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Super-Brownian Motion and
Critical Spatial Stochastic Systems

Ed Perkins

Abstract. This article is a short introduction to super-Brownian motion. Some of its properties are dis-

cussed but our main objective is to describe a number of limit theorems which show super-Brownian

motion is a universal limit for rescaled spatial stochastic systems at criticality above a critical dimenson.

These systems include the voter model, the contact process and critical oriented percolation.

0 Introduction

This lecture1 is a terse introduction to a stochastic process called super-Brownian
motion. This process has a number of fascinating properties and a number of con-
nections to other topics in probability and analysis. Our focus will be on its emerging

role as a universal limit for random spatially distributed systems near criticality. It is
a topic particularly well-suited to a meeting of the Canadian Mathematical Society
as Canadian mathematicians have played a leading role in many of these develop-
ments. The analogous universal limit for the time evolution of a single random point

in space is Brownian motion.

1 Brownian Motion

Consider a particle moving in Z
d starting at the origin and taking independent ran-

dom steps (Wi) to each of its 2d neighbours with equal probability. After n steps its

random position is Sn =
∑n

i=1 Wi . Now look at this random walk from afar. In order

to see a non-trivial picture we need to rescale time by 1/N and space by 1/
√

N. This
leads to the rescaled random walk: B(N)(t) = S[Nt]/

√
N, t ≥ 0. The classical Central

Limit Theorem states that the probability that this rescaled random walk at time 1 is

in an interval I converges to the integral of a suitably scaled Gaussian density over I:

Theorem 1.1 (CLT) For each interval I,

lim
N→∞

P
(

B(N)(1) ∈ I
)

=

∫

I

e−d|x|2/2(2π/d)−d/2 dx.

M. Donsker showed that if one views the entire time evolution of B(N) as a random

function then the probability distribution of this random function converges to the
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probability distribution of a random function which will serve as our definition of
Brownian motion. This result is known as the Functional Central Limit Theorem.

Theorem 1.2 (FCLT, Donsker [13]) limN→∞ P(B(N) ∈ A) = P(d−1/2B ∈ A) for
“any” set A of paths from R+ to R

d where B is standard Brownian motion.

The precise nature of this convergence is weak convergence of probability mea-

sures on the space D
(

[0,∞), R
d
)

of right continuous Rd-valued paths with left lim-
its equipped with the Skorokhod J1 topology. This puts some mild restrictions on
the sets of paths A considered above. We will ignore such routine technicalities here
and in what follows.

The universality of B refers to the fact that the above theorem admits a huge num-
ber of extensions:

• If {Wi} ∈ R
d are any repeated independent random quantities with mean 0 and

covariance σ2Id×d, one gets σB in the limit. Hence the particular local dynamics only

affects the limit through the parameter, σ, the standard deviation of each coordinate.
• The entire field of “Invariance Principles” is based on extensions of the above

theorem to a large variety of appropriate dependent sequences {W i} such as mar-
tingale difference sequences, and stationary sequences under a variety of hypotheses.

These results all have the flavour that under fairly minimal conditions one gets Brow-
nian motion as the rescaled limit.

• Instead of t = i/N one may take steps “at rate N”, i.e. after independent random
time intervals Ti − Ti−1 satisfying P(Ti − Ti−1 > t) = e−Nt (mean 1/N exponential

inter-step times). This is a trivial extension which will be useful to us later.
The universality of B leads to its use as a stochastic model for such phenomena as

a particle suspended in liquid undergoing molecular bombardment of the medium
as observed by Brown [7] or fluctuations of the stock market as was proposed by

Bachelier [1]. Perhaps more important is its use as building block in Itô’s theory
of stochastic differential equations (Itô [19]). Such solutions behave locally like a
Brownian motion with state dependent drift and variance parameters and provide
more realistic stochastic models for the above (the Ornstein-Uhlenbeck process and

geometric Brownian motion, respectively) and other random phenomena.
Before leaving Brownian motion for now, lets ask the obvious question suggested

by Theorem 1.1: Why does the Gaussian integral arise? Assuming that there is a limit
in Theorem 1.1, let Z1, Z2 and Z denote independent copies of this limit, then

(1.1)
√

t1Z1 +
√

t2Z2 ≡
√

t1 + t2Z (both sides have the same distribution).

This is easily seen by grouping together the first [Nt1] and next [Nt2] − [Nt1] sum-

mands and applying the CLT to each summation. It turns out that this equivalence
forces Zi to have a Gaussian density (see p. 186 of Breiman [6]).

2 Super-Brownian Motion (SBM)

Whereas Brownian motion models the time evolution of a single random point in
Euclidean space, super-Brownian motion will model the time evolution of an entire
random distribution of mass over R

d. Brownian motion was constructed as the limit
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of rescaled random walks. Super-Brownian motion will now be constructed as a
limit of rescaled branching random walks. This involves alternating the two random

mechanisms of Brownian migration and near-critical reproduction.

Fix three parameters: b > 0 (branching rate), σ2 > 0 (diffusion rate), and g ∈ R

(growth rate). Let W ∈ R
d denote a generic random displacement with mean 0,

covariance σ2

b
Id×d. Now start O(N) particles in R

d. With rate bN a particle at x dies

and with rate bN + g particle at x gives birth to particle at x+W/
√

N. The particles
evolve independently of one another. We record the state of the population through
its empirical measure, namely the finite measure, XN

t , on R
d, given by by

XN
t (A) =

1

N
#(particles in A at time t).

The above space-time scaling is designed to ensure that if we keep track of the ances-
tral lineage leading up to a particle alive at time t then the limit of this lineage should
be a Brownian path by Donsker’s FCLT. The fact that the number of initial particles

is O(N), leading to our mass scaling factor of 1/N will be explained below.

Theorem 2.1 (S. Watanabe [30]) If XN
0 → X0, then

lim
N→∞

P(XN ∈ A) = PX0
(X ∈ A) for “any” set A of measure-valued paths.

X is a continuous measure-valued Markov process whose law, PX0
, depends only on

(X0, b, σ2, g).

We call X super-Brownian motion (SBM). There are a number of other construc-

tions possible, involving discrete time, explicit Brownian migration, etc., but any
reasonable combination of Brownian or random walk migration and near critical
branching will produce the same limit. Super-Brownian motion is the central ex-
ample of a larger class of stochastic processes called Dawson-Watanabe superprocesses

(this terminology was introduced by Dynkin in the late 1980s) which may have more
general migration and branching mechanisms.

Let x1, . . . , xMN
(MN = NXN

0 (R
d)) denote the positions of the initial ancestors

at t = 0 and X
N,i
t denote the contribution to XN

t from the descendants of xi . Since

the particles evolve independently, clearly this decomposes XN
t into a sum of MN

independent clusters:

(2.1) XN
t =

∑

xi

X
N,i
t .

To simplify the arithmetic let us assume for the current argument that g = 0,

i.e., we are dealing with a critical branching mechanism. It is a sad fact of life that
critical branching processes die out. The precise rate of extinction was found by
Kolmogorov:

(2.2) P(XN,i
t 6= 0) ∼ (Ntb)−1 as N → ∞.
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This explains why we needed to start O(N) particles to get a non-trivial limit in Theo-
rem 2.1. Note also that (2.1) has NXN

0 (R
d) summands, each non-zero independently

with probability ∼ (Ntb)−1. If we let N → ∞ in (2.1), one obtains

Xt =

M(t)
∑

j=1

X
j

t ,

where (X
j

t ) are independent clusters descending from a single ancestor at t = 0,

and M(t) is a Poisson random variable, independent of the clusters X
j

t , with mean

X0(Rd)/tb. Here we have used the well-known Poisson approximation to the bino-
mial distribution. This shows that for small t there is a large (O(1/t)) number of
clusters contributing to the population while as t → ∞, the number will eventually

be 0 with probability 1. Hence SBM becomes extinct in finite time almost surely.

Remarks on SBM

A. The Canonical Measure N0 The clusters contributing to Xt are the fundamental

building blocks of the process. It is natural to ask about the probability law of “a
typical cluster” on the space of measure-valued paths which become extinct in finite
time. The problem here is that the clusters with very short lifetimes will dominate
any such law, in fact a “typical cluster” would have an infinitesimally small lifetime

as clusters of lifetime greater than t should occur with intensity c/t by the above.
To make room for all of these short clusters one is forced to introduce an infinite
measure, N0, called the canonical measure, on the space of measure-valued paths with
finite lifetime. N0 satisfies N0(Xt 6= 0) = (tb)−1 and if the cluster X j starts from the

origin, P(X
j

t+ · ∈ · ) = N0(Xt+ · ∈ · | Xt 6= 0). In this way N0 governs the evolution
of the clusters. Its mass on paths alive at time t is the intensity that they contribute
to the SBM at time t and conditional on being alive at time t they give the law of the
future evolution of these clusters. Probabilists may note the similarity between this

canonical measure and excursion measures for Markov processes. In fact Le Gall [21]
(Section IV.1) builds N0 as the excursion measure from zero of his Brownian snake
which runs up and down the family trees of all the individuals who ever existed.
One can construct N0 from a branching random walk as follows (see, for example,

Section II.7 of Perkins [27]):

(2.3) lim
N→∞

NP(XN ∈ A | XN
0 = N−1δ0) = N0(X ∈ A) for “any” set of paths A.

Note that the factor N in front of the probability is natural in light of the survival

probability (2.2).
To get a sense of what SBM looks like in two spatial dimensions and see the role

of this cluster decomposition, Figures 2.1–2.4 below are simulations of branching
random walk on the two dimensional torus starting with N = 40,000 particles uni-

formly distributed over the torus, taking on 255 distinct colours. They appear here as
255 shades of grey, but the coloured pictures may be found in the web version of this
article (http://journals.cms.math.ca/CMB/). The simulations were provided by Achim
Klenke and more can be found on his webpage (http://www.mi.uni-koeln.de/˜klenke/).
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Figure 2.1

Figure 2.2
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Figure 2.3

Figure 2.4
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The particles are following a nearest neighbour random walk, so σ2
= 1/2. The other

parameters are b = 1/2 and g = 0. Time is measured in units of 1/N which means

we have total initial mass 1. The colours are inherited by successive generations and
so the diversity of colours in the original simulation would give us an idea of the
number of clusters contributing to the entire population. The figures are taken at
t = 0, t = .003, t = .14 and t = .56. At this last time there are four colours present

corresponding with high probability to four distinct clusters. The actual number of
clusters has a Poisson distribution with mean X0(R

2)/bt ∼ 3.6. From the pictures
one may guess that the actual support of SBM is Lebesgue null and we will see in a
moment that this is the case. One might also ask if the support is totally disconnected

and in two dimensions. This question remains unresolved.

B. Additive Property Run 2 independent SBM’s X1, X2; then clearly X1 + X2 is
a SBM starting at X1

0 + X2
0 . This is clear from the corresponding property for the

branching random walks which in turn follows from the independence of the evo-
lutions of individual particles. This property is central to much of the analysis and

stochastic analysis associated to SBM.

C. A Stochastic pde for SBM “Xt (dx) = X(t, x)dx” where X(t, x) is the unique

solution of the stochastic pde

(SPDE)
∂X

∂t
=

σ2
∆X

2
+ gX +

√
2bXẆ .

Here Ẇ is a space-time white noise. The meaning of the stochastic partial differential
equation is as follows (see Walsh [29] for a good introduction to SPDE’s). If φ(x) is

smooth and 〈Xt , φ〉 =
∫

φ(x)Xt (dx), then

(ISPDE) 〈Xt , φ〉 =

∫ t

0

〈Xs , σ2
∆φ/2 + gφ〉 ds +

∫ t

0

∫

√

2bX(s, x)φ(x) dW (s, x).

Here dW (s, x) = w(s, x)
√

ds
√

|dx| where “{w(s, x)} are independent normal ran-
dom quantities”, that is the above integral is the stochastic integral with respect to

white noise. For d = 1, the above SPDE was obtained independently by Reimers
[28] and, Konno-Shiga [20]. If d > 1, then Xt (dx) ⊥ dx and X(t, x) will not exist.
Nonetheless one can still interpret the stochastic integral in (ISPDE) (one has an infi-
nite integrand on an infinitesimal set) and use this to characterize X. This represents

one of the rare occasions that a parabolic stochastic pde driven by white noise can be
rigorously solved in more than one dimension.

The origins of the diffusion term and linear term (gX) in (SPDE) are clear but
the fact that the branching dynamics gives rise to a term of the form

√
2bXẆ is less

obvious. To make the square root function at least plausible, note that by the Additive
Property we need

√
2bX1Ẇ1 +

√
2bX2Ẇ2 ≡

√

2(b(X1 + X2)Ẇ ,

where ≡ means their distributions are the same. This is true since by (1.1),√
c1Z1 +

√
c2Z2 ≡ √

c1 + c2Z for independent normals, and we have conditioned
on past information to treat Xi(t, x) as constants.
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3 Properties of Super-Brownian Motion and Brownian Motion

If limit theorems are to be of any use it is important that the limit is reasonably well
understood. In the past 20 years a number of methods have led to a fairly detailed

understanding of super-Brownian motion. In this section we will discuss a sample of
these results and methods by comparing them with their counterparts for ordinary
Brownian motion.

A. PDE

1. Brownian Motion If Ex denotes expectation over all Brownian paths starting at
x, then u(t, x) = Ex

(

φ(Bt )
)

solves ∂u
∂t

=
∆

2
u, u0 = φ. This fact underlies the rich

interaction between Brownian paths and elliptic boundary value problems.

Super-Brownian Motion If EX0
denotes expectation over all super-Brownian paths

starting at the finite measure X0, then

(3.1) EX0
(e−〈Xt ,φ〉) = e−〈X0,vt〉,

where
∂v

∂t
=

σ2
∆v

2
− bv2

t + gvt , v0 = φ ≥ 0.

Note that the fact that (3.1) holds for some function v(t, x) is to be expected from the
Additive Property of SBM. That v solves the above nonlinear pde (only the quadratic
term perhaps needs some justification) is an exercise in stochastic calculus using (IS-
PDE). (3.1) gives a convenient characterization of SBM which was used by Watanabe

[30] in his proof of the convergence theorem (Theorem 2.1). More general Dawson-
Watanabe superprocesses will lead to other nonlinear pde’s with, for example, more
general nonlinear terms on the right-hand side. This connection allows one to use
nonlinear pde’s to derive properties of SBM, e.g., see Iscoe [18]. In the other direction

Dynkin [15], Kuznetsov and Le Gall pursued a program to characterize, and prob-
abilistically represent, solutions to the corresponding nonlinear elliptic equation in
terms of their boundary behaviour. Recently Mselati [24] completed this program
for the quadratic nonlinearity discussed here.

B. Longterm Behaviour

1. Brownian Motion If d ≤ 2, Brownian motion is neighbourhood recurrent, i.e.,
Bt ∈ G infinitely often as t → ∞ for any open set G a.s. If d ≥ 3, Brownian motion

is transient, i.e., limt→∞ ‖B(t)‖ = ∞ a.s.

2. Super-Brownian Motion If X0 finite then X becomes extinct in finite time almost
surely iff g ≤ 0. If g = 0 we have already noted this and if g > 0 it is an easy exercise
to find the (positive) probability of surviving forever using (3.1) with φ = 1, in which
case we have a simple o.d.e. which can be solved explicitly. This survival probability

is 1 − exp
(

−X0(R
d)g/b

)

.

In the critical case g = 0, Dawson [10] obtained a finer dichotomy by considering
infinite initial conditions such as X0(dx) = mdx:

(a) For d ≤ 2, for any R > 0, P
(

Xt (|x| ≤ R) > 0
)

approaches 0 as t → ∞.
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(b) For d ≥ 3, limt→∞ P(Xt ∈ A) = P(X∞ ∈ A) for “any” set of measures A
where E

(

X∞(A)
)

= m Leb(A) and X∞ are (the only extremal) equilibrium distri-

butions for X.

The fact that these are the only extremal equilibrium measures is due to Bram-
son, Cox and Greven. This dichotomy may be understood in terms of the recur-
rence/transience dichotomy for Brownian motion. For d ≥ 3, the finite SBM con-

sisting of descendants of particles initially in {|x| ≤ R} will become extinct in finite
time but the transience of particles near ∞ means there is a steady stream of replace-
ment particles leading to a non-trivial equilibrium state. For d ≤ 2 the recurrence
of Brownian motion means that the particles at ∞ cannot effectively replenish the

mass in {|x| ≤ R}. A related process called the historical process has been used to
decompose these equilibrium measures according to ancestral histories (see Dawson
and Perkins [11]).

C. Local Behaviour

1. Brownian Motion In more than one dimension, the range of Brownian motion
is a random set of Lebesgue measure zero and Hausdorff dimension 2. This is due to

Brownian scaling, which implies that for small t , B(t) is about distance t 1/2 from its
starting point. More precisely, Ciesielski, Ray and Taylor showed that if

φd(r) =

{

r2 log(1/r) log log log(1/r) for d = 2

r2 log log 1/r for d ≥ 3,

then φd − m({Bs : s ≤ t}) = cdt for all t ≥ 0 a.s. Here φd − m denotes Hausdorff
φd-measure and cd is a positive constant.

2. Super-Brownian Motion Let S(Xt ) = closed support of Xt . If d ≥ 2, S(Xt ) is
a Lebesgue null set of Hausdorff dimension 2 for all t > 0 a.s. This 2 comes from
the Brownian scaling already mentioned and the fact that S(Xt ) may be decomposed

into the union of O(1/t) clusters for t small as discussed in Section 3. This argument
is due to Dawson and Hochberg. More precisely, SBM has the same exact Hausdorff
measure functions as Brownian motion (Dawson-Perkins [11], Le Gall-Perkins [22]):

Xt (A) = Cd
b

σ2
φd − m

(

A ∩ S(Xt )
)

∀A a.s., t > 0.

This result indicates that Xt can be recovered from the pictures of S(Xt ) in Fig-
ures 2.2–2.6, because there is no non-trivial measure of local density of mass. The

latter may again be explained using the transience/recurrence dichotomy of Brow-
nian motion. For d ≥ 3, consider a typical point x in S(Xt ) and look at the de-
mographics of the mass in {y : |y − x| ≤ r} for r small. Due to the transience,
particles which branched off from the family tree of x some time ago will not return

to this small ball and so the mass we do see will consist of close cousins of x. This
means that the actual mass about x and a nearby point x ′ will depend on independent
Brownian increments, as they will have disjoint sets of close cousins and so the law
of large numbers will guarantee a constant local density when we average these local
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densities over small sets. If d = 1, the strong (point) recurrence of Brownian mo-
tion will mean there are strong correlations between the local mass at nearby points

and hence we get a random density, Xt (dx) = X(t, x)dx, where X(t, x) is the unique
solution of (SPDE) as has already been discussed. The two-dimensional case is the
most delicate as the neighbourhood recurrence is very weak. In this case, the proof
in Le Gall-Perkins [22] uses the Brownian snake described earlier.

4 Voter Model

The voter model was introduced almost 30 years ago by a number of different re-

searchers and is one of the fundamental examples of interacting particle systems (see
Liggett [23]). Each site x in Z

d is occupied by an individual with type 0 or 1 (e.g.
a Democrat or Republican) and so ξt(x) = 0 or 1. Each type tries to take over the
territory held by the other: with rate 1, the type at x chooses a nearest neighbour at

random and imposes its type on it. If the chosen neighbour is of the same type noth-
ing happens but if it has a different type it switches to the type of x. At the same time
the neighbours are of course independently trying to impose their type on x, leading
to completely symmetric dynamics. One could introduce a biased voter model in

which 1’s convert neighbouring 0’s with rate α and 0’s convert neighbouring 1’s with
rate 1. We analyze the large scale behaviour at the critical value α = 1.

Rescaling space and time as for Brownian motion, we set ξN
t (x) = ξtN (x

√
N),

x ∈ Z
d/
√

N. Let V N
t (A) = m−1

N

∑

x∈A ξN
t (x) denote the empirical distribution of 1’s,

where

mN =

{

N, if d ≥ 3

N/ log N if d = 2.

If (Sn) is a nearest neighbour random walk, let

pesc =

{

P0(Sn 6= 0 ∀n ≥ 1) if d ≥ 3

π = 2πσ2
= limN (log N)P(Sn 6= 0 ∀1 ≤ n ≤ N) if d = 2.

Theorem 4.1 (Cox, Durrett, Perkins [8]) Assume d ≥ 2 and V N
0 → X0. Then

limN→∞ P(V N ∈ A) = PX0
(X ∈ A) for “all” A, where X is SBM with g = 0, σ2

= 1/d

and b = pesc .

To make the result plausible, reinterpret the dynamics as follows: ξt (x) = 1⇔ par-
ticle at x; ξt(x) = 0 ⇔ no particle at x. Define f N

0 (t, x) = {no. of neighbouring 0’s
to x}/2d. Then a particle at x dies with rate N f N

0 (t, x), and with rate N f N
0 (t, x)

produces a child at y chosen at random from the neighbouring sites of type 0. The

“death” corresponds to a conversion by one the neighbouring 0’s and the “birth” is
due to the 1 at x changing one of the neighbouring 0’s. This is similar to our ear-
lier description of branching random walk with g = 0, σ2

= 1/d and a random
b = f N

0 (t, x). Hence the proof must show that if ξt (x) = 1, then f N
0 (t, x) ∼ pesc on

average. This is done by a law of large numbers argument providing we can show

(i) E
(

f N
0 (t, x) | ξt (x) = 1

)

∼ pesc

(ii) f N
0 (t, x) and f N

0 (t, x ′) are asymptotically uncorrelated for |x−x ′| >> 1/
√

N .
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These conditions require some conditional third moments and these are calcu-
lated with the help of a “dual coalescing random walk”.

Remarks 1. If we change the local dynamics so that instead of selecting a nearest
neighbour of x at random, the particle chooses y with probability p(y − x) for some
symmetric finite variance kernel p, then the above result remains valid where pesc

is defined in terms of a new random walk with step distribution p. Hence the local

dynamics affect the limit only through the values of pesc and σ2.
2. If d = 2, the recurrence of (the coalescing dual) random walk leads to clustering

of the voter model and E f N
0 (t, x) ∼ (log N)−1, leading to a deterministic limit. To

counteract this we must increase the branching rate by log N and this is achieved

by increasing the mass of each particle by log N-recall for our rescaled branching
random walks, the inverse mass and branching rate were proportional.

3. If d = 1 consider an initial distribution of 1’s over an interval I. For the
unscaled voter model it should be easy to see that the set of sites occupied by 1’s

evolves as an interval whose endpoints are continuous time random walks which
evolve independently until they meet and annihilate each other. If mN =

√
N, then

it is not hard to use Donsker’s FCLT (Theorem 1.2) to see that our rescaled voter
models converge to Lebesgue measure on an interval whose endpoints are given by a

pair of annihilating Brownian motions. This is due to R. Arratia.

An Application Let ξt be voter model starting from a single 1 at x = 0, take d ≥ 2,
and set S(ξt ) = {x : ξt (x) = 1}. Bramson and Griffeath [5] posed the following ques-
tion: Conditional on ξt 6= 0, what is asymptotic shape of S(ξt ) as t → ∞? Williams
and Bjerknes [31] had proposed the biased voter model (with α > 1) as a stochastic

model for tumour growth and Bramson and Griffeath had answered the above ques-
tion by showing that S(ξt ) grows linearly to an asymptotic shape of positive volume.
They viewed the corresponding result for the voter model as the asymptotically crit-
ical case of the tumour growth result and noted that the result would necessarily be

quite different.
It is easy to guess the answer in light of Theorem 4.1. Set t = N and note that

S(ξN )/
√

N = S(V N
1 ). We therefore expect

P
(

S(ξN )/
√

N ∈ ·
∣

∣ ξN 6= 0
)

∼ Pδ0/N

(

S(X1) ∈ · | X1 6= 0
)

.

As we are starting the voter model with a single 1 at the origin we would expect the
right-hand side to be the law of a single cluster of SBM, that is SBM conditioned
on survival under the canonical measure. These heuristics were proved by Bramson,

Cox and Le Gall [3] where one can also find other applications and extensions of
Theorem 4.1.

Theorem 4.2 (Bramson, Cox, Le Gall [3]) For d ≥ 2,

lim
t→∞

P
(

S(ξt )/
√

t ∈ A
∣

∣ ξt 6= 0
)

= N0

(

S(X1) ∈ A
∣

∣ X1 6= 0
)

for “all” sets of sets A.

It should be stressed that the limiting random set in the above is a well-understood
object—we have exact Hausdorff measure functions, precise results on its dynamics
and multiple points and characterizations of its polar sets, to name only a few of its
properties.
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5 The Contact Process

The contact process, introduced by Harris (1974) is a stochastic epidemic model. Let
L ∈ N be the infection range of the process and, rescaling the lattice so that the range
becomes 1, let St ⊂ Z

d/L be the set of infected sites at time t . The dynamics are

as follows: a bacterium at x ∈ Z
d dies with rate 1, and with rate λ infects y ∈ Z

d/L
chosen at random in [x−1, x+1]d provided y is not infected (if it is, nothing happens).
Distinct bacteria have independent death and infection times.

Basic Fact ∃λc(L) > 1 such that λ > λc ⇔ P(St 6= ∅ for “all” t | S0 = {0}) > 0.

The precise value of λc is not known although a number of bounds exist in the
literature. Note that if we did not suppress infections onto occupied sites (and hence
allow multiple occupancies) the above model would be a (biased) branching random
walk and λc would be 1. This makes it reasonable to expect λc > 1 to compensate for

this suppression of “births”. As this latter effect should become negligible as L → ∞,
we expect (as is the case) limL→∞ λc(L) = 1.

Let L = LN → ∞, and set λ = 1 + θ
N

where θ is a real parameter. Then
λ ∼ λc(LN ) ∼ 1 and so we are analyzing the long-range contact process near critical-

ity. Now invoke Brownian space-time rescaling and assign mass per site as for SBM:
SN

t = SNt/
√

N, XN
t (A) = #(SN

t ∩ A)/N , A ⊂ R
d. Therefore a particle at x with rate

N dies, and with rate Nλ = N + θ gives birth onto y, uniformly chosen in

[x − N−1/2, x + N−1/2]d ∩
(

Z
d/(LN

√
N)

)

= NN(x);

but the child is killed if y is occupied. This gives b = 1, σ2 ∼ 1/3 (the variance of
each component of a uniform distribution on [−1, 1]d) and a random growth rate

g = θ − (N + θ) f N
1 (t, x), where f N

1 is the frequency of 1’s in NN(x).

Comparing the above with our construction of SBM, we must choose LN so that
conditional on x being occupied, f N

1 (t, x)(N + θ) ∼ O(1). If we pretend we are
dealing with a branching random walk the (conditional) mean of the above is not

hard to find and leads to

LN =











N1/d d ≥ 3

(N log N)1/2 d = 2

N3/2 d = 1.

Let (Un, n ∈ Z+) denote a random walk with uniformly distributed steps over
[−1, 1]d (U0 = 0).

Theorem 5.1 (Durrett-Perkins [14]) Assume XN
0 → X0 non-atomic and d ≥ 2. Then

lim
N→∞

P(XN ∈ A) = PX0
(X ∈ A) “for all” A,

where X is SBM with b = 1, σ2
= 1/3, g = θ −C(d), and

C(d) =

{

2−d
∑∞

n=1 P(Un ∈ [−1, 1]d) d ≥ 3

3/(2π) = limN
2−2

log N

∑N
n=1 P(Un ∈ [−1, 1]d) d = 2.
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Remark If d = 1 Mueller and Tribe [25] confirmed an earlier conjecture of
Durrett (1988) and showed that if X0 has a bounded continuous density, then

limN→∞ P(XN ∈ A) = PX0
(X ∈ A) for “all” A, where X is the unique solution

of the stochastic pde

∂X

∂t
= X ′ ′/6 +

√
2XẆ + (θ − X)X.

Proof From the discussion above, and by comparing our setting with the conver-
gence theorem for branching random walk, we must show that if ξt(x) = 1, then

f N
1 (t, x) ∼ C(d)/N on average. The fact that this local density is effectively constant

follows from the same reasoning we used to argue that there is no non-trivial local
density for SBM for d ≥ 2. Namely, the only particles contributing to the local den-
sity f N

1 (t, x) about an occupied set x are close cousins of the particle at x and so these

densities are effectively independent for |x−x ′| � N−1/2. (If d = 1 there is of course
a non-trivial measure of local density for SBM, namely the density X(t, x) of X, and
if we set g = θ−X(t, x) and σ2

= 1/3 in (SPDE), we obtain the above stochastic pde

found by Mueller and Tribe [25].) The reason we can actually calculate the constant
requires another argument which we will not pursue here. The precise value of C(d)
comes from corresponding density for branching random walk—one decomposes
the particles contributing to the local density according to when they split off from

the family tree of the particle at x, leading to the sum over n in the definition of C(d).

An Application After finding the right order of magnitude of the rate of convergence
of λc(L) to 1 as L → ∞, Bramson, Durrett and Swindle [4] posed the problem of

finding the exact first order asymptotics for λc(L). A formal interchange of limits
readily gives the answer from the limit theorem as we now show. The justification of
this interchange of limits does take some work.

Theorem 5.2 (Durrett-Perkins [14]) If C(d) as above then

λc(L) − 1 ∼
{

C(d)/Ld d ≥ 3
3
π

log L
L2 d = 2.

Proof θ > C(d) ⇔ PX0
(Xt 6= 0∀t > 0) > 0

⇔ P(XN
t 6= 0∀t > 0) > 0 for N large

⇔ λc(LN ) < 1 + (θ/N) (recall λ = 1 + (θ/N))

For the first equivalence, recall SBM will survive for all t > 0 with positive prob-
ability iff g = θ − C(d) > 0. The second equivalence is the interchange of lim-

its mentioned above. The third equivalence reflects the fact that if we survive with
positive probability starting with XN

0 then we will survive with positive probability
starting with a single particle (a superposition of independent contact processes will
dominate a single contact process with the same initial condition) and so λc must be
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less than our value of λ. The above equivalence implies λc(LN ) ∼ 1 + C(d)/N . Now
invert LN to obtain the above result.

If we are claiming that SBM is a universal limit of spatially distributed random
systems near criticality, then it is natural to ask if the above result remains valid (with
appropriate parameters) if we fix L and set λ = λc(L). Particles would then be giv-
ing birth at rate λc(L)N and dying with rate N , leading to an asymptotically infinite

growth rate which must be exactly compensated by the killing of particles which land
on occupied sites. Such a precise cancellation of infinities would be remarkable but
ongoing work of van der Hofstad and Sandakai suggest this is in fact the case for
d > 4 and L large enough. The reason for the optimism here is that when d > 4 and

L > L0(d), the result has already been proved for the discrete time analogue of the
contact process, oriented percolation, by van der Hofstad and Slade [17].

6 Oriented Percolation

Again fix an interaction range L ∈ N, and for x ∈ Z
d/L let

NL(x) =
(

[x − 1, x + 1]d − {x}
)

∩ (Z
d/L).

Let 0 < λ ≤ #NL. If y ∈ NL(x), declare the directed bond from (x, n) to (y, n + 1) to
be open, independently of the other bonds, with probability λ/#NL. Now consider a
water source at (0, 0) ∈ Z

d/L×Z+ and have water only flow along open bonds in the

direction of increasing n. Set Sn = {x : (x, n) is wet}. Another interpretation would
be to have the open bonds correspond to the creation of offspring from a parent and
cull the offspring so that there is at most one individual per site. Sn then denotes the
set of occupied sites in the n-th generation. Note that parents then die after producing

their children and λ is the mean number of offspring before the culling takes place.
As for the contact process ∃λc(L) > 1 such that λ > λc ⇔ P(Sn 6= ∅ ∀n) > 0.

Now rescale space and time in the usual way and let XN
t be the finite measure which

assigns mass 1/N to each point in S[Nt]/
√

N.

Theorem 6.1 (van der Hofstad, Slade [17]) If d > 4, L > L0(d) and λ = λc(L),
there are positive constants A, σ2 and b such that

lim
N

NP(XN ∈ · ) = AN0(X ∈ · )

in the sense of convergence of finite dimensional distributions. Here N0 is the canonical
measure of SBM with parameters σ2, b and g = 0.

The proof uses a recent inductive approach to the lace expansion of van der Hofs-

tad and Slade to directly calculate the r-th moment measure NE
(

XN
t1

(dx1) · · ·
XN

tr
(dxr)

)

and show it converges to the known moment measures for SBM under
the canonical measure.

Remarks 1. As we are looking at a percolation cluster starting from a single point
(0, 0) it is natural to get a single cluster of SBM, that is, N0, in the limit (compare
with (2.3)).
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2. The lace expansion provides a method for doing complex inclusion-exclusion
counting arguments. In the course of the proof certain terms are shown to be neg-

ligible in the limit. In the limit these terms will correspond to the probability that a
Brownian path collides with an independent super-Brownian cluster. This probabil-
ity is 0 iff d ≥ 4, with d = 4 critical (see Barlow and Perkins [2]), and leads to the
d > 4 condition in the theorem. The fact that d = 4 is critical for the non-existence

of these collisions can be seen, with a bit of imagination, by recalling from Section 3
that the support of SBM has dimension 2 and the range of the Brownian path has
dimension 2, and noting 2 + 2 = 4. In lower dimensions the scaling limit of oriented
percolation is not known but it will not be SBM (see Sakai [32]).

3. The inductive approach to the lace expansion mentioned above also produces
estimates for the parameters in the theorem and in particular shows that as L → ∞,
A = 1 + O(L−d), b = 1 + O(L−d), σ2

= 1/3 + O(L−1), and λc(L) = 1 + O(L−d).
In fact λc(L) is characterized as the root of a functional equation and the machinery

has the potential of finding higher order expansions for λc(L) (as it has done in other
contexts).

7 Other Models

We have indicated how rescaled voter models, long range contact processes and fixed
range oriented percolation all converge to SBM for sufficiently large dimensions. In
this section some further connections between SBM and other processes are briefly

described.

(a) Rescaled Lattice Trees (Derbez-Slade [12])

A lattice tree is a connected set of “neighbouring” (range L) bonds in Z
d with no

cycles containing the origin. Pick a such a lattice tree with N 2 vertices at random and
let XN be the random probability which assigns mass N−2 to each vertex scaled by
1/
√

N . Derbez and Slade [12] confirmed a conjecture of Aldous (1993) by showing

that for d > 8 and L > L0(d),

P(XN ∈ · ) approaches N0

(

∫ ∞

0

Xs ds ∈ ·
∣

∣

∣

∫ ∞

0

Xs(R
d) ds = 1

)

.

Here N0 is the canonical measure of SBM with g = 0 and appropriate b, σ2 > 0.
This limiting random probability is called integrated super-excursion (ISE). Note that
it corresponds to taking a cluster of SBM and looking at the set of points in space

which are traced out by the cluster over its lifetime and then conditioning the total
“occupation mass” of this cluster to be one. The criticality of this model (and reason
for Aldous’ conjecture) arises from the fact that uniform measure on abstract tree
shapes with N2 nodes may be constructed by conditioning a critical Galton-Watson

branching process with Poisson offspring distribution to have total progeny size N 2.
Again different limits are expected for d < 8.

(b) Lotka-Volterra Models (Cox-Perkins [9])
The following interacting particle system was introduced by Neuhauser and Pacala

(1999) to model two types competing for resources. All sites in Z
d are occupied by

a particle of one type or the other. The dynamics which depend on the parameters,
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αi governing the interspecies competitive effect on type i, are as follows: fi is lo-
cal frequency of type i, 0 → 1 with rate ( f0 + α0 f1) f1; 1 → 0 rate ( f1 + α1 f0) f0.

The first factor above gives the death rate of the particle at a given site (the effect
of self-competition has been normalized to 1 for both types) and the second fac-
tor represents the immediate invasion of the vacant site by a type chosen at random
from the neighbouring sites. If XN

t is rescaled empirical measure of 1’s then in dif-

ferent near-critical regimes of (α0, α1) one gets convergence to SBM with non-trivial
growth rates depending on (α0, α1). The regimes in question are αi close to 1 or,
for the long range setting, α0 fixed and α1 close to 1. The methods introduced here
appear to extend and unify the arguments used above for the voter model and long

range contact process.

(c) Fleming-Viot Models (Etheridge-March [16], (Perkins [26])
These represent a large class of stochastic processes used to model the distribution

of genotypes in a population undergoing random sampling, selection and mutation.

We restrict ourselves to models which parallel SBM although in this setting it would
be more natural to consider more general state spaces and mutation operators (cor-
responding to more general Dawson-Watanable superprocesses). The results below
extend to these more general settings without difficulty. R

d is now a space of allele

types. Migration represents mutation of type of offspring from that of parent.
N is a fixed population size due to a finite carrying capacity. Branching now

becomes resampling from the gene pool: at t = i/N each particle ( j) is replaced
by k j offspring of “neighbouring types”, where in the absence of selective effects,

(k1, . . . , kN) is multinomial (N ; 1/N, . . . , 1/N). Here the shift of the offspring to
a “neighbouring type” is due to mutation and the multinomial distribution arises
from selecting at random from the effectively infinite set of potential adults, those
which reach maturity.

The empirical probability measure of types, V N
t , is a random probability which

converges to Vt , the Fleming-Viot process. Obviously this process cannot be SBM as
it has total mass equal to one but it can be constructed from SBM in the most naive
manner—simply condition the latter to have total mass one for all time.

Theorem 7.1 (Etheridge-March [16])

P(V ∈ · ) = lim
n

PV0

(

X ∈ ·
∣

∣ sup
t≤n

|Xt (R
d) − 1| ≤ 1/n

)

.

The righthand side is SBM (g = 0) conditioned to be a probability-valued process.

Here SBM is used as a building block for the Fleming-Viot process V . Recall that
in constructing realistic models of random phenomena much of the importance of

Brownian motion derives from its role in Itô’s program of constructing processes
which are locally Brownian but with state dependent drifts and diffusion rates. These
arise as solutions of stochastic differential equations. We have seen that SBM arises
as a universal limit of a variety of critical spatially distributed systems. Here the local

nature of the interactions and a law of large numbers effect led to constant but non-
trivial parameters governing the evolution of the SBM. For many stochastic systems
such a law of large numbers effect will not persist and a truly interactive stochastic
limit arises:
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• mutual attraction/repulsion of particles
• low density competing species or predator-prey system

• symbiotic/diploid branching models

Such processes can be viewed as behaving locally like SBM but with state depen-
dent coefficients b, σ2 and g, which may even be singular. They may be modelled by
generalized solutions of stochastic pde’s of the form (compare to (SPDE)):

∂X

∂t
(x) =

(

A∗
Xt

+ g(x, Xt )
)

Xt (x) +
√

b(x, Xt )Xt (x)Ẇt(x),

where,

AXt
φ(x) =

1

2

∑

i, j

ai j(x, Xt )φi j(x) +
∑

i

bi(x, Xt )φi(x)

and Ẇ is a space-time white noise.
There has been some recent progress here both in some of the specific examples

above and in the general theory (the latter with Athreya, Barlow and Bass) but this
would be the subject of another lecture.
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