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Abstract

The general properties of lattice-perfect measures are discussed. The relationship between count-
able compactness and measure perfectness, and the relationship between lattice-measure tightness
and lattice-measure perfectness are investigated and several applications in topological measure
theory are given.
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Introduction

The present paper is devoted to lattice-perfect measures. It was motivated by
Sazonov's paper, "On perfect measures" [9]. The concept of perfect measure
was first denned in the book [5] by Gnedenko and Kolmogorov. This concept
has important applications in probability theory. A discussion of this fact is
given in Sazonov [9, Introduction, part 3].

In his paper, Sazonov discusses the general properties of perfect measures.
He also discusses the relationship between countable compactness and meas-
ure perfectness, and the relationship between measure tightness and measure
perfectness in topological spaces.

In the present paper, the definition of perfect measure, as given by Sazonov,
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170 P. D. Stratigos [2]

is generalized. This generalization involves two arbitrary lattices. (For this
reason, the generalized concept of perfect measure will be referred to as lattice-
perfect measure). As a result, generalizations of several results of Sazonov are
obtained.

More specifically, in Section 2, several 'carry over' properties of lattice-
measure perfectness are discovered. In Section 3, the relationship between
countable compactness and measure perfectness is investigated, without us-
ing the concept of characteristic function of a sequence of sets, as is done in
Sazonov's paper, but by using a direct approach, which is in the spirit of Alexan-
droff, namely, an approach which is based on an abstract Lusin-type theorem. In
Section 4, the relationship between lattice-measure tightness and lattice-measure
perfectness is investigated.

Several applications in topological measure theory are given throughout the
paper.

We note that the generalizations mentioned above are important for applica-
tions in probability theory, where one considers random functions (transform-
ations), rather than random variables. We will discuss such applications else-
where, in order to remain within the scope of the present paper.

1. Terminology and notation

The terminology and notation are fairly standard and are consistent with
those of Wallman [12], Alexandroff [1], Frolik [4], Nobeling [7], Bachman and
Sultan [2], as well as Szeto [10] and Grassi [6].

For the convenience of the reader, in this section we will present some of the
special terminology and notation which is used throughout the paper.

(a) Consider any set X and any lattice S£ on X.
We shall always assume, without loss of generality for our purposes, that

0, X e Jf.
Now, consider any topological space X and denote the class of open sets by

fy, the class of closed sets by &', and the class of zero sets by J". Note each of
the classes ^/, J?, 3fisa lattice of the prescribed type. Recall ^ is also referred
to as the topology on X and the topological space X is defined to be {X, W).
Thus (X, Jf) is a generalization of a topological space. For this reason, we shall
refer to (X, Jif) as a lattice space. In topological measure theory, it is convenient
to regard & as the topology on X and (X, &) as the topological space.

The definitions of the following concepts are found in [2]: J f is S, complement
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generated, separating, disjunctive, normal, countably compact; a subset of X is
_Sf -compact.

(b) A function / from X to R U {±00} is said to be Jzf -continuous if and only
if for every closed set C of R U {±00}, f~l{C) e _Sf. The set whose general
element is a function from X to R U {±00} which is Jf-continuous and bounded
is denoted by Cb{&).

The set whose general element is the intersection of an arbitrary subset of J£
is denoted by t_Sf. The algebra of subsets of X generated by Jf is denoted by
srf(S£). The a-algebra of subsets of X generated by ££ is denoted by a(^f) .
The class of subsets of X which is closed under the formation of countable
unions and intersections, contains _£?, and is minimal, is denoted by p(^f). The
class of subsets of X obtainable by the lattice-Souslin operations is denoted by

(c) Consider any algebra srf on X. A measure on &tf is defined to be a function
fi, from s/ to R, such that /x is finitely additive and bounded. (See [ 1, page 567]).
The set whose general element is a measure on srf(J£) is denoted by M {J£).
An element /x e M{J£) is said to be J§?-regular if and only if for every element
E e #/(Jif), for every positive number e, there exists an element L e .£? such
that L c E and \n{E) — /x(L)| < e. The set whose general element is an
element /x e M{J£) which is _£?-regular is denoted by MR(j£?). An element
/x e M(Jjf) is said to be ^f - (a-smooth) if and only if for every sequence in
£/(&), (An), if (An) is decreasing and limn An = 0, then limn ii(An) = 0. The
set whose general element is an element of Af (j£?) which is S£-{a -smooth) is
denoted by Ma(££). An element fi e M(3f) is said to be Jf -tight if and only if
ix e M" (jSf) and for every positive number e, there exists an Jf -compact set K
such that \(i\t(K') < €. The set whose general element is an element of M(JC)
which is ££-tight is denoted by M'(Jf).

££ is said to be strongly measure replete if and only if M^(Jf) = M'K{J£).

NOTE. Since every element of M(Jsf) is expressible as the difference of
nonnegative elements of M(^f), without loss of generality, we shall work with
nonnegative elements of

2. Lattice-perfect measures and some of their properties

In this section, the definition of perfect measure given by Sazonov is general-
ised, by introducing the concept of lattice-perfect measure. Several 'carry-over'
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properties of lattice-measure perfectness are discovered and applications are
given whenever an opportunity arises.

In his paper, Sazonov defines the concept of perfect measure as follows:
Consider any measure space {X, y , n) such that y is a a-algebra and /x is
finite. Sazonov calls /x perfect if and only if for every ^-measurable function
/ from X to R and for every subset E of R such that / " ' ( £ ) e y , there exists
a Borel set B of R, such that B c E and /i(f-l(B)) = >

OBSERVATION. Denote the class of R-closed sets by &'. Note & is a lattice
and the class of Borel sets of R is

This observation leads us to generalize Sazonov's concept of perfect measure
as follows: Consider any lattice space (X, 5^\) and any element of M"(Jf t ) .
The following statement is true: there exists a unique countably additive, finite
measure on cr(j£f i) which is an extension of /A. This measure is also denoted
by pi. Thus there exists a one-to-one correspondence between Ma{J£\) and the
set whose general element is a countably additive, finite measure on o
Further, consider any other lattice space {Y,

DEFINITION 2.1. An element /z G Ma{J£x) is (=£?i, .i?2)-perfect if and only
if for every (a(jSf i), a (-^2))-measurable function T from X to Y and for every
subset E of Y such that T~l(E) G O{&0, there exists an element B G
such that B C E and fz(T-l(B)) = ^

We note that this generalization is important for applications in probability
theory, where one considers random functions (transformations), rather than
random variables.

The following generalizes various results of Sazonov [9].

LEMMA 2.2. Consider the setting of Definition 2.1. An element \JL G

is (Jfu «5f2) -perfect if and only if the following condition is satisfied:
for every {o(J£{), cr(jSf2)} -measurablefunction T from X to Y, there exists

an element B G (r(Jf2) such that

(*) B c T(X) and

PROOF. Consider any element \i e Ma

(i) Assume \i is (j£?u Jz?2)-perfect. Consider any (o{J£x), a(-&?2))-measur-
able function T from X to 7. Then since (i is (j£?i, -£?2)-perfect, T{X) c 7 and

= X G <T(J^I), by the relevant definition, there exists an element
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B € <r(JSf2) such that B C T(X) and niT'^B)) = (A,(T-l(T(X))). Consider
any such B. Note [i(T~l(B)) = /z(X). Thus condition (*) is satisfied.

(ii) Assume condition (*) is satisfied. To show /x is (Jzf], .£?2)-perfect, use
the relevant definition, namely, consider any function T from X to Y such that
T is (<r(Jg?i). o-(^f2)>-measurable, and any subset £ of 7 such that T~l(E) G

and show there exists an element B e o(J£2) such that B c E and

Case I. T~l(E) = 0. Then let B = 0.
Case II. T~l(E) ^ 0. Then denote the general element of X by x and consider

any element yx of T(T~ ' (£)). Now, consider the function f determined by

HX)- V, i f x G

Note f is (ff(^fi), CT(Jf2))-rrieasurable. Then, since condition (*) is satisfied,
there exists an element B e a(^f2) such that B C f(X) and fi(f-l(B)) =
li(X). Consider any such B. Then B C £ and ^ l

Consequently ix is (J^fi, =Sf2) -perfect.

NOTE. Condition (*) is implied by the following condition:
For every (cr(j£?i), <r(J^f2))-measurable function T from X to Y, and for

every positive number e, there exists an element L2 e .£?2 such that

(**) L2 C T(X) and n(T~x(L2)) > /z(X) - e.

Next, consider the following: any lattice space (X, JSf i); any element n e
M"(Jif ]), and the measure space (X, <r(«5?[), /A); any subset X, of X, and the
function (/> on X\ fl <r(Jf i) determined by 0 (£ ) = inf{^i(A)|A G <r(-Sfi) and
A D £}. Then </> is a measure, referred to as the measure on Xx C\ o(J£x)
induced by [i, and denoted by fiX] •

THEOREM 2.3. Consider the setting described above, in conjunction with the
setting of Definition 2.1. If ix is (J/fu J?2)-perfect, Xx G a(^fi), and
contains a singleton, then fj,Xl is {Xt D J5f i, JC2)-perfect.

PROOF. Assume [i is {Jfi, ^f2)-perfect, Xx e cr(Jifi) and a{^2) contains a
singleton. To show /xXl is (X, flJSf j , _£?2)-perfect, use Lemma 2.2, namely, show
condition (*) is satisfied. Accordingly, consider any <Xi n a ( J f 0, a(^f2))-
measurable function Tx from Xi to Y and show there exists an element B\ G

such that B, C r,(X,) 1
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Denote the general element of X by x and consider any element w of Y
such that {w} e cr(Jz?2), using the assumption. Now, consider the function T
determined by

Ti(x) if* € X,,
T{x) - ' w if x e CX,.

Note T is (cr(^f i), a(^f2))-measurable. Hence since \x is <_Sf i, _£?2)-perfect,
by Lemma 2.2, there exists an element B e o{J£2) such that B C T(X) and
fx(T~x(B)) — /x(X). Consider any such B. Now, consider the subset of Y, Bu

determined by
B ifw € 7UX,),
B-{w} if ui e Cr,(X,).

Then B, e a(y2) and fl! C ^(XO and / ^ ( ^ " ' ( B O ) = /xX|(Xi). Con-
sequently ixXl is (X! n .

NOTE. The following statement is also true, with a similar proof: if /x is
(JS?i, JS?2)-perfect and Xi € a(JSfi) and for every (X, n a(JSfi),<r(JSf2)>-
measurable function 7̂  from X! to Y, Ti(Xi) e cr(^f2), then /xXl is (Xt n
&u&i) -perfect.

APPLICATION 2.4. Consider the following: any lattice space (X, J&fi), any
topological space (Y, ^2) such that &2 is T\, any element )Li e MCT(JSfi) such
that /x is (JSfi, ^2)-perfect, any element Xj e cr(J^fi), and the measure space
(X,, X! n a(.if 0, fiXl). Then, by Theorem 2.3, fiXl is (X! n JSf,, ^"2>-perfect.

THEOREM 2.5. Consider the following: any measurable space (X, y) such
that y is a a-algebra, any topological space {Y,^i), any element fi e
M"(y), the measure space (X, y , fx), and its completion (X, y , jx). As-
sume &2 is T\ and j£"2 satisfies the Second Axiom ofCountability. Then fx being

, ̂ 2)-perfect implies (x is {y, ^2)-perfect.

PROOF. Assume fx is (y, ^2)-perfect. To show pi is (y, ^2)-perfect, use
Lemma 2.2, namely, show condition (*) is satisfied. Accordingly, consider any
(y, a(^2))-measurable function T from X to Y, and show there exists an
element B € o(&2) such that B c T(X) and p,(f~l(B)) = (x(X).

Step I. Show there exists a function T from X to Y, which is (y, a{^2))
-measurable, such that T — T a.e. (pi).

Consider any countable base &\ for &2, using the assumption. Set &\ —
{Ek;k€N*}.
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Note that since f is (y, a(^2))-measurable, f x(Ek) e y for every k.
Hence there exists an element Sk e y , and an element Nk € ^ ( X ) such that
f'l(Ek) - Sk U NA, and there exists an element Wk € y such that fi(Wk) = 0
and Wk D Nk. Consider any such Sk, Nk,Wk.

Consider \Jk Wk. Note U^ Wk e J^. Set \Jk Wk = V. Denote the general
element of X by x and consider any element b of Y. Now, consider the function
T determined by

b if x e V,

Then 7 is a function from X to 7 which is {y, a(^2))-measurable and such
that T = f a.e. (A).

Step II. Note CV € y and CV C {*|r(jc) = f (x)} and fx{CV) = /x(X).
Set CV = X\ and consider the measure space (X\, X\ n y , fiXl)- Then, by
Theorem 2.3, /AX| is (Xi n y , ^"2)-perfect. Now, consider T\Xl. Note since T
is (y, a(^"2)>-measurableand X, e y , T\Xl is (X, n ^ , a{&2))-measurable.
Set 7 |x , = T,. Note since /iX, is (X, n y , Jr

2)-perfect, by Lemma 2.2, there
exists an element B e o{&2) such that B c ^(XO and / iX l ( rf ' (B)) =
Aix.(^i). Consider any such B. Then fi C f (X) and fi(f-l(B)) = /x(X).
Consequently /x is («£", ^2)-perfect.

NOTE. The statement that p, is (J^, <P2) -perfect implies /it is {y, &2) -perfect
is true, in general.

3. Countable compactness and measure perfectness

In this section, the relationship between countable compactness and measure
perfectness is investigated, without using the concept of characteristic function
of a sequence of sets, as is done in Sazonov's paper, but by using a direct
approach, which is in the spirit of Alexandroff, namely, an approach which is
based on an abstract Lusin-type theorem. Several applications are given.

LEMMA 3.1. Consider the following: any lattice space (X, JSf) such that J£
is 8; the vector space Cb(Jif), the sup norm on C/,(&), the norm derived metric
d on Cb(££), and the metric space (C6(JSf), d). Then {Cb(Sf), d) is complete.

A proof outline will be given for the convenience of the reader.
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Consider any Cauchy sequence </„) in Cb(^f), and show it is convergent,
that is, that there exists an element g € Cb(^f) such that limn /„ = g.

Denote the general element of X by x and consider (/„(*)). Note for every
x, (fn(x)) is Cauchy. Hence for every x, since R1 is complete, (/„(*)) is
convergent. Consider the function g which is such that Dg — X and for every
x, g(x) = limn /„(*). Show g € Cfe(J*?).

I. Show g 6 C(Jzf). For this, show the convergence of (/„(*)) to g(x) is
uniform and then use the assumption that J f is 8.

II. Show g is bounded. For this, use the fact that the convergence of (/„(*))
to g(x) is uniform.

LEMMA 3.2. Consider any lattice space (X, i f ) . Let fi e M"{S?). If jSf w
6 and /x € MR (if) , then for every a(Ji?) -measurable set E,for every aim-
measurable function f from E to R,for every positive number e, there exists an
element D e i f such that D C E, f\D e C6(Jzf) W /x(£ - D) < e.

PROOF. Assume i f is 5 and ^ e M^(^). Consider the measurable space
{X, cr(J^)) and the extension of/x to CT (if) . Denote the extension of/x to a (if)
by v. Note since ix{X) < +oo, v(X) < +oo and since /x is if-regular and S£
is 5, v is if-regular.

Further, consider any cr (if)-measurable set E, any a (if)-measurable func-
tion / from E to R, and any positive number e.

1. Since / e R£ and / is CT(if )-measurable, there exists a sequence {gn) in
R£ such that for every n, gn is simple and or ( i f )-measurable, and limn gn = / ,
pointwise. Consider any such (gn).

2. Since (a) v(E) < +oo, (b) / e R£, (c) / is CT ( if )-measurable, (d) for
every n, gn e R£, (e) gn is CT (if)-measurable, and (f) limn gn — f, pointwise,
by Egoroff's Theorem, there exists an element A e cr(if) such that A c E, the
convergence of (gn) to / is uniform on A, and v(E — A) < e/8 or, equivalently,
v(E) < v(A) + e/8. Consider any such A. Then since v is if-regular, there
exists an element B e ££ such that B c A and v(A) < v(B) + e/8.

Consider any such B. Thenv(£) < v(B) + e/4 or, equivalently, v(E — B) <
e/4. Setfi = Lo. ThusL0 € if, L c £, the convergence of (#„) to / i s uniform
on Lo, and v(£ — Lo) < e/4.

3. Observation. Consider any element h of R£, such that h is simple and
CT (if )-measurable. Then there exists an element L G ££ such that L C E,
h\L£ C6(JSf) and v(E - L) < e.

Now, use this observation on (gn); namely, note for every n, since gn e R£

and gn is simple and CT (if)-measurable, there exists an element Ln e if', such
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that Ln C E, gn\Ln G Cft(Jf) and v(E — Ln) < e/2"+1; consider any such Ln.
4. Consider | X = 0 Lm. Note since Jgf is 8 and (Lm) is in if, | X = 0

 Lm e if.
Set |X=o Lm = D. Then D C E, f\D e Cfc(JSf) and v(£ - D) < e.

Now, replace v by /i, as usual.

REMARK. This theorem is a generalization of Lusin's Theorem for locally
compact spaces.

THEOREM 3.3. Consider any lattice space (X, i f ) . If Jif is 8 and countably
compact, then every element ofM^iJ?) is perfect.

PROOF. Assume i f is 5 and countably compact. Consider any element /x of
M^(^C). To show n is perfect, use the relevant definition, namely, consider any
function / from X to R, such that / is cr (if)-measurable, and any subset E of
R, such that f~l(E) G cr(Jf); show there exists a Borel set B of R, such that
B c E and ii{f~x{B)) = /* ( / - ' (£ ) ) . Note that to show there exists a Borel set
B of R, such that B c E and ix{f~l{B)) = ix{f~l{E)), it suffices to show that
for every positive number e, there exists an R-closed set F such that F C E and
V-(f~l(F)) > M(/~'(£)) — £• Accordingly, consider any positive number c.

Now, use Lemma 3.2 as follows: consider / " ' (E). Further, consider / | / i ( £ )
and denote it by g. Note since / is a (if)-measurable and f~x{E) e cr(Jtf), g
is CT(if )-measurable.

Thus i f is 5, /x € M°(3f), / " ' ( £ ) is a CT (if)-measurable set, g is a CT ( im-
measurable function from f~x{E) to R, and e is a positive number. Then, by
Lemma 3.2, there exists an element D e ££ such that D c f~l(E), g\D e
C6(if) and n,{f~\E) - D) < e. Consider any such D. Then g(D) is
R-closed (since ^£ is countably compact), g(D) c E and

— e. Consequently /̂  is perfect.

NOTE. If i f is countably compact, then MR(J>f) = M^(^f). Consequently
if i f is 5 and countably compact, then every element of MR(Jif) is perfect.

APPLICATION 3.4. Consider any lattice space (X, i f ) . Denote the class of if-
compact sets by J^. Assume J(f C /if'. (Note if i f is (separating, disjunctive,
and normal) or T2, then X c t&). Consider X U {X} and denote it by Jf7.
Note that J$? is a lattice, and that J f is 8 and countably compact. Hence, by
Theorem 3.3, every element of MR(Jff) is perfect.
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APPLICATION 3.5. Consider any topological space X which is T2, locally
compact, o -compact, and satisfies the Second Axiom of Countability. Now,
consider any element of M" ( ^ ) , that is, any Borel measure n of X. Denote the
class of ^"-compact sets by Jf and the class of those elements of J(f which are
Gs, s by JT0. Set X U {X} = Jt7. Note since X is T2, J f C ? . Furthermore,
since X satisfies the Second Axiom of Countability, J ^ = JT0. Consequently
Jt? - XGVJ{X}. Now, consider/i|X(^) and denote it by v. Thusv e Ma(Jtf).
Note that Jtf is 8, and since X is a-compact, a(Jf) = p(Jff). Consequently
v e M^(J^). Then, by Theorem 3.3, v is perfect.

APPLICATION 3.6. Consider any topological space X such that X is countably
compact, and let „£? = &. Then, by Theorem 3.3, every element of MR(^"),
that is, every regular, finite, Borel measure of X is perfect.

APPLICATION 3.7. Consider any topological space X such that X is T3i and
pseudocompact, and let J f = 2?. Note 2? is S and countably compact. Further,
note since 2T is S and o{2f) = p(2T), Ma{2?) C M^(3T). Then, by The-
orem 3.3, every element of Ma(3f), that is, every finite Baire measure of X is
perfect.

4. Lattice-measure tightness and lattice-measure perfectness

In this section, the relationship between lattice-measure tightness and lattice-
measure perfectness is investigated and applications are given whenever an
opportunity arises.

The following theorem extends a result of Sazonov on topological spaces [9]
to lattice spaces.

THEOREM 4.1. Consider any lattice space (X, _5f>. Let ix e MCT(JSf). {Note
if ix e Afi(Jgf), then p € M£ (.$?)). 7/jSf is 8 and \i e itf£(J&?), rte/i M w

PROOF. Assume J&f is 5 and /x G M£(j£f). To show /A is perfect, use
(Lemma 2.2, Note), namely, show condition (**) is satisfied. Accordingly,
consider any a (Jif) -measurable function / from X to R, and any positive num-
ber €, and show there exists an R-closed set F, such that F c f{X) and
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(a) Note since 3? is S, IL € M£ (_£?), X is a a(_£?)-measurable set, / is
a cr (Jz?) -measurable function from X to R, and e is a positive number, by
Lemma 3.2, there exists an element D e «£? such that D c X, / | D e Cft(if)
and /z(X — D) < e/2. Consider any such D.

(/?) Note since \i e M'(^f) and e is a positive number, by the relevant
definition, there exists an ^f-compact set K such that /x*(X — K) < e/2.
Consider any such # .

(y) Consider K f) D. Then /(/(T D D) is R-closed, f{K n D) C / (X) and
fx{f~x{f{K D D))) > n(X) — e. Consequently yu. is perfect.

COROLLARY 4.2. Consider any lattice space (X, Jjf). Let \i G Ma(^f). If
_£f w 5 a«i/ strongly measure replete, then /x e M£ (^f) implies fi is perfect.

PROOF. Assume ££ is S and strongly measure replete. Now, assume \x e
MR (-£f). Note that since Ĵ f is strongly measure replete, by definition, M£ (jgf) c
Af^(if). Consequently /* e Af^(Jgf). Thus Jgf is 5 and ^ e Af^(JSf). Hence, by
Theorem 4.1, /x is perfect.

APPLICATION 4.3. Consider any topological space X which is T2, locally
compact, and Lindelof. Since X is T2, locally compact, and LindeloT, & is
strongly measure replete [3]. Then, by Corollary 4.2, every element of M£ (J^),
that is, every regular, finite, Borel measure of X, is perfect.

APPLICATION 4.4. Consider any topological space X which is complete, sep-
arable, and metrizable. Since X is metrizable, Ma(^) = M^{&), and since X
is complete, separable, and metrizable, & is strongly measure replete [8]. Then,
by Corollary 4.2, every element of MCT(j£"), that is, every finite Borel measure
of X, is perfect.

APPLICATION 4.5. Consider the topological space (R, &) where & is the
usual topology. Note that the topological space R is complete, separable and
metrizable. Hence, by Application 4.4, every finite Borel measure of R is
perfect.

Next, the question of when lattice-measure perfectness implies lattice-meas-
ure tightness is investigated.

LEMMA 4.6. Consider any set X and denote its general element by x. Fur-
thermore, consider any sequence (£„) in £*(X), and its characteristic function
h [11]. Finally, consider the class of Borel sets ofR and denote it by £$. Then
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(ii) h is one-to-one if and only if for every two values X\, x2 of x, such that
X\ ^ x2, there exists a value m ofn, such that X\ e Em andx2 & Em, or X\ g Em

andx2 S Em.

REMARK. This fact is known [11].

LEMMA 4.7. Consider the following: any topological space X which is T\
and satisfies the Second Axiom of Countability, any countable base for X, and
the characteristic function hof{Un). Then h is one-to-one (or, equivalently, h~]

is a function) and h~l is continuous.

(Proof omitted).

LEMMA 4.8. Consider the setting of the definition of lattice-perfect measure.
Let ix e Ma(^fi). IfJz?2 is complement generated (or _Sf2 is 8 and cr(JC2) c
sijeii), then \JL is {&u &2)-perfect if and only if for every (cr(JSf,), a (2 im-
measurable function T from X to Y.for every subset EofY, such that T~X(E) €
o (££{), and for every positive number e, there exists an element L2 e S£2 such
thatL2 c EandfiT-\L2) > ixT~l(E)-€.

(Proof omitted).

THEOREM 4.9. Consider any topological space (X, &x) and the topological
space {R, &2) where &2 is the usual topology. If &\ is T\ and &\ satisfies
the Second Axiom of Countability, then for every element /JL e Ma(^{), if fi is
(J^"i, &2)-perfect, then \x is ^\-tight.

PROOF. Assume & \ is T\ and &\ satisfies the Second Axiom of Countab-
ility. Now, consider the following: any countable base &* for &\, using
the assumption; the characteristic function h of &*, h(X), and h(X) n &2\
any element ix e Ma(^x) such that /x is {&u ^"2)-perfect. To show \i is
&x -tight, use the relevant definition, namely, consider any positive number e
and show there exists an ^-compact set Kx such that /z*(X — Kx) < e or,
equivalently, n*(Ki) > n(X) — e. Note that since [i is (&i, J^-perfect and
&2 is complement generated (or a(^2) c s(^2)), by Lemma 4.8, for every
(cr(^"i), a{&2))-measurable function T from X to R, and for every subset E
of R, such that T~X(E) e o(&{), there exists an element F2 e &2 such that
F2 c E and fi(T-l(F2)) > ^T'^E)) - e. Now, by Lemma 4.6, part (i), h is
(cr(^i), a(&i))-measurable. Consequently there exists an element F2 e &2
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such that F2 c h(X) and ̂ {h~\F2)) > ii(h~x {h{X))) - e(= ^(X) - e). Con-
sider any such F2. Note that since F2 c h(X) c [0, 1], F2 is ^-compact.
Consequently F2 is /?(X) n .^-compact. Furthermore, since &'\ is Tx and Ĵ "i
satisfies the Second Axiom of Countability, h~x is a function and h~l is con-
tinuous (Lemma 4.7). Consequently h~\F2) is ^-compact. Thus h~\F2) is
^"[-compact and ix{h~l{F2)) > fx(X) — e. Hence ju. is ^"rtight.

Theorems 4.1 and 4.9 yield the following.

COROLLARY 4.10. lf&\ is Tx and&x is complement generated or o (^ x) c
s (J? i), and & x satisfies the Second Axiom ofCountability, then for every element
(A e Ma{^x), /x e M'R(^X) if and only if/x is {&x, ^2)-perfect, that is, a finite
Bore I measure ofX is tight if and only if it is perfect.

REMARK. Sazonov calls a regular tight measure dense.

Corollary 4.10 is a generalization of [9, page 250, Theorem 11].
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