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Abstract. 
The various methods used to infer the physical conditions and location of the material respon-

sible for broad line emission in AGN are reviewed. Recent efforts have focussed on reverberation 
mapping, whose basic concepts and experimental constraints are discussed. A new method for 
analyzing the results of monitoring experiments, regularized linear inversion, is presented. This 
method is then applied to published data from the 1989 IUE campaign on NGC 5548, and the 
results found contrasted with those obtained by the previous standard method, maximum entropy. 

1. Introduction 

Studies of the broad emission lines in active galactic nuclei have engaged very large 

numbers of astronomers ever since the discovery of AGN. Precisely because there 

is such a large volume of work in this field, it is very easy to get lost in the details. 

For this reason, I will begin by summarizing why this work is felt to be valuable, 

and will try to highlight what our principal goals are. 

The first and lowest level goal is to understand the physical conditions in the 

source(s) of these emission lines, and to determine their principal production mech-

anisms. There has been, I believe, substantial progress toward accomplishing this 

task. A related problem is to locate the line emission region with respect to the 

other structures in A G N . While there has been much recent work in this area 

(whose discussion will form the bulk of this review), this problem is by no means 

completely solved. 

The next step up in sophistication is to understand the dynamics of the line-

emitting material. At present, while we have a measure of the volume-integrated 

velocity distribution function in the form of line profiles, we do not know whether 

the local velocity distribution has any special spatial orientation with respect to 

the center of the A G N , i.e. , we don't know whether the matter is falling in, 

streaming out, or following stable bound orbits. Nor do we know which forces are 

responsible for accelerating the matter. Whatever these are, there must be some 

very special constraints built into the hydrodynamics because the observed 1-d 

velocity dispersion (typically several thousand km/s ) corresponds to Mach numbers 

of several hundred with respect to the sound speed inside the line-emitting gas. 

An area about which we would certainly like to learn, but about which even 

less is known is the "natural history" or life-cycle of the emission line gas. While 

there have been many speculations voiced about the origin and ultimate fate of 

the emission line gas, none has achieved any wide acceptance. To give a sense 

of the vast range of uncertainty in this area, I'll simply list a sampling of these 
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suggestions: thermal instabilities in an accretion flow (Krolik 1988); winds from 

red giant stars in a dense stellar cluster (Scoville and Norman 1988; Kazanas 1989); 

or the surface of the accretion disk in which many of us would like to be able to 

believe (Dumont and Collm-Soufrrin 1990). 

Finally, if we are fortunate, we will be able to study AGN emission lines not 

just to learn about their own origin and character, but as a device to learn about 

other elements of the A G N system. It has long been a hope in this field that once 

we understand well the properties of the emission line region itself, we will be 

able to use the emission lines as "plasma diagnostics" of surrounding regions. If 

the line-emitting matter is in pressure balance with ambient, less-observable gas 

(or even if it is not in pressure balance, if there is a calculable relation between 

the two pressures), then knowledge of the physical conditions in the emission line 

region carries over into knowledge of those in the hot gas. If in addition there 

is dynamical coupling between emission line gas and nearby unseen gas (through 

drag, for example, or viscosity in an accretion disk), then the emission lines tell us 

about the ambient gas's motions. Reliable results in this area still remains elusive. 

2. Techniques for Reaching These Goals 

A variety of methods have been invented for accomplishing these objectives. The 

simplest—and oldest—way to find the physical conditions prevailing in emission 

region is to construct a single-zone photoionization model, an idea that goes back 

almost twenty-five years to Bahcall and Kozlovsky (1969), and, in its first detailed 

realization, to work by Davidson (1972) and MacAlpine (1973). The fundamental 

idea behind this method is to assume that the emission lines are powered by pho-

toionization. While this idea was initially controversial, the success of these models 

in crudely reproducing the observed relative line strengths, and, more recently, the 

excellent correlation (at a delay) found between fluctuations in the continuum and 

fluctuations in the lines (e.g. Clavel et al. 1991; Peterson et al. 1991; Reichert et 

al. 1993), very strongly support its basic assumption. 

To carry out this method, one varies three free parameters: the gas pressure 

(or density), its thickness (either in length or column density), and the ionization 

parameter at its exposed edge (defined variously as the ratio of ionizing photon 

density to gas density, or ionizing photon energy density to gas pressure (this 

version is denoted Ξ) , or in one of several other almost equivalent forms). Using 

known atomic physics data, one then computes the local ionization equilibrium, 

local thermal balance, and local excited state population balance in selected atoms 

and ions for gas subjected to a continuum of a specified spectral shape. It is, of 

course, a weakness of this method that while we know a great deal about A G N 

spectra at energies of several to 10 eV, and also 0.5 to 20 keV, we have very little 

direct knowledge of their spectra in the range between these energies, which is 

exactly the range of most interest for photoionization. From the computed local 

physical conditions, one then calculates the total photon emission from the gas, 
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and compares the relative strengths of the emission lines to the values observed. 
By varying the free parameters, one eventually finds values which more or less 
reproduce the observed line strengths. In order to get the best fit to the greatest 
amount of line flux using only a single zone, one usually finds pressures ρ ~ 0.01 -
0.1 dyne c m - 2 , column densities Ν ~ 1 0 2 2 - 1 0 2 3 c m - 2 , and ionization parameters 
(defined in the pressure ratio form) Ξ ;ζ 1 (e.g. Κ wan and Krolik 1981; Krolik and 
Kallman 1988; Rees, Ferland, and Netzer 1990). Strikingly, because the relative 
line strengths vary comparatively little from object to object, these parameters are 
crudely similar for all A G N . They may be combined with the luminosity in any 
particular object to estimate the mean distance of the emission line region from 
the source of the continuum, assuming free-streaming propagation in between: 

~ iooxV2

i 4 4it-d, (1) 

where £ l o n is the luminosity in the ionizing band. 

However, this method has a number of unsatisfactory points. First of all, while 

the quality of fit to the line strengths one obtains with a single zone model is 

surprisingly good (there is no a priori reason why a single zone model should come 

anywhere close), it is by no means perfect, and because there is no clear statistical 

measure of the quality of fit, one can never be quite sure how well deteraained 

the mean parameters are, or whether the quality of the fit is as good as could 

be expected from data of a given signal/noise. In addition, there are a number of 

hidden assumptions making it somewhat model-dependent. For example, nearly 

all these calculations assume slab geometry. In addition, while assuming solar 

abundances gets one close to the observed line strengths, there is the possibility 

that the abundances are actually different. Unfortunately, it is very difficult to find 

an unambiguous signature of any particular abundance deviation (Davidson 1975; 

Kwan and Krolik 1981; Hamann and Ferland 1992). The final disability of this 

procedure lies at its very heart: we certainly do not expect that the distribution in 

physical conditions is a perfect delta function, and we would like to know about 

the spread in conditions, if possible correlating that spread with location and/or 

kinematics. 

The next simplest procedure is to construct photoionization models as a func-

tion of line of sight velocity, i.e. with respect to the line profiles (Kallman et al. 

1993). By doing so, one effectively projects the line emissivities onto a set of nested 

surfaces, the surfaces of constant line of sight velocity. The mean physical condi-

tions inferred for each model then correspond to the conditions averaged over each 

of these surfaces. Unfortunately, this technique suffers from two nasty illnesses: we 

do not know the shapes of these isovelocity surfaces a priori, so we do not know 

where these inferred conditions apply; and worse, we do not even know if these 

surfaces exist. To the degree that the line emitting gas moves like a fluid, its veloc-

ity is well-defined at each point; however, if it moves collisionlessly (for example, 

if the gas is broken up into a large number of small clouds, or if the gas resides on 
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the surfaces of stars), its velocity distribution at any given point could be quite 

broad. When that is the case, the isovelocity surfaces become thick and start to 

overlap. Interpreting a profile-based photoionization model in such a situation is 

virtually hopeless. 

3. Reverberation Mapping 

Variability in A G N permits the application of a quite different method to this 

problem, the method of "reverberation mapping". While first proposed in con-

cept many years ago (Bahcall, Kozlovsky, and Salpeter 1972), and first developed 

mathematically more than a decade ago (Blandford and McKee 1982), it was first 

attempted only in the last few years (Clavel et al. 1991; Maoz et al. 1991). The 

reason for this long delay, as we shall see, has to do with the very large quantity of 

data required, and the special planning which must go into the collection of this 

data if they are to be useful. Before discussing these issues, I digress to outline the 

basic idea behind the method. 

Careful monitoring of A G N continuum emission (particularly for those of lower 

luminosity) shows that they are often quite variable in the optical and ultra violet. 

If the ionizing continuum follows the same light curve (as is suggested by the 

excellent correlation at zero lag between the optical and non-ionizing UV bands: 

Krolik et al. 1991), then the emission line response from any small volume within 

the broad emission line region should vary along with the ionizing continuum. 

Because it takes a finite time for the gas to adjust its equilibrium to the new value 

of the continuum flux, in principle there can be a small local lag; however, at the 

densities indicated by single-zone photoionization modelling, the local equilibration 

time is very short, perhaps ~ 1 minute. By contrast, as we have already estimated, 

the light travel time across the region is far longer, at least days and possibly many 

weeks even in low luminosity A G N . Consequently, the line light curve we measure 

should be a delayed, and smoothed, replica of the continuum light curve. Because 

we understand (or think we do) how emission line gas responds to changes in the 

ionizing continuum, we can use monitoring data for both the continuum and the 

emission lines to invert this argument and give us information about the internal 

geometry of the emission line region. That is to say, we can project out a map 

of the emission line region, where the surfaces of projection are the surfaces of 

constant light travel-time with respect to us, defined by 

r = CT(1 - c o s 0 ) , (2) 

where the polar axis with respect to which θ is defined is the direction towards us. 

There are (at least) two major difficulties with this method: First, it requires 

a very large quantity of data, and the data must be obtained in the right way. To 

see just how much, and what the right way is, we write the relation between the 
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line light curve and the continuum light curve as 

6F,(t) = j dr^(T)SFc(t - τ), (3) 

where SF^C are the fluctuations in the line and the continuum with respect to their 

mean values, and the response function Ψ ( τ ) is the marginal emissivity of the line 

with respect to changes in the continuum flux, averaged over the surface with delay 

r . Assuming a linear relation between continuum fluctuations and line fluctuations 

is only a good approximation when 6Fi/(Fi) <C 1, but this is commonly the case. 

Equation 3 is a convolution relation, and so has the formal solution 

where the symbol X denotes the Fourier transform of X. Thus, if the response 

function has structure on the scale r 0 , for us to measure it the A G N must have 

significant variability on that timescale, and we must sample that variability on a 

timescale shorter than r 0 / 2 . In addition, to obtain a statistically reliable measure 

of that variability, we should extend our observations for times considerably longer 

than τ 0 . To do this well, and to be sensitive to a reasonably wide range of possi-

ble timescales, requires many many observations. Simulations, and experimental 

experience, show that ~ 50 observations is a bare minimum. Moreover, to obtain 

the least biassed picture of the variability components on different timescales, the 

observations should preferably be evenly-spaced. As several recent campaigns have 

shown (Clavel et al. 1991; Peterson et al. 1991; Reichert et al. 1993) it is possible 

to do this, but a very large amount of labor is required. 

The second difficulty is actually inverting the convolution equation. Despite the 

existence of the formal solution just shown, this is not so easy. Unfortunately, in 

most cases the Fourier solution cannot be used. The problem is that most A G N 

fluctuation power spectra are fairly "red", i.e. most of the power is found at low 

frequencies. As a result, measurement error, which has a white noise spectrum, 

overpowers the signal at high frequencies. At the same time, though, this lost high 

frequency information is necessary if we are to obtain maximal resolution in the 

response function. 

Another possible approach is to discretize the convolution according to the 

actual sampling. The integral equation then has the appearance of a conventional 

linear equation, which one might think should be directly soluble. But this, too , 

does not work because the smoothing produced by the convolution creates a large 

ambiguity in the possible solutions (i.e. many different kinds of smoothing all 

create the same final result). This ambiguity is expressed mathematically by the 

fact that the matrix representing the integral equation kernel always has at least 

a few eigenvalues many orders of magnitude smaller than the typical value of 

elements in the matrix. If there is any noise in the data with projection onto 

the corresponding eigenvectors, the implicit matrix inversion of the linear solution 

(4) 
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multiplies these noise components by numbers of order the inverse of the very 
small eigenvalues; these inverses are, of course, very large. In practise, this noise 
amplification is completely catastrophic. 

Hitherto, this problem has been solved by a variety of model-fitting techniques, 
most prominently maximum entropy (Krolik et al. 1991; Maoz et al. 1991). While 
model-fitting is easy to make stable, it, of course, always entails some level of 
model-dependence in the answer. In the maximum entropy version, it is particu-
larly hard to trace the impact of particular model assumptions on the solution. 
Maximum entropy also has the further drawback of requiring positive values of 
Φ because the nonlinear function it maximizes to select otherwise equally ac-
ceptable solutions is undefined for negative arguments. While most lines respond 
positively to continuum fluctuations in most circumstances, this is not true in gen-
eral (Gaskell and Sparke 1986; Sparke 1993), and it would be desirable to test for 
negative responses. 

4. A N e w I n v e r s i o n M e t h o d : R e g u l a r i z e d Linear I n v e r s i o n 

Fortunately, there is a direct inversion method, called regularized linear inversion, 

which does not suffer from these defects, and is also computationally very efficient 

(Press et al. 1992). Christine Done and I have recently shown how to apply this 

method to the reverberation mapping problem (Done and Krolik 1993), and I 

summarize our results in the remainder of this review. The heart of this method 

is the recognition that in order to break the degeneracy of the inversion one must 

inject some a priori information. This is done by simultaneously minimizing both 

the deviation of the solution from the measured data and the deviation of the 

solution from one's a priori assumption. Obviously, this method entails model-

dependence; its beauty is in the clear dependence of the solution on these model 

assumptions through a single tunable parameter. 

More quantitatively, if we wished solely to find the solution which best repro-

duced the observed data, we would minimize the quantity 

where L is the list of observed line flux fluctuations normalized by their uncertainty 

Ψ is the list o f values of the response function at lags τ 7 , and the matrix C is the 

discretized kernel of the integral equation similarly normalized 

X

2 = ( C - * - L ) 2 , (5 ) 

L{ = 6F,(ti)/€i (6) 

dj = SFc(ti - !,·)/€,·. ( 7 ) 

On the other hand, if our a priori condition is to look for the "smoothest" possible 

solution, this means that we are searching for solutions with small derivatives, and 

these can be represented by a differencing operator R. Thus, the total quantity 
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to be minimized is the sum χ2 + ΧΨ · RT · R · Ψ. The balance between satisfying 

the data and satisfying our prejudices is expressed by the tunable parameter λ. 

Because both quantities to minimize are quadratic forms in Φ, the solution is found 

by solving a simple linear equation 

Even though the solution of either minimization separately would be disas-

trously unstable because of the small eigenvalue problem, their simultaneous solu-

tion is quite stable because the probability that the eigenvectors of the two pieces 

coincide is extremely small. This method also possesses the virtues of very clear 

error propagation, and directly testable model-dependence through manipulation 

There have now been four major monitoring programs with sampling good enough 

to attempt a solution for the response function: a purely ground-based program 

on N G C 4151 (Maoz et al 1991); one on NGC 5548 combining IUE data with 

coordinated observations from the ground (Clavel et al. 1991; Peterson et al 1991); 

another IUE plus ground program on NGC 3783 (Reichert et al. 1993; Stirpe et al. 

1993); and, most recently, a return to NGC 5548 using HST, IUE, and more ground 

observations (Korista et al. 1994). Of these, the one most suitable for immediate 

analysis with linear regularization is the 1989 IUE campaign on NGC 5548. As can 

be seen from the forms just presented, the method works best with evenly-sampled 

data, so the ground-based NGC 4151 data is eliminated. 

The HST data is not yet completely reduced (see Peterson's article in this 

volume for a preliminary look at the Hght curves), so it is eliminated. FinaUy, the 

N G C 3783 campaign was the victim of bad fortune: the utility of any monitoring 

data clearly depends on the ratio of real variance on the relevant timescales to 

noise variance, and this Seyfert galaxy happened not to vary terribly much on the 

right timescales. 

To place this program in context, I wiU just remind you that NGC 5548 is a 

nearby type 1 Seyfert galaxy whose monochromatic luminosity vFv in the UV is 

1.6 x 1 0 4 3 f o " 2 erg s " 1 . Interestingly, no single-zone photoionization model provides 

a good match to its line strengths: at least two zones are required, one at ~ 10/&"1 

lt-d distance, the other at ~ 200fe - 1 lt-d (Krolik et al. 1991), When maximum 

entropy analysis is applied to the seven UV line Hght curves (Krolik et al. 1991), 

seemingly robust solutions can be found for five of the lines, Hell 1640, NV 1240, 

La , CIV 1549, SilV 1400, and CIII] 1909. The other two Hnes, Mgl l 2800 and 01 

1304, did not vary enough relative to the measurement error. In the maximum 

entropy solution, the response functions of aU but CIII] 1909 peak either at or 

very near zero lag, and trau off towards higher lags. The maximum lag at which 

significant response is found increases more or less with declining ionization level, 

(8) 

of λ. 

5 . Application to Real Data 
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from Hell 1640, whose response function is small beyond ~ 15d, to SilV 1400, 

which retains significant response out to 30d or more. However, in evaluating 

these results, it is important to bear in mind that the criterion of acceptable χ2 

was defined with respect to all line light curves simultaneously, so substantial 

deviations in individual Une light curves could be, and are, present. 

The picture as seen by linear regularization is surprisingly different. Taking the 

solutions one line at a time, one finds that only three lines yield solutions with 

acceptable χ 2 : La , CIII] 1909, and SilV 1400. For all three of these, the reduced 

χ2 is ~ 1.5. Even with λ = 0, there is no solution yielding acceptable χ2 for the 

other lines. The reason for this discrepancy between the two methods is partly 

that the χ2 for some of the individual light curves found by maximum entropy is, 

in fact, rather large, and partly that the maximum entropy solution used treated 

the continuum light curve as a set of free parameters constrained, but not fixed, by 

the observations. This extra freedom makes the number of free parameters actually 

rather larger than the number of unknown variables. 

In the case of La , the response function derived by regularized linear inversion 

has very small, and possibly negative, amplitude at zero lag, rising to a peak at 

around 8d. Beyond 16d the response amplitude is fairly small. In contrast, the 

maximum entropy solution peaks at zero, and falls smoothly to low levels beyond 

20d. 

The regularized inversion solution for CIII] 1909 is strikingly different from the 

maximum entropy solution. The new method finds a response amplitude which 

is large and negative at zero lag, but which rises sharply with increasing lag. It 

passes through zero around 4d, and peaks about lOd, where it rolls off gently. 

The maximum entropy solution for this same data was positive everywhere (by 

assumption), but had a clean peak between 20 and 30d. 

The response function found by regularized linear inversion for SilV 1400 qual-

itatively resembles that of CIII] 1909, but it is possible that an acceptable reduced 

χ2 is achieved not because the deviation from the observed light curve is small, but 

because the error bars are very large. A similar comment applies to the maximum 

entropy solution for this line. 

What are we to make of the lines for which no acceptable solution is found 

? This class is best exemplified by CIV 1549, the line with the best effective 

signal/noise of all the lines. The solution for this line produces a light curve which 

tracks the observed light curve fairly well up until its final positive excursion. At 

that point, while the line flux increases sharply, the continuum immediately before 

has only a weak maximum. Consequently, it is very hard for any time-steady linear 

response function with a width shorter than the interval between major continuum 

fluctuations to reproduce the line light curve. In the maximum entropy solution, 

this problem was cured by introducing significant response at a lag of 180d. Because 

the stretch of data constraining the solution at such large lags is relatively short, we 

cut off the linear inversion response function at a maximum lag of 80d. Thus, use 

of the linear inversion technique brings clearly into focus that the simplest model 
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of line response fails to explain a significant element in the light curve. Just what is 
needed to fix it is unclear. Possibly response at very large lag, as suggested by the 
maximum entropy solution, is the correct answer. Possibly the response function 
changes on a timescale shorter than the duration of the monitoring, as suggested by 
Netzer and Maoz (1990). Possibly the line is responding to a continuum component 
varying in a way which is not simply proportional to the near-UV continuum. At 
this stage we do not have enough guidance from the data to choose the correct 
explanation. 

6. Conclusions 

Much effort has been expended over a very long period of time to try to understand 

the physical conditions and location of the broad emission line gas in A G N . The 

basic idea of photoionization is amply confirmed, but many details remain to be 

worked out. 

The most active portion of this field at the moment is the application of vari-

ability monitoring techniques to the inference of the geometrical structure of the 

broad emission line region. A number of monitoring campaigns have generated 

very impressive data sets, but their interpretation is still problematic. The dra-

matic contrast between the response functions obtained by maximum entropy and 

regularized linear inversion, operating on identical data, demonstrates that even 

with these very large data sets, we are not in a position to unambiguously deter-

mine the response functions. In a sense, maximum entropy provides the "prettiest" 

possible solution, the one which is found by looking for that continuum light curve 

which, within the constraints of the measurement, allows the solution to very 

closely track the observed line light curve. On the other hand, regularized linear 

inversion, by only considering the "most likely" continuum light curves, presents 

the most conservative and stringent test of the simple time-steady linear response 

model . 

Homing in on the correct response function is not, of course, the end of our 

j o b . Even with that in hand, it will be necessary to construct photoionization 

models whose values of dFi/dFc averaged over the isodelay surfaces best match 

the response functions. Velocity-resolved reverberation mapping (as we hope to 

obtain from the recent HST campaign) will add another layer of complexity to the 

problem; however, if carried out successfully, it will also carry us to a much deeper 

level of understanding. In particular, it will only be with the conclusion of that 

program that we can answer some of the basic question raised at the beginning of 

this paper, such as the direction of flow within the broad line region. 
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