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A new time-dependent analysis of the global and local fluctuating velocity signals in
grid turbulence is conducted to assess the scaling laws for non-equilibrium turbulence.
Experimental datasets of static- and active-grid turbulence with different Rossby numbers
Ro(=U/ΩM: U is the mean velocity, Ω is the mean rotation rate and M is the grid
mesh size) are considered. Although the global (long-time-averaged) non-dimensional
dissipation rate Cε is independent of the Reynolds number Reλ based on the global Taylor
microscale, the local (short-time-averaged) non-dimensional dissipation rate 〈Cε(ti)〉
(ti is the local time) both in the static- and active-grid turbulence clearly show the
non-equilibrium scaling 〈Cε(ti)〉 /

√
Re0 ∝ 〈Reλ(ti)〉−1 (〈Reλ(ti)〉 and Re0 are the Reynolds

numbers based on the local Taylor microscale λ(ti) and the global integral length scale,
respectively), which has only been confirmed for global statistics in the near field of grid
turbulence. The local value of 〈L(ti)/λ(ti)〉 (L(ti) is the local integral length scale) shifts
from the equilibrium to non-equilibrium scaling as 〈Reλ(ti)〉 increases, further confirming
that the non-equilibrium scalings are recovered for local statistics both in the static- and
active-grid turbulence. The local values of 〈Cε(ti)〉 and 〈L(ti)/λ(ti)〉 follow the theoretical
predictions for global statistics (Bos & Rubinstein, Phys. Rev. Fluids, vol. 2, 2017, 022601).

Key words: turbulent flows

1. Introduction

The Taylor–Kolmogorov dissipation scaling is one of the most instructive turbulent
theories for homogeneous turbulence. It was first proposed by Taylor (1935) and later
became the cornerstone scaling of the equilibrium cascade, as follows (Kolmogorov 1941):

Cε = εL/u3
rms = const., (1.1)

† Email address for correspondence: nagata@nagoya-u.jp
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where Cε is the non-dimensional dissipation rate, ε is the dissipation rate of turbulent
kinetic energy, L is the integral length scale and urms is the root mean square (r.m.s.) of the
streamwise velocity fluctuations. We refer to the Taylor–Kolmogorov dissipation scaling
as the equilibrium scaling hereafter. Intrinsically, the equilibrium scaling assumes that the
process of interscale energy transfer is at equilibrium. This provides fundamental solutions
for numerous turbulence models, which are critical for various industrial applications
(Pope 2001). In the equilibrium scaling and energy cascade framework proposed by
Kolmogorov (1941), the energy spectrum holds an inertial subrange with an exponent of
−5/3, regardless of the different types of flows. Furthermore, combining ε = 15νu2

rms/λ
2

assuming isotropy (ν is the kinematic viscosity and λ is the Taylor microscale defined with
the streamwise velocity) with (1.1), the equilibrium scaling behaviour can be obtained as
L/λ = CεReλ/15 ∝ Reλ, where Reλ = λurms/ν is the turbulent Reynolds number based
on the Taylor microscale.

The equilibrium scaling, i.e. the independence of Cε on Reλ, is expected and observed
for fully developed and statistically stationary, homogeneous and isotropic flows. On the
other hand, recent numerical and experimental evidence in more complicated situations
such as near field of grid turbulence indicates the existence of the non-equilibrium energy
cascade with the new non-equilibrium scaling (Vassilicos 2015),

Cε ∼ Re0
m/2/Reλn ( /=const.) , (1.2)

where m ≈ n ≈ 1 are the empirical constants and Re0 is the global Reynolds number based
on a global length scale. Equation (1.2) provides a new non-equilibrium behaviour with
the relation (Vassilicos 2015)

L/λ = Cε

15
Reλ ≈ const. (1.3)

The non-equilibrium scaling has been observed in various turbulent flows, including
homogenous and inhomogeneous turbulence and shear and shearless flows (Vassilicos
2015; Chen et al. 2021). The physical mechanisms of equilibrium and non-equilibrium
scalings have been clarified theoretically in the past few years by non-equilibrium
correction to the Kolmogorov’s −5/3 inertial-range spectrum (Bos & Rubinstein 2017;
Wacławczyk et al. 2022). Bos & Rubinstein (2017) assumed that the energy spectrum can
be decomposed into the −5/3 equilibrium and −7/3 non-equilibrium parts, as well as
the decompositions of turbulent properties such as ε and Cε. The −7/3 non-equilibrium
spectrum was proposed by Yoshizawa (1994) for unsteady corrections and was numerically
assessed in Horiuti & Tamaki (2013). As a consequence, (1.2) with m = n = 15/14 (for a
power-law spectrum extending from the wavenumber kL to kη � kL, where kL and kη are
the wavenumbers corresponding to large scale and Kolmogorov scale, respectively) and

Cε/Cε0 = (Reλ/Reλ0)−15/14, (1.4)

are obtained as an exact form of the non-equilibrium scaling, that stems from the −7/3
non-equilibrium spectrum (Bos & Rubinstein 2017; Wacławczyk et al. 2022). Here, Cε0
and Reλ0 are the equilibrium values of Cε and Reλ, respectively. They also derived the
theoretical expression for the dependence of λ/L on Reλ:

λ/L ∼ Reλ1/14. (1.5)

The predicted Reλ variations of λ/L are very weak and λ/L is close to a constant,
which is consistent with the empirical relation (1.3) (Bos & Rubinstein 2017;
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Wacławczyk et al. 2022). In Bos & Rubinstein (2017), these theoretical predictions were
shown to well predict the unsteady fluctuations of the work of Goto & Vassilicos (2015)
and results of grid turbulence (Valente & Vassilicos 2012). Very recently, the theoretical
predictions of (1.4) and (1.5) have been assessed in the atmospheric measurements
(Wacławczyk et al. 2022). The only common characteristic between the two scalings is the
Kolmogorov’s −5/3 energy spectrum (Bos & Rubinstein 2017; Alves Portela, Papadakis &
Vassilicos 2018). Besides, there appear to be many other factors that affect the dissipation
scalings in previous numerical and experimental studies, as summarized below.

Valente & Vassilicos (2012) found that the non-equilibrium and equilibrium scalings
exist in the near and far fields of grid turbulence, respectively. Isaza, Salazar & Warhaft
(2014) and Hearst & Lavoie (2015) indicate that the residual strain is responsible for the
non-equilibrium region in the near field of the conventional- and fractal-grid turbulence.
Goto & Vassilicos (2016b) elucidate the dissipation scaling transition period by direct
numerical simulations (DNSs) of the decaying periodic turbulence. They reported a
critical time at which the dissipation scaling transition occurred and interpreted that the
non-equilibrium scaling is observed when both large- and small-scale dissipation rates
evolve together.

Melina, Bruce & Vassilicos (2016) studied the effects of vortex shedding from
a passive-, fractal- and single-square grid and observed that the vortex shedding
influences the derivative statistics and dissipation scaling in the near field. Goto &
Vassilicos (2016b) also confirmed that the effect of large-scale coherent structures on the
non-equilibrium scaling cannot be negligible. Alves Portela et al. (2018) demonstrated
that the non-equilibrium scaling exists at the near wake of a square prism if the energy
of the large-scale coherent structures is excluded. Bos (2020) estimated the degree of
non-equilibrium using a k-ε model and explained the effect of the wakes of the grid
bars on the non-equilibrium scaling. The presence of energy in a shear layer behind grid
bars (Bos 2020) or the presence of a bump at energetic scales in initial energy spectra in
homogeneous isotropic turbulence in eddy-damped quasinormal Markovian simulations
(Meldi & Sagaut 2018) are shown to be able to reproduce the non-equilibrium scaling.

An important factor influencing the dissipation scaling is the spectral imbalance.
Based on ideas from Lumley (1992), Bos, Shao & Bertoglio (2007) showed by a
phenomenological model that, in decaying turbulence such as grid turbulence, the energy
entering the cascade is not dissipated instantaneously unlike forced turbulence, and
this causes the different value of Cε between forced and decaying turbulence even at
large Reynolds numbers. Valente, Onishi & da Silva (2014) claim that the deviations
of Cε from the equilibrium scaling are caused by the imbalance between the nonlinear
flux and dissipation. Furthermore, Goto & Vassilicos (2016a) qualitatively evaluated
the relation between the Kolmogorov local equilibrium hypothesis and equilibrium
and non-equilibrium dissipation scalings. Their DNS results for high-Reynolds-number
turbulence indicate that the invalidity of the equilibrium scaling stems from the collapse
of the Kolmogorov local equilibrium hypothesis in the low wavenumber range.

The correlations between the dissipation scaling and periodic force and unsteady
turbulence have been found both numerically and experimentally. In Goto & Vassilicos
(2015), DNSs of decaying and forced unsteady spatially periodical turbulence are
performed to study the scaling laws for time variations of the energy dissipation rate
and interscale energy flux. It is shown that the instantaneous Cε defined with a spatial
average in the computational domain follows the same non-equilibrium scaling, while
the overall time-averaged Cε is approximately constant. This is possibly the first study
that mentions the difference between instantaneous and long-time-averaged statistics.
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Previous experimental studies have only shown the long-time-averaged turbulent
characteristics along with the streamwise or cross-stream distance, and the difference
between long- and short-time-averaged statistics on the dissipation rate has not been
investigated in experimental studies.

Although (1.2) with m = n = 15/14 is obtained under the assumptions of homogeneity
and isotropy (Bos & Rubinstein 2017), the non-equilibrium scaling (1.2) appears in many
types of turbulent flows, regardless of homogeneity (Chen et al. 2021). Also, the values of
m and n in (1.2) could be influenced by the inhomogeneity (Chen et al. 2021). Wacławczyk
et al. (2022) also pointed out that accounting for the inhomogeneity and anisotropy is the
future work for further explaining the non-equilibrium scaling.

So far, experimental studies have focused primarily on the variations of
long-time-averaged statistics with various parameters, including the streamwise
distance and inlet Reynolds number (Vassilicos 2015), while experimental studies of
short-time-averaged statistics are blank. Although the physical process of the dissipation
scalings has been well understood (Bos & Rubinstein 2017), it has not yet been
clear whether the instantaneous (or local) statistics follow the non-equilibrium scalings
(1.2)–(1.5) in static- and active-grid turbulence. The related question is whether the
streamwise distance affects the dissipation behaviour of the local statistics. To shed
light and address the questions mentioned above, we reanalyse the instantaneous velocity
signals in the static- and active-grid turbulence in Zheng, Nagata & Watanabe (2021b)
and compare the short- and long-time-averaged statistics related with the dissipation.
The instantaneous velocity signals in the far field are analysed, where turbulence is
quasihomogeneous and isotropic and the long-time-averaged non-dimensional dissipation
rate is independent of Reλ. The effect of vortex shedding is small in this region and no
bump appears in the energy spectra (Zheng et al. 2021b).

The remainder of the paper is organized as follows. In § 2, we describe a new
methodology to calculate the long-time-averaged (global) and short-time-averaged (local)
statistics. The methodology is applied to hot-wire signals obtained in the static- and
active-grid turbulence and the results on the global and local scalings are presented in
§ 3. Finally, § 4 summarizes the conclusions.

2. Methodology

2.1. Global and local datasets
A new time-dependent analysis of the streamwise fluctuating velocity uins(t) of the
wind-tunnel experiment has been developed based on the study conducted by Goto
& Vassilicos (2015), which investigated the time variations of the energy dissipation
rate in periodic turbulence. The present analysis is also in compliance with Bos
& Rubinstein (2017), in which turbulent properties are decomposed into equilibrium
and non-equilibrium parts. Experimental data obtained for the static- and active-grid
turbulence in Zheng et al. (2021b) is used for the time-dependent analysis presented in this
study. Table 1 lists the forcing mode, the mean rotation rate Ω , the maximum deviations
of the rotation rate ω, the mean rotation period T , the maximum deviations of the rotation
period t, the Rossby number Ro (=U/ΩM: U is the mean velocity and M is the grid
mesh size) and the mesh Reynolds number ReM (=UM/ν). The experimental set-up,
measurements and active-grid forcing protocols have been described in Zheng, Nagata
& Watanabe (2021a) and Zheng et al. (2021b). The general procedure for analysing the
global and local fluctuating velocity signals and the important parameters associated with
the procedure are described as follows.
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Case Mode Ω ± ω (Hz) T ± t (s) x/M Ro ReM

1 Double random 2 ± 0.2 2 ± 1 28, 50, 94 40 33 000
2 Double random 1 ± 0.2 2 ± 1 28, 50, 94 80 33 000
3 Open — — 28, 40 — 33 000

Table 1. Control parameters.

(i) First, a set of fluctuating velocity signals measured by hot-wire anemometry at a
fixed streamwise distance of the test section of the wind tunnel is selected as the
global dataset and they are low-pass filtered using the eighth-order Butterworth
filter at the Kolmogorov frequency, as conducted by Zheng et al. (2021b). For this
global dataset of uins(t), we apply the Reynolds decomposition (uins(t) = U + u′(t))
to extract the mean velocity U and streamwise velocity fluctuations u′(t). For a given
global dataset, the sampling time T is determined by the sampling frequency and
number. The turbulent characteristics of this global dataset can be found in Zheng
et al. (2021b).

(ii) Next, we define a local time scale TL = C(L/urms), where L and urms are obtained
from the global dataset and C is an arbitrary constant of order one. The options of C
are meaningful because TL accounts for the order of the eddy turnover time L/urms.
The effect of the variation in C on the result is provided in Appendix A. An apposite
C = 0.5 is chosen such that C is sufficiently small to represent the local datasets
and is large enough to extract the information of large-scale motions. Consequently,
variations of uins(t) within T are divided into local datasets whose duration is TL.
Figure 1 illustrates an example of the global and local datasets. The number of the
local dataset n is obtained as an integer of T/TL.

(iii) The instantaneous local time ti (i = 1, 2, . . . , n) is considered representatively as
the centre of each local dataset. Within the short time period TL, we define the
local mean velocity 〈U〉ti and fluctuating velocity u(t) = uins(t) − 〈U〉ti , where 〈∗〉ti
denotes a local time average of ∗ from ti − TL/2 to ti + TL/2 and is given as a
function of ti, as described in figure 1. The r.m.s. of velocity fluctuation within TL is
then calculated by urms(ti) = √〈u(t)2〉ti . Hereafter, quantities defined with the local
averages are denoted with (ti). For example, urms(ti) is the r.m.s. velocity fluctuation
calculated with the local average while urms is obtained with the global average.
The local time interval ti − ti−1 is equivalent to TL such that the global dataset is
composed of successive local datasets.

(iv) To assess the scalings in the local datasets we plot the statistics against the local
turbulent Reynolds number Reλ(ti) = urms(ti)λ(ti)/ν using a log–log graph. The
local Taylor microscale λ(ti) is directly calculated by

λ2(ti) = u2
rms(ti)

〈(∂u/∂x)2〉ti
. (2.1)

The entire range of Reλ(ti) is then divided into ten bins of approximately equal width
on the log–log graph. Subsequently, Reλ(ti) in each bin is ensemble-averaged, which
is denoted by 〈〉. The turbulent quantities are also ensemble-averaged within each
bin. We eliminate the statistics at the smallest 〈Reλ(ti)〉 because of the large scatter
owing to a small sample number.
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Instantaneous

velocity uins(t)

u′(t)

u(t)

〈U 〉tiMean

velocity U

TL t

titi–1

Figure 1. The global and local datasets.

2.2. Local turbulent characteristics
Next, we calculate the local turbulent characteristics. Assuming that the Taylor frozen
hypothesis and isotropy hold in the local datasets, the local dissipation rate ε(ti) and local
non-dimensional dissipation rate Cε(ti) are calculated as follows:

ε(ti) = 15ν〈(∂u/∂x)2〉ti, (2.2)

Cε (ti) = ε (ti) L (ti)
u3

rms(ti)
. (2.3)

The validity of the isotropy assumption is discussed in Appendix B. The local integral
length scale L(ti) is evaluated as L(ti) = ∫ r0

0 u(x)u(x + r)/u2
rms(ti) dr within a local dataset.

Here, r is the separation from a position x, r0 is the first zero-crossing point of the
autocorrelation function (e.g. Kitamura et al. 2014; Zheng et al. 2021b) and ∗̄ denotes
an ensemble average of ∗. The definition of the local integral length scale is the same as
the global one: the integration range (for large r up to r0) can be outside the local dataset.
Notice that L(ti) fluctuates by a large amount since it is already very difficult to make it
statistically converge with very long time series under Taylor’s hypothesis. Thus, we get
highly fluctuating quantities such as (2.3) compared with (2.2).

3. Results and discussions

In figure 2, 〈Cε(ti)〉 of cases 1 and 3 at different normalized streamwise distances x/M are
compared in order to assess the scaling law. The profile of Cε is also shown in the inset.
The local values of 〈Cε(ti)〉 in cases 1 and 3 are not constant and decrease with 〈Reλ(ti)〉
regardless of the variation in x/M, even when x/M is sufficiently large, i.e. x/M = 94
in active-grid turbulence. On the other hand, the global Cε (inset of figure 2) tends to
be constant and follows the theoretical prediction by Lohse (1994) with a Kolmogrov
constant b = 9. In previous experimental results of the regular- and fractal-grid turbulence
(e.g. Seoud & Vassilicos 2007; Isaza et al. 2014; Nagata et al. 2017), the global statistics
show that the non-equilibrium scaling exists only in the near field. Conversely, the present
local-datasets analyses confirm the non-equilibrium scaling locally in the far field of
active-grid turbulence. Similar behaviour of the local 〈Cε(ti)〉 and global Cε is observed
for case 2, as shown in figure 3. Figures 2 and 3 reveal that the local 〈Cε(ti)〉 varies with
〈Reλ(ti)〉 in all cases regardless of x/M, while Cε ≈ const. is consistent with previous
studies (e.g. Lohse 1994; Zheng et al. 2021a). This observation is also consistent with DNS
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100

100

101 102 103

10–1
10–1

101 102 103

Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94

Case 3, x/M = 28

Case 3, x/M = 40

Lohse (1994), b = 9

Global-averaged result of

Global-averaged result of

Global-averaged result of

Global-averaged result of

Global-averaged result of

〈Cε(ti)〉

Reλ

Cε

〈Reλ(ti)〉
Figure 2. Variations of 〈Cε(ti)〉 with 〈Reλ(ti)〉 for cases 1 and 3. In the model of Lohse (1994), b is the
Kolmogorov constant, which is experimentally known to lie between 6 and 9 (Lohse 1994). The inset shows
the global results.

100

100

101 102 103

10–1
10–1

101 102 103

Case 2, x/M = 28

Case 2, x/M = 50

Case 2, x/M = 94

Case 3, x/M = 28

Case 3, x/M = 40

Lohse (1994), b = 9

Global-averaged result of

Global-averaged result of

Global-averaged result of

Global-averaged result of

Global-averaged result of

〈Cε(ti)〉

Reλ

Cε

〈Reλ(ti)〉
Figure 3. Same as figure 2 but for cases 2 and 3.

of forced turbulence in Goto & Vassilicos (2015), which claims that the instantaneous (but
spatially averaged inside the box) Cε(t) approximately follows a power-law decay with
Reλ, and the time-averaged Cε tends to be constant regardless of the variation in Reλ.

Because 〈Cε(ti)〉 appears to behave as a power-law function of 〈Reλ(ti)〉, we further
investigate 〈Cε(ti)〉 normalized with the global Reynolds number Re0 to assess whether
there exists a universal scaling law. In the present study, we define the global Reynolds
number as Re0 = urmsL/ν such that Re0 is independent for the different local datasets and
is similar to that in Goto & Vassilicos (2015). To assess the scaling law, 〈Cε(ti)〉/

√
Re0

versus 〈Reλ(ti)〉 is plotted in figure 4. This plot has often been used in previous studies
(Goto & Vassilicos 2015; Meldi & Sagaut 2018) and is useful for investigating the
non-equilibrium scaling (1.2). Although 〈Cε(ti)〉 takes different values depending on
the forcing mode of the active grid and the streamwise location (see figures 2 and 3),
〈Cε(ti)〉/

√
Re0 of cases 1, 2 and 3 collapse very well regardless of x/M, especially

for 〈Reλ(ti)〉 � 200. The nonlinear fit with the Levenberg–Marquardt algorithm yields
a power-law exponent of −0.87 ± 0.04 in this range. The result further proves that the
non-equilibrium scaling (1.2) with m ≈ n ≈ 1 holds for local statistics even in the far field
of grid turbulence. The present results are also within error-bars indistinguishable from the
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100
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Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94

Case 2, x/M = 28

Case 2, x/M = 50

Case 2, x/M = 94

Case 3, x/M = 28

Case 3, x/M = 40

〈Reλ(ti)〉

〈C
ε
(t i)

〉/�
Re

0

Figure 4. Plot of 〈Cε(ti)〉/
√

Re0 versus 〈Reλ(ti)〉 in cases 1, 2 and 3. The solid line represents
〈Cε(ti)〉/

√
Re0 ∝ 〈Reλ(ti)〉n with n = −1.

theoretical value m = n = 15/14 in Bos & Rubinstein (2017). Note that Re0 is a constant
in each dataset and the slope close to −1 is not a trivial result owing to the normalization.
On the other hand, figure 4 suggests that the profiles of 〈Cε(ti)〉/

√
Re0 of cases 1, 2 and 3

deviate from the non-equilibrium scaling at low 〈Reλ(ti)〉. The tendency is consistent with
Goto & Vassilicos (2015), in which the instantaneous value of Cε(t) is nearly constant as
Reλ decays in the decaying turbulence.

The global behaviour of L/λ versus ReM , Reλ and x/M has been investigated in previous
studies to further investigate the non-equilibrium scaling (e.g. Valente & Vassilicos 2011,
2012; Hearst & Lavoie 2014; Nagata et al. 2017). The equilibrium scaling (1.1) leads to
L/λ = CεReλ/15 ∝ Reλ, whereas the non-equilibrium scaling (1.2) implies that L/λ ≈
const. Actually, these profiles for non-equilibrium turbulence have been observed in
different types of grid turbulence (Valente & Vassilicos 2011, 2012). Bos & Rubinstein
(2017) has obtained the theoretical expression for λ/L (1.5), which is close to a constant.
Figure 5 plots the local 〈L(ti)/λ(ti)〉 as a function of 〈Reλ(ti)〉. Previous global results
of L/λ with different ReM in fractal- and passive-grid turbulence are also plotted as a
function of Reλ for reference. The values of 〈L(ti)/λ(ti)〉 in cases 1 and 2 are larger than
those of case 3 because the active-grid turbulence generates a larger integral length scale.
For all the cases, 〈L(ti)/λ(ti)〉 has a region dependent on 〈Reλ(ti)〉 at 〈Reλ(ti)〉 � 200.
The slopes show the equilibrium scaling 〈L(ti)/λ(ti)〉 = Cε〈Reλ(ti)〉/15 with the global
values of Cε = 0.53 and 0.74 for cases 1 and 3, respectively. It has been proved in figure 5
that 〈L(ti)/λ(ti)〉 in the 〈Reλ(ti)〉-dependent region is consistent with the equilibrium
scaling behaviour. However, as 〈Reλ(ti)〉 further increases, there appears a trend in all
the three cases where 〈L(ti)/λ(ti)〉 is independent of 〈Reλ(ti)〉, which is consistent with
the global results of previous studies (Valente & Vassilicos 2012; Hearst & Lavoie 2014;
Nagata et al. 2017). The previous data of L/λ are the global results obtained at different
streamwise distances, demonstrating that the dissipation scaling behaves differently in the
near and far fields of grid turbulence. The present local results of 〈L(ti)/λ(ti)〉 prove that
the Reλ-dependency of the equilibrium scaling at low Reλ is also established. However,
as 〈Reλ(ti)〉 increases, the non-equilibrium scaling of the local statistics appears and
〈L(ti)/λ(ti)〉 approaches a constant value, which depends on the global Reynolds number.
This equilibrium to non-equilibrium transition of 〈L(ti)/λ(ti)〉 corresponds to the local
results of 〈Cε(ti)〉/

√
Re0, where 〈Cε(ti)〉/

√
Re0 follows the non-equilibrium scaling at

956 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.937


Unsteady dissipation scaling in grid turbulence

Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94

Case 2, x/M = 94

Case 2, x/M = 28

Case 2, x/M = 50

Case 3, x/M = 28

Case 3, x/M = 40

Valente & Vassilicos (2012), ReM = 60 000

Valente & Vassilicos (2012), ReM = 80 000

Valente & Vassilicos (2012), ReM = 153 000

Hearst & Lavoie (2014)
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(t i)
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0 200 400 600 800 1000

Figure 5. Plot of 〈L(ti)/λ(ti)〉 versus 〈Reλ(ti)〉 for cases 1, 2 and 3, compared with that of global statistics
obtained in previous studies. The solid and dashedlines represent 〈L(ti)/λ(ti)〉 = Cε〈Reλ(ti)〉/15 with global
values of Cε = 0.53 and 0.74 for cases 1 and 3, respectively.

Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94

Case 2, x/M = 28

Case 2, x/M = 50

Case 2, x/M = 94

Case 3, x/M = 28

Case 3, x/M = 40

Bos & Rubinstein (2017)

Bos & Rubinstein (2017)

Reλ
–15/14

〈C
ε
(t i)

〉/C
ε
0

4

1

0.2 1 4

〈Reλ(ti)〉/Reλ0
Figure 6. Plot of 〈Cε(ti)〉/Cε0 versus 〈Reλ(ti)〉/Reλ0 compared with the theoretical predictions. Here Cε0 and
Reλ0 are equilibrium values of Cε and Reλ, respectively, and the global (long-time-averaged) values are used.
The dashed and dotted lines represent the expressions (25) and (29) in Bos & Rubinstein (2017), respectively.

〈Reλ(ti)〉 � 200. Although a dependency on the streamwise distance is observed in the
global statistics of different types of turbulence, the local statistics do not respond to
the variations in the streamwise distance at least in the far field of grid turbulence. The
local observations of this study are evidently different from those presented in figure 10 in
Zheng et al. (2021b), in which the global results follow the equilibrium scaling behaviour
L/λ = CεReλ/15 with a constant value of Cε in both the static- and active-grid turbulence.

We compare our local results with the theoretical predictions by Bos & Rubinstein
(2017). Figure 6 plots 〈Cε(ti)〉/Cε0 versus 〈Reλ(ti)〉/Reλ0. Here, Cε0 and Reλ0 are
equilibrium values of Cε and Reλ, respectively, and the global values are used. The
present result for the non-dimensional local dissipation rate agrees well with the theoretical
predictions. Figure 7 plots 〈λ(ti)/L(ti)〉/(λ0/L0) versus 〈Reλ(ti)〉/Reλ0. The global values
are also used for normalization. Despite the scatter owing to the difficulty in calculating
the local statistics, the present results agree well with the theoretical predictions. Note
that the lines in figures 6 and 7 do not just represent the slopes but show the exact
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Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94

Case 2, x/M = 28

Case 2, x/M = 50

Case 2, x/M = 94

Case 3, x/M = 28

Case 3, x/M = 40

Bos & Rubinstein (2017)

Bos & Rubinstein (2017)
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Figure 7. Plot of 〈λ(ti)/L(ti)〉/(λ0/L0) versus 〈Reλ(ti)〉/Reλ0 compared with theoretical predictions. λ0 and
L0 are equilibrium values of λ and L, respectively, and the global (long-time-averaged) values are used. The
dashed and dotted lines represent the expressions (32) and (33) in Bos & Rubinstein (2017), respectively.

100

10–1

10–2

10–3

10–4

10–5

10–6

100

10–1

10–2

10–3

10–4

10–5

10–6

100

10–1

10–2

10–3

10–4

10–5

10–6

–6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

Case 1, x/M = 28

Case 1, x/M = 50
Case 1, x/M = 94

Gaussian

P.
d
.f

.

u′(t)/σ u′(t)/σ u′(t)/σ

(a) (b) (c)

Figure 8. The p.d.f.s. of the streamwise velocity fluctuations of (a) unconditional global datasets, (b) global
datasets with 〈Reλ(ti)〉/Reλ0 � 1 and (c) global datasets with 〈Reλ(ti)〉/Reλ0 > 1. The velocity fluctuations are
normalized by each r.m.s. value σ . The solid lines show the Gaussian profile.

theoretical expressions. The present results show that the local statistics in grid turbulence
also follow the theoretical predictions for non-equilibrium global statistics by Bos &
Rubinstein (2017).

Finally, we calculated the probability density functions (p.d.f.s) of streamwise velocity
fluctuations and their time derivatives to see the large- and small-scale intermittency. The
unconditional p.d.f., p.d.f.s conditioned on 〈Reλ(ti)〉/Reλ0 � 1 and 〈Reλ(ti)〉/Reλ0 > 1,
are shown in figures 8 and 9. Since the local-Reλ dependences of 〈Cε(ti)〉/Cε0 and
〈λ(ti)/L(ti)〉/(λ0/L0) change depending on 〈Reλ(ti)〉/Reλ0 � 1 or 〈Reλ(ti)〉/Reλ0 � 1 (see
figures 6 and 7), we choose 〈Reλ(ti)〉/Reλ0 = 1 as a criterion with which the conditional
p.d.f.s apply. Figure 8(a) shows that the p.d.f.s of the unconditional streamwise velocity
fluctuations follow the Gaussian distribution regardless of the streamwise distance,
as is well known. The conditional p.d.f.s conditioned on the local Reλ shown in
figures 8(b) and 8(c) also follow the Gaussian distribution. He, Wang & Tong (2018)
found non-Gaussian fluctuations with an exponential tail in their p.d.f. of temperature
fluctuations in non-equilibrium steady states of turbulent Rayleigh–Bénard convection.
Different from their study, velocity fluctuations in the present active-grid turbulence follow
the Gaussian distribution even when the local non-dimensional dissipation rate follows the
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Figure 9. The p.d.f.s. of the time derivatives of streamwise velocity fluctuations of (a) unconditional global
datasets, (b) global datasets with 〈Reλ(ti)〉/Reλ0 � 1 and (c) global datasets with 〈Reλ(ti)〉/Reλ0 > 1. The
velocity derivatives are normalized by each r.m.s. value σ . The solid lines show the Gaussian profile.

non-equilibrium scaling. The unconditional p.d.f.s of the time derivatives of streamwise
velocity fluctuations (figure 9a) qualitatively agree with the data of active-grid turbulence
in Makita (1991). It is shown that the p.d.f.s of the time derivatives of streamwise velocity
fluctuations do not depend on the local Reλ as shown in figures 9(b) and 9(c). These results
show that the intermittency of large- and small-scale fluid motions do not depend on the
local Reλ and streamwise direction considered in the present study. The present study
considers the far field of grid turbulence where Cε is independent of Reλ. It is interesting
to investigate whether the conditional p.d.f.s change depending on the local Reλ in the near
field, where Cε follows the non-equilibrium scaling. This is out of the scope of this study
and we leave it to future studies.

4. Conclusions

The dependency of the local statistics on Reλ has been analysed to assess the
non-equilibrium scalings at several streamwise positions of the static- and active-grid
turbulence in Zheng et al. (2021b). The global Cε of the static- and active-grid turbulence
follows the equilibrium scaling regardless of the streamwise distance x/M, in accordance
with the previous theoretical results obtained by Lohse (1994). However, the local
non-dimensional dissipation rate 〈Cε(ti)〉 follows the empirical relation (Vassilicos 2015)
and the theoretical prediction (Bos & Rubinstein 2017) for the non-equilibrium scaling.
In particular, as the local characteristics of the static- and active-grid turbulence, the
non-equilibrium scaling is even established at the far-downstream distance, whereas
it is only found in the near field as the global statistics (Seoud & Vassilicos 2007;
Isaza et al. 2014; Nagata et al. 2017). At small local turbulent Reynolds number
〈Reλ(ti)〉, local 〈L(ti)/λ(ti)〉 follows the equilibrium scaling behaviour, as confirmed by
previous studies on global statistics. The local 〈L(ti)/λ(ti)〉 further transitions to the
non-equilibrium scaling with increasing 〈Reλ(ti)〉. The local 〈L(ti)/λ(ti)〉 also follows
the theoretical prediction (Bos & Rubinstein 2017) for non-equilibrium turbulence.
These findings further illustrate that for the global statistics, the equilibrium turbulence
cascade is only characterized by the turbulent kinetic energy, turbulence dissipation
rate and integral length scale. However, for the local statistics, the scaling law changes
to the non-equilibrium scaling, which is dependent on the local Reλ regardless of the
streamwise distance from the grid in the far field. Some previous studies have explained
non-equilibrium turbulence based on spectral imbalance, in which the discrepancy locally
exists between the scale-by-scale energy transfer at large scales and the dissipation at
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Case 1, x/M = 28

Case 1, x/M = 50

Case 1, x/M = 94
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Case 2, x/M = 50
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Figure 10. Plot of 〈Cε(ti)〉/
√

Re0 versus 〈Reλ(ti)〉 in cases 1, 2 and 3 with C = 0.3, 0.5, 1, 3 and 5. Each
profile is shifted by a decade for clarity. All solid lines show the power-law exponent −1.

small scales (Bos et al. 2007; Valente et al. 2014). Considering these studies, the present
results imply that a similar imbalance between the energy transfer and the dissipation may
locally exist even if turbulence is globally in an equilibrium state where the energy cascade
from large scales balances with the dissipation in terms of time averages. The connection
between the global and local non-equilibrium scalings should be futher investigated in
future studies.
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Appendix A. Dependence of the local Cε on C

The local time scale TL = C(L/urms) affects the estimations of the local turbulent
characteristics. The choice of C must meet the requirement that the time interval of each
local dataset is comparable to eddy turnover time (i.e. C ∼ 1) because the local time
average, which works as a low-pass filter, is used to extract local information of large-scale
motion. Thus, we investigate the variation of 〈Cε(ti)〉 with different values of C (of order
one) to find a suitable value of C. Figure 10 plots 〈Cε(ti)〉/

√
Re0 against 〈Reλ(ti)〉 for

C = 0.3, 0.5, 1, 3 and 5. It is shown that the variation of C in this range does not affect the
scaling. We conduct all analyses with C = 0.5 in the present study.

Appendix B. Isotropy in the local dataset

The isotropy assumption is utilized when calculating the energy dissipation rate in the
local datasets. This estimation assumes that the statistics of velocity derivatives defined
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Figure 11. The p.d.f. of vrms/urms and εiso/ε.

in each local dataset are isotropic. However, this assumption for the local dataset may not
be valid unlike the local isotropy, which is defined with global averages. In the present
experiments, only a single component velocity is measured using a single wire for higher
spatial resolution than an X wire. Therefore, we are not able to experimentally evaluate
the isotropy in the local datasets. Even if we have two-components velocity data, it is
still impossible to assess the validity of estimating the dissipation rate with the isotropy
assumption because calculating the dissipation rate without any assumptions requires a
full velocity gradient tensor. Therefore, we evaluated the assumption of the statistical
isotropy defined for the local datasets using the DNS database of temporally developing
grid turbulence (Watanabe & Nagata 2018). The same DNS code has also been applied
to stratified grid turbulence with parallel-bar grids (Watanabe, Zheng & Nagata 2022). In
these DNSs, the flow is initiated by using the wakes of the grid and develops with time. In
both kinds of grid turbulence (with square mesh or parallel-bar grids), the basic statistics
are shown to be in good agreement with experiments, see Watanabe & Nagata (2018) and
Watanabe et al. (2022). Run Re1a in Watanabe & Nagata (2018) is used to examine the
validity of the isotropic assumption in the analysis of local datasets. The mesh Reynolds
number based on the grid mesh size is ReM = 10 000. We choose the non-dimensional
time 128, which is equivalent to the streamwise distance x/M = 128 in experiments. The
turbulent Reynolds number Reλ is approximately 20. This value of Reλ is smaller than
those in this study. However, this assessment is still meaningful for the validation of the
dissipation estimation because a higher degree of isotropy at small scales is expected for
higher Reλ in experiments. This is because each local dataset with a size (time) of the
integral length (time) scale contains more samples of small-scale motions as Reλ increases,
resulting in higher local isotropy of the statistics defined in the local dataset. First, we
select five x–y slices which are separated in the z-direction with a distance larger than the
longitudinal integral length scale Lux. Then, each plane is divided into small subdomains
with a length of approximately 1.03Lux in both x and y directions. A local spatial average ∗̄
is defined in each subdomain. Then, we calculated vrms/urms (urms and vrms are the r.m.s. of
velocity fluctuations u and v), ε = 2νsijsji (sij = 1

2 (∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain
tensor of the fluctuating velocities) and εiso = 15ν(∂u/∂x)2 with the assumption that the
statistics of velocity gradients defined with the local spatial average is isotropic in each
subdomain. The p.d.f.s of vrms/urms and εiso/ε are shown in figure 11. Both vrms/urms and
εiso/ε have peaks around 1, suggesting that the statistics defined with each local dataset
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are close to an isotropic state and the dissipation estimation with εiso ∼ ε is mostly valid.
These results show that the isotropy assumption is reasonably satisfied for local datasets.
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