊗1−→ D(λ1 + d, λ2 − d, ..., λm),

where � : D(λ2) → D(d, λ2 − d) is the indicated diagonalization and η : D(λ1, d) → D(λ1 + d) and the
indicated multiplication, induces a nonzero homomorphism �(λ) →�(μ). The main result of this
section is the following.

Corollary 6.2. Let n ≥ r. Let λ,μ ∈ ∧+(n, r) such that λ= (λ1, ..., λm), λm �= 0, m ≥ 3 and μ= (μ1,μ2).
Define d =μ1 − λ1 and assume 0< d ≤ λ2 − λ3 and μ2 ≤ λ1. If p divides all of the following integers

(1) R(λ1 −μ2 + 1, d),
(2) R(λi + 1, λi+1), i = 2, ..., m − 1,
(3) R(λ1 − λ2 + d + 1, d),
(4) R(λ2 − d + 1, λ3),

then the dimension of the K-vector space HomS(�(λ),�(μ)) is at least 2.

Proof. By the first two divisibility conditions, the map

ψ1 =
∑

T∈STλ(μ)

φT : D(λ) → D(μ),

induces a nonzero homomorphism ψ̄1 :�(λ) →�(μ) according to Theorem 3.1.
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Next consider the following maps

α : D(λ1, λ2, ..., λm) → D(λ1 + d, λ2 − d, ..., λm),

as in Proposition 6.1 and

β : D(λ1 + d, λ2 − d, ..., λm)
1⊗η′−−→ D(λ1 + d, λ2 − d + λ3 + · · · + λm),

where η′ : D(λ2 − d, ..., λm) → D(λ2 − d + λ3 + · · · + λm) is the indicated multiplication.
Under assumption (3), we have that α induces a nonzero map

ᾱ :�(λ) → D(λ1 + d, λ2 − d, ..., λm),

according to Proposition 6.1
Under assumptions (2) and (4), we have that β induces a nonzero map

β̄ :�(λ1 + d, λ2 − d, ..., λm) →�(λ1 + d, λ2 − d + λ3 + · · · + λm),

according to Theorem 2.1
Consider the composition ψ̄2 = β̄ᾱ :�(λ) →�(μ) depicted below, where Weyl modules are indi-

cated by the diagrams of the corresponding partitions.

It remains to be shown that the homomorphisms ψ̄1, ψ̄2 are linearly independent. Let z = d′
λ
(1(λ1) ⊗

· · · ⊗ m(λm)) ∈�(λ). From the definitions of the maps, we have

ψ̄1(z) =
∑

T∈STλ(μ)

[T],

and

ψ̄2(z) =
[

1(λ1)2(d)

2(λ2−d) · · · m(λm)

]
.

It is clear that 1(λ1)2(d)

2(λ2−d) · · · m(λm) ∈ STλ(μ). Since λ3 > 0, the set STλ(μ) contains at least two elements.

Hence, from the above equations and Theorem 2.2, it follows that the maps ψ̄1, ψ̄2 are linearly
independent.

Remark The assumptions of Corollary 6.2 imply that for the corresponding Specht modules we have
dim HomSr (Sp(μ), Sp(λ)) ≥ 2. See Remark 3.2.

Example 6.3. Let p be a prime and a an integer such that a ≥ (p2 + 1)(p − 1) and

a ≡ p − 2 mod p2.

Consider the following partitions

λ= (a, 2p − 1, (p − 1)p2
),

μ= (a + p, (p2 + 1)(p − 1)),

where p − 1 appears p2 times as a row in λ. Using Lemma 3.4, it easily follows that the assumptions (1)
- (4) of Corollary 6.2 are satisfied. For example, we have

λ1 −μ2 + 1 ≡ p − 2 − (p2 + 1)(p − 1) + 1 ≡ 0 mod p2,
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and hence by Lemma 3.3, d = p divides R(λ1 −μ2 + 1, d) which is assumption (1). Thus,
dim HomS(�(λ),�(μ)) ≥ 2.1

For p = 2, the least a that satisfies the above requirements is a = 8 and thus we have the partitions
λ= (8, 3, 1, 1, 1, 1),μ= (10, 5). This pair appears in Example 4, Subsection 2.3, of Lyle’s paper [15]
which prompted us to consider Corollary 6.2 and in particular the composition ψ̄2 = β̄ᾱ :�(λ) →�(μ).
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