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Introduction

Throughout this paper E, F and G denote separated locally convex spaces,
F C G, the injection i : F -> G being continuous (i.e. the topology on F is
finer than that induced on it by the topology on G). E', F' and G' denote the
respective duals of E, F and G. i' is the adjoint map of G' into F', which is
defined by restricting linear forms on G to F C G.

The "series case" of the type of problem we have in mind concerns the
convergence of series of the type

(1) 2 . <*,4>&.
(e'k) and (gk) being sequences of elements of E' and of G, respectively. Under
certain conditions which we shall set out below, it happens that the con-
vergence of (1) for each zeE and in the sense of the weakened topology
a(G, G'), each sum being in F, implies already the convergence or the
weakened topology on F (or, in some cases, even for the initial topology
on F). If E = F = G and the e'k are the coefficient functionals associated
with a Schauder base {ek) in E, results of this type are known to hold when
£ is a Banach or a Fr^chet space and spoken of as the "weak basis theorem".

It is only a short step to pass from series (1) to integrals of the type

(2)

T being a locally compact space and p a positive Radon measure on T.
In either case the summand or integrand, as the case may be, is a bilinear

form on E x G' which we may write as (x\Bt\z'y. B : t -> Bt is thus analo-
gous to a tensor field of mixed rank two over T. It is convenient to formulate
the general problem in such terms. To do this we make the following con-
ventions.

The field B being given such that t -»• <x\Bt\z')> is essentially /i-integrable
for each pair (x, z')eE x G', we denote by J (x\Bt\d/u(t) that element of
G'* defined as
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The integral J \Bt\z'}d/i(t) is defined analogously. Naturally, J (x\Bt\d/x{t)
may or may not belong to G when the latter is viewed as a subset of G'*;
and J \Bt\z'ydfi(t) may or may not belong to E' C E*.

In all cases the first step is to establish the continuity of the pointwise
limit u of a sequence of maps un of E into G defined by

un{x)=\sn{t)<x\Bt\dt*{t),

the sn being summation factors. If this can be done, the convergence for
the weakened topology on F is derived from simple assumptions concerning
the summability factors sn.

With further specialisation of E, stronger results may be derived.

1. Some hypotheses on the spaces E, F and O

It is convenient to have certain hypotheses concerning these vector
spaces listed in a bunch for future reference.

[1.1] E, F and G are separated locally convex spaces such that F CG and
the injection i : F -*• G is continuous. The adjoint i' of i is defined by
i'(z') = z'\F, mapping G' into F'. Note that »'(G') is total (= weakly
dense) in F', i.e. it separates points of F.

[1.2] un(neN, the set of natural numbers) are linear maps of E into G
such that z' o un is continuous on E for each pair (z', n) sG' x N.

[1.3] For each xeE, u{x) = ]imnun(x) exists in the sense of the topology
a{G',G), and u(x)eF.

[1.4] There exists a base {W} of weak neighbourhoods of 0 in F, each of
which is closed in G.

[1.5] There exists a base {V} of neighbourhoods of 0 in F, each of which is
such that i'(G') n V° is weakly dense in V° (V° being the polar in F'
of V C F).

Note that if E is barrelled, or bornological, or relatively strong, or if the
closed graph theorem is true for linear maps of E into G (a situation which
we symbolise: (E, G) e (cgt)), then [1.2] is true if and only if wB is continuous
on E into G.

If [1.5] is true, there is a base {V} of neighbourhoods of 0 in F, each of
which is closed, convex and balanced and which moreover satisfies the
condition set forth in the statement [1.5].

2. The continuity of u on B into F

We shall give two sufficient sets of conditions in order that w be contin-
uous on E into F.
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THEOREM A. Suppose that E is barrelled and that [1.1], [1.2], [1.3]
and [1.5] are satisfied. Then u is continuous on E into F.

PROOF. Taking any closed, convex and balanced neighbourhood V of 0
in F, chosen as in [1.5], it is enough to show that q o u is continuous on E,
q being the gauge of V (i.e. a seminorm on F such that V is precisely the set
of yeF satisfying q(y) <: 1). Now

q{u(x))= Sup {!<«(*), y'}\: y' e P } ,

V° being the polar in F' of V. According to [1.5] this equals

Sup {|<«(»), y>y\:y'eV°i'{G')}.

Since E is barrelled, it suffices to show that y' o u is continuous on E for
each y' e i'[G'). But if y' = i'(z') for some z' e G', [1.3] shows that

= limB<«n(a;)( *'>.

By [1.2], each z' o un is continuous on £ . So, again since E is barrelled, one
concludes that y' o u is continuous on £ and the proof is complete.

THEOREM B. Suppose that [1.1]—[1.3] AoW, ^a£ un(E) C F for each n,
and that (E, F) e (cgt). Then each un is continuous on E into F. If also
E is barrelled, then u is continuous on E into F.

PROOF. If un(E) C F, [1.2] shows that un has a graph closed in E x F.
Hence un is continuous on E into F.

To show that u is continuous on E into F, it suffices to show that its
graph also is closed in E x F. Thanks to [1.1], this will follow if one shows
that 2 ' o « i s continuous on E for each z' e G'. But z' o u is the pointwise
limit of the z' o un, as a consequence of [1.3]. Since E is barrelled, it follows
that z' o « is continuous.

Notes. (1) If in Theorem A we are given also that un(E) C F, then (as in
the proof of Theorem B) one may infer that each un is continuous on E
into F.

(2) In connection with Theorem B it is perhaps useful to recall cases in
which one can be certain that (E, F) e (cgt). This is indeed the case provided
one of the following conditions is satisfied.

(a) E is an inductive limit, and F a countable inductive limit, of Fre'chet
spaces, moreover in this case one may replace "closed graph" by "sequen-
tially closed graph";

(b) E is barrelled and F is incomplete.
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3. Hypotheses concerning the field B

As before it is convenient to group together a number of hypotheses.

[3.1] (sn) is a sequence of scalar-valued functions on T such that for each m

limnVm = Sm

boundedly.
[3.2] For each xeE there exists a weak Cauchy sequence (x*) in E such

that for each n eN (the set of natural numbers) and z' e G'

sn(tKx\B(t)lz'} = <xt\B{t)\z'y

for locally almost all t eT.
[3.3] For each triplet (x, z',n) e E x G' X N the function sn(xBz'y is

essentially integrable and the linear form

is weakly continuous on G', so that

«„(*) = jsn<x\B\dp

exists as an element x of G.

[3.4] For each pair (n,z')eN X G' the linear form

x -

is continuous on E, so that

vn{z') = fsJ
exists as an element of E'. (vn is the adjoint of un qua map of E into G).

[3.5] For each x e E the limit

«(#) = lim un(x)

exists in the sense of the weakened topology a(G, G'), the limit u(x)
belonging to F(CG).

4. Cases in which convergence of (um(x)) for a(G, O')
implies that for a(F, F')

Consider any case in which w is known to be continuous on E into JF.
Then u will transform weak Cauchy (resp. weakly convergent, convergent)
sequences in E into weak Cauchy (resp. weakly convergent, convergent)
sequences in F. In particular, if [3.2] holds, the sequence («(a£)) = {ym),
say, is weakly Cauchy in F. On the other hand, one has by definition
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weakly in G, so that for each z' e G' one has

<Vm-u(xJ, z') = limm

= limm j (sn-l)sm<p\B\z'ydp,

which, thanks to [3.1] and [3.3], is zero. Accordingly, ym = um(x) and so,
by what has already been said, (um(x)) is Cauchy for a(F, F'). If [1.4]
holds one may infer that (u(xm)), being weakly convergent in G to u(x)
and weakly Cauchy in F, must be weakly convergent in F to u(x).

This permits us to formulate a third theorem.

THEOREM C. Suppose satisfied either of the following two sets of hypotheses

(a) [3.1]—[3.5], [1.1], [1.4] and [1.5];
OS) [3.1]—[3.5], [1.4], and (E, F) e (cgt).

Then, if E is barrelled, the sequence {um{x)) is convergent to u(x) for the
topology a(F, F').

If it is known that (a*) is convergent (resp. weakly convergent) in E to x,
then [1.5] may be dropped and one may conclude that um(x) -> u(x) in the
sense of the initial topology (resp. the weakened topology) on F.

5. Specialisation of B and F

At the expense of specialising E and (to a lesser extent) F, one can streng-
then the conclusions of Theorem C. The additional properties concerning E
are those introduced by Grothendieck [1] and called the strict Dunford-
Pettis property (SDPP for short) and the Dieudonne' property (DP for
short).

Let us add to our hypotheses on E and F the following
[1.6] E possesses both the SDPP and the DP;
[1.7] F is complete and weakly sequentially complete. If u is continuous

on E into F, [1.7] shows that u transforms weak Cauchy sequences in E
into weakly convergent sequences in F (and in any case transforms weak
Cauchy sequences in E into weak Cauchy sequences in F). Assuming [1.6]
we may infer that

(i) u transforms bounded sets in E into weakly relatively compact sets
in F,
this since E has the DP. Since also E has the SDPP it follows that

(ii) u transforms weak Cauchy sequences in E into convergent sequences
in F;

(iii) u transforms weakly relatively compact sets in E into relatively
compact sets in F;
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(iv) u transforms bounded and weakly metrisable sets in E into relatively
compact sets in F.

In particular one arrives at the following theorem.

THEOREM D. Suppose satisfied either of the two sets of hypotheses («) and (/?)
of Theorem C, and also [1.6] and [1.7]. Then (un(x)) converges in F to u(x)
for each x e E.

Note. Clearly, if [3.2] holds with "weak Cauchy" replaced by "weakly
convergent" or "convergent", one may neglect [1.6] and [1.7] in deducing
that (u(xn)) is weakly convergent or convergent, as the case may be.

Notable cases in which [1.6] and [1.7] are satisfied are those in which E
is a space C0(S) (continuous functions on a locally compact space S which
vanish at infinity), or Cr(O), 0 being an open subset of Rm, or if E is bound-
edly compact (in which case [1.7] is superfluous), and if F is a space L1.
See [1], pp. 139—152, 161.

Moreover, if £ is a space L°°, it is isomorphic with a space C0(S) in which
S is a compact Stonian space. If F is complete and separable, any contin-
uous linear u mapping E into F transforms weak Cauchy sequences into
convergent sequences. Thus, with the hypotheses in Theorem C, u will
transform (xn) into a sequence converging to u(x). See [1], pp. 168, 137.

6. Some examples

The "integral case" is at least as significant as the "series case". However,
although there are no new essential difficulties in the former case, it is
inevitably more complicated in detail. For this reason we restrict the illu-
strations to the case of series.

(1) The "series case" is always reducible to the situation in which T is
the set N of natural numbers endowed with the discrete topology and /x is
the measure placing a unit mass at each point of N. Then $T • • • d/j, — ]£y
(• • •), the series being absolutely convergent. The simplest, though not the
only, choice of sn is as the characteristic function of the segment [1, n] of AT,
whilst (xB(n)z'y = x(n) • (gn, z'). This applies if, as we shall suppose, E is
a space of sequences and (gn) is a sequence of elements of G. Then [3.1] is
satisfied in the stronger form snsm = sm if n > m and 0 ?g sn ^ 1 for all n.
Condition [3.2] will be satisfied if E contains each finite section x* of x
whenever x e E,

' x(n) if k g n
* * W = l 0 if x>n.

[3.3] is visibly satisfied and

(*) «„(*) = 1 *(*)*»;
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[3.4] requires merely that each coordinate function x -> x(k) is continuous
on E. Finally [3.5] is the major premise and demands that the series
~2,tx(k)gk is weakly convergent in G to a sum which belongs to F.

Even at this stage there remains considerable freedom in the choice of E
and of F. If this is done with respect for [1.1]—[1.5], the conclusion will
be that the series (*) is weakly convergent in F.

To take a specific case, suppose that Q is a domain in RT and take for G
the space D' (£?) of Schwartz distributions on Q, For F we may take any of
the spaces L"(D), L%OC{Q), C(Q) or D"(Q) where 1 ^ p < oo and q is either
a natural number of oo. In each case i'(G') is D(Q), the space of test func-
tions. It is easily verified that both [1.4] and [1.5] are satisfied. Moreover,
save perhaps in the case where F — D"(Q), the closed graph theorem is
available for linear maps of E into F, provided E is barrelled; and if
F = D"{Q), it is available whenever E is an inductive limit of Fr6chet
spaces.

The conclusion would be that the series (*), if convergent for each xe E
in the sense of distributions to a sum which lies in F, then the series converges
weakly in F. With further restrictions on E this conclusion may be stren-
thened as indicated in § 5.

(2) This example is concerned with biorthogonal expansions.
Suppose that (ek) and (e'k) are biorthogonal sequences in E and E', so that

Suppose also that (fk) is a sequence in F.
We introduce summation factors a.n{k) and put

and we assume that for each x in E

u(x) = limBMB(a;)

exists weakly in G and belongs to F.
The usual concept of biorthogonal expansions is generalised to the extent

of admitting summation factors /3m(A) and assuming that for certain (not
necessarily all) x e E one has

(**) * = limmsm = limm 2 A» (*)<«. e'k}ek,

the limit existing in the sense of the weakened (resp. initial) topology on E.
If u is continuous on E into F (see Theorems A and B), it will follow that

u(sm) -> u(x) for the weakened (resp. initial) topology on F.
On the other hand, if

2 IA.(*)<*. «;></*. **>!<+«>
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for each z' e G' and each tn, and if

limn*n(k)(Sm(k) = fim(k) (». k = 1, 2, • • •)
and

*)l ^ cJ/U*)l (*. * = i, 2, • • •).

it will follow that

«(o=x &
One concludes therefore that

in the sense of the weakened (resp., initial) topology on F, whenever xeE
and (**) holds.

When E = F = G are Frechet spaces, and

{ 1 for k ^ n
«»(*) = A.(*) = ( 0 for k > «,

results of this type are analogous to Banach's "weak basis theorem".
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