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Lorentz transformations

The equations of the Standard Model must be consistent with Einstein’s principle

of relativity, which states that the laws of Nature take the same form in every

inertial frame of reference. An inertial frame is one in which a free body moves

without acceleration. An earth-bound frame approximates to an inertial frame if the

gravitational field of the earth is introduced as an external field. We shall assume

that the reader is familiar with rotations, and with proper Lorentz transformations

and the relativistic mechanics of particle collisions. This chapter is very largely

about notation, which may make for dry reading; however an appropriate notation

is crucial to the exposition of any theory, and particularly so to a relativistic theory,

such as the Standard Model.

2.1 Rotations, boosts and proper Lorentz transformations

The time and space coordinates of an event measured in different inertial frames

of reference are related by a Lorentz transformation. A rotation is a special case of

a Lorentz transformation. Consider, for example, a frame K ′ that is rotated about

the z-axis with respect to a frame K, by an angle θ . If (t, r) are the time and space

coordinates of an event observed in K, then in K ′ the event is observed at (t′, r′)
and

t ′ = t
x ′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

z′ = z.

(2.1)

Lorentz transformations also relate events observed in frames of reference that

are moving with constant velocity, one with respect to the other. Consider, for

example, an inertial frame K ′ moving in the z-direction in a frame K with velocity

v, the spatial axes of K and K ′ being coincident at t = 0. If (t, r) are the time and
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space coordinates of an event observed in K, and (t′, r′) are the coordinates of the

same event observed in K ′, the transformation takes the form

ct ′ = γ (ct − βz)

x ′ = x
y′ = y
z′ = γ (z − βct),

(2.2)

where c is the velocity of light, β = υ/c, γ = (1 − β2)−1/2.

Putting x0 = ct, x1 = x, x2 = y, x3 = z, the xμ are dimensionally homoge-

neous, and an event in K is specified by the set xμ, where μ = 0, 1, 2, 3. Greek

indices in the text will in general take these values. With this more convenient

notation, we may write the Lorentz transformation (2.2) as

x ′0 = x0 cosh θ − x3 sinh θ

x ′1 = x1

(2.3)
x ′2 = x2

x ′3 = −x0 sinh θ + x3 cosh θ,

where we have put β = v/c = tanh θ ; then γ = cosh θ .

Transformations to a frame with parallel axes but moving in an arbitrary direc-

tion are called boosts. A general Lorentz transformation between inertial frames K
and K ′ whose origins coincide at x0 = x ′0 = 0 is a combination of a rotation and

a boost. It is specified by six parameters: three parameters to give the orientation

of the K ′ axes relative to the K axes, and three parameters to give the compo-

nents of the velocity of K ′ relative to K. Such a general transformation is of the

form

x ′μ = Lμ
νxν, (2.4)

where the elements Lμ
ν of the transformation matrix are real and dimensionless.

We use here, and subsequently, the Einstein summation convention: a repeated

‘dummy’ index is understood to be summed over, so that in (2.4) the notation∑3
ν=0 has been omitted on the right-hand side. The matrices Lμ

ν form a group,

called the proper Lorentz group (Problem 2.6 and Appendix B). The significance

of the placing of the superscript and the subscript will become evident shortly.

The interval (�s)2 between events xμ and xμ + �xμ is defined to be

(�s)2 = (�x0)2 − (�x1)2 − (�x2)2 − (�x3)2. (2.5)

It is a fundamental property of a Lorentz transformation that it leaves the interval

between two events invariant:

(�s ′)2 = (�s)2. (2.6)
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We can express (�s)2 more compactly by introducing the metric tensor (gμν):

(gμν) =

⎛
⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ . (2.7)

Then

(�s)2 = gμν�xμ�xν, (2.8)

where the repeated upper and lower indices are summed over. Note that gμν = gνμ;

it is a symmetric tensor. It has the same elements in every frame of reference.

2.2 Scalars, contravariant and covariant four-vectors

Quantities, such as (�s)2, which are invariant under Lorentz transformations are

called scalars. We define a contravariant four-vector to be a set aμ which transforms

like the set xμ under a proper Lorentz transformation:

a′μ = Lμ
νaν. (2.9)

A familiar example of a contravariant four-vector is the energy–momentum vector

of a particle (E/c, p).

We define the corresponding covariant four-vector aμ, carrying a subscript,

rather than a superscript, by

aμ = gμνaν. (2.10)

Hence if aμ = (a0, a), then aμ = (a0, −a).

We can write the invariant �s2 as

�s2 = gμν�xμ�xν = �xν�xν.

More generally, if aμ, bμ are contravariant four-vectors, the scalar product

gμνaμbν = aμbμ = aμbμ = a0b0 − a·b (2.11)

is invariant under a Lorentz transformation.

We can define the contravariant metric tensor gμν so that

αμ = gμνaν. (2.12)

The elements of gμν are evidently identical to those of gμν .

The transformation law for covariant vectors, which we write

a′
μ = Lμ

νaν, (2.13)
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follows from that for contravariant vectors (Problem 2.1). Note that, in general,

Lμ
ν is not equal to Lν

μ (Problem 2.1). Using the invariance of the scalar product

(2.11), we have

a′
μb′μ = Lμ

ν Lμ
ρaνbp = aνbν

and

a′μb′
μ = Lμ

ν Lμ
ρaν bρ = aν bν .

Since the aμ and bμ are arbitrary, it follows that

Lμ
ν Lμ

ρ = Lμ
ν Lμ

ρ = δρ
ν (2.14)

where

δρ
ν = δν

ρ =
{

1, ρ = ν

0, ρ �= ν.

2.3 Fields

The Standard Model is a theory of fields. We shall be concerned with fields that at

each point x of space and time transform as scalars, or vectors, or tensors (defined

later in this section). We use x to stand for the set (x0, x1, x2, x3). For example,

we shall see that the electromagnetic potentials form a four-vector field, and the

electromagnetic field is a tensor field. We shall also be concerned with scalar fields

φ(x), which by definition transform simply as

φ′(x ′) = φ(x), (2.15)

where x′ and x refer to the same point in space-time.

We can construct a vector field from a scalar field. Consider the change of field

dφ in moving from x to a neighbouring point x + dx, with dx infinitesimal. Then

dφ = ∂φ

∂xμ
dxμ

is invariant under a Lorentz transformation. Since the set dxμ make up an arbitrary

contravariant infinitesimal vector, the set ∂φ/∂xμ must make up a covariant vector

(Problem 2.3). Following the subscript convention we write

∂φ

∂xμ
=

(
1

c

∂φ

∂t
, ∇φ

)
= ∂μφ. (2.16)

We can then also define the contravariant vector

∂μφ = gμν∂νφ = ∂φ

∂xμ

=
(

1

c

∂φ

∂t
, −∇φ

)
. (2.17)
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It follows that

∂μφ∂μφ =
(

1

c

∂φ

∂t

)2

− (∇φ)2 (2.18)

and

∂μ∂μφ = 1

c2

∂2φ

∂t2
− ∇2φ (2.19)

are invariant under Lorentz transformations.

We can define, and we shall need, tensor quantities. Tensors T μν, Tμν, T μ
ν, T μν

λ,

etc., are defined as quantities which transform under a Lorentz transformation in

the same way as aμaν, aμaν, aμaν, aμaνaλ, etc. For example,

T ′μν = Lμ
ρ Lν

λT ρλ.

The ‘contraction’ by summation of a repeated upper and lower index leaves

the transformation properties determined by what remains. For example, T μ
μ is a

scalar, T μν
μ is a contravariant four-vector. The metric tensors gμν, gμν conform

with the definition, and this leads to the conditions on the matrix elements Lμ
ν :

gμν = gpλLρ
μLλ

ν. (2.20)

The conditions (2.20) and (2.14) are equivalent.

As well as scalars, vectors and tensors there are also very important objects

called spinors, and spinors fields, which have well-defined rules of transformation

under a Lorentz transformation of the coordinates. Their properties are discussed

in Appendix B and Chapter 5.

2.4 The Levi–Civita tensor

The Levi–Civita tensor εμνλρ is defined by

εμνλρ =
⎧⎨
⎩

+1 if μ, ν, λ, ρ is an even permutation of 0, 1, 2, 3;

−1 if μ, ν, λ, ρ is an odd permutation of 0, 1, 2, 3;

0 otherwise.

(2.21)

For example, ε1023 = −1, ε1203 = +1, ε0023 = 0.

It is straightforward to verify that εμνλρ satisfies

ε′
μνλρ = Lμ

α Lν
β Lλ

γ Lρ
δεαβγ δ

= εμνλμ det(L) = εμνλμ,

using the definition of a determinant (Appendix A), and the result that the determi-

nant of the transformation matrix is 1 (Problems 2.4 and 2.5).
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The corresponding Levi–Civita symbol in three dimensions, εi jk , is defined sim-

ilarly. It is useful in the construction of volumes, since

εi jk Ai B j Ck = A · (B × C)

is the volume of the parallelepiped defined by the vectors A, B, C. The four-

dimensional Levi–Civita tensor enables one to construct four-dimensional volumes

εμνλρaμbνcλdρ . The contraction of indices leaves this a Lorentz scalar. In partic-

ular, taking a,b,c,d to be infinitesimal elements parallel to the axes 0xμ so that

a = (dx0, 0, 0, 0), b = (0, dx1, 0, 0), c = (0, 0, dx2, 0), d = (0, 0, 0, dx3), it fol-

lows that the ‘volume’ element of space-time

d4x = dx0dx1dx2dx3 = cd3x dt

is a Lorentz invariant scalar (see also Problem 2.9).

2.5 Time reversal and space inversion

The operations of time reversal:

x ′0 = −x0,

x ′ i = xi , i = 1, 2, 3,

and space inversion:

x ′0 = x0

x ′ i = −xi , i = 1, 2, 3,

also leave (�s)2 invariant, but these transformations are excluded from the proper

Lorentz group. They are however of interest, and will arise in later chapters.

Problems

2.1 Show that Lμ
ν = gμρ Lρ

λgλν . Verify L0
1 = −L1

0.

2.2 Using (2.14), show that the inverse transformations to (2.9) and (2.13) are

aμ = a′ν Lν
μ, aμ = a′

ν Lν
μ.

Hence show

Lν
μLρ

μ = δρ
ν .

2.3 Prove that if φ(x) is a scalar field, the set (∂φ/∂xμ) makes up a covariant vector

field.
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2.4 Using Problem 2.1, show that det(Lμ
ν) = det(Lμ

ν) and hence show, using equation

(2.14), that

det(Lμ
ν) = ±1.

2.5 Show that det(Lμ
ν) for both the rotation (2.1) and the boost (2.3) is equal to +1.

This is a general property of proper Lorentz transformations that distinguishes them

from space reflections and time reversal (Section 2.5), for which the determinant of

the transformation equals −1.

2.6 Show that the matrices Lμ
ν corresponding to proper Lorentz transformations form

a group.

2.7 Show that δμ
ν is a tensor.

2.8 The frequency ω and wave vector k of an electromagnetic wave in free space make

up a contravariant four-vector

k = (ω/c, k).

The invariant kμkμ = 0; this corresponds to the dispersion relation ω2 = c2k2. Show

that a wave propagating with frequency ω in the z-direction, if viewed from a frame

moving along the z-axis with velocity v, is seen to be Doppler shifted in frequency,

with

ω′ = e−θω =
√

1 − v/c

1 + v/c
ω.

2.9 By considering the Jacobian of the Lorentz transformation, show that the four-

dimensional volume element d4x = dx0dx1dx2dx3 is a Lorentz invariant.

2.10 Show that εμνλρ is a pseudo-tensor, i.e. it changes sign under the operation of space

inversion.
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