LATTICE DILATIONS OF POSITIVE CONTRACTIONS ON L^{p}-SPACES

BY
RAINER NAGEL AND GÜNTHER PALM

Abstract

In the spirit of our previous paper (Math. Z. 156, 265-277 (1977)) we present a functional analytic proof of the following result of M. A. Akcoglu: Every positive contraction on a reflexive L^{p}-space has a lattice dilation.

M. A. Akcoglu developed a useful but very complicated dilation theory for positive contractions on L^{p}-spaces (see [2], [3], [4]). For L^{1}-spaces we presented a simple dilation [5] which can be said to be canonical in a certain sense. In this note we show that the same ideas, adequately modified, yield a dilation for all L^{p}-spaces, $1 \leq p<\infty$. This is of some importance for applications to individual ergodic theorems (see [1]).

Theorem. Every positive contraction $T \in \mathscr{L}(E), E$ a reflexive L^{p}-space with weak order unit, has a lattice dilation \hat{T} on an L^{p}-space \hat{E}. More precisely:

There exists a finite measure space $(\hat{X}, \hat{\mu})$, a Banach lattice isomorphism $\hat{T} \in \mathscr{L}(\hat{E}), \hat{E}=L^{p}(\hat{X}, \hat{\mu})$, an isometric lattice injection $\hat{I}: E \rightarrow \hat{E}$, and a positive contraction $\hat{Q}: \hat{E} \rightarrow E$, such that

commutes for every $n=0,1,2, \ldots$.
Proof. By the ultra power technique as developed in [4] it suffices to prove the theorem for finite dimensional E. But for a finite dimensional L^{p}-space E, it is known that there exist weak order units $0 \ll u \in E$ and $0 \ll v \in E^{\prime}$, such that $T u \leq v^{q-1}$ and $T^{\prime} v \leq u^{p-1}$ (by [4], Theorem 2.5 there is a $u \gg 0$, such that $T^{\prime}(T u)^{p-1} \leq u^{p-1}$; take $v_{1}:=(T u)^{p-1}$ and $v:=v_{1}+v_{2} \gg 0$, where $\left.v_{2} \perp v_{1}\right)$.

Therefore the lattice dilation can be obtained as a composition (see [5], 1, remark 1) of the positive dilation in Lemma 1 and the lattice dilation in Lemma 2 (for the terminology, see [5], 1.1).

Lemma 1. Let T be a positive contraction on $E=L^{p}(X, \mu)$ for $\mu(X)<\infty$ and $1<p<\infty$. Assume that there exist weak order units $0 \ll u \in E$ and $0 \ll v \in E^{\prime}$ such that $T u \leq v^{q-1}$ and $T^{\prime} v \leq u^{p-1}$. Then (E, T) has a positive dilation ($\left.L^{p}(\hat{X}, \hat{\mu}), \hat{T}\right)$ satisfying $T^{\prime} \hat{v}=\hat{u}^{p-1}$ and $\hat{T}^{\prime} \hat{\imath}=\hat{v}^{p-1}$ for some weak order units $0 \ll \hat{u} \in L^{p}(\hat{X}, \hat{\mu})$ and $0 \ll \hat{v} \in L^{q}(\hat{X}, \hat{\mu})$.

Proof. Choose $\hat{X}:=X \cup\{y, z\}$ and $\hat{\mu}:=\mu+\alpha \delta_{y}+\beta \delta_{z}$ where

$$
\alpha:=\left\langle u, u^{p-1}-T^{\prime} v\right\rangle \quad \text { and } \quad \beta:=\left\langle v^{q-1}-T u, v\right\rangle .
$$

We identify $E=L^{p}(X, \mu)$ canonically with a projection band in $\hat{E}=L^{p}(\hat{X}, \hat{\mu})$ and take \hat{I} and \hat{Q} to be the corresponding injection resp. projection. Finally, if we define \hat{T} by

$$
\hat{T}:=T+\left(2^{1 / p} \beta\right)^{-1} 1_{z} \otimes\left(v^{q-1}-T u+1_{z}\right)+\left(2^{1 / q} \alpha\right)^{-1}\left(u^{p-1}-T^{\prime} v+1_{y}\right) \otimes \mathbb{1}_{y}
$$

we obtain a positive dilation of T satisfying the assertion for

$$
\hat{u}:=u+1_{y}+2^{1 / p} \hat{1}_{z} \quad \text { and } \quad \hat{v}:=v+2^{1 / a} 1_{y}+1_{z} .
$$

Lemma 2. Let T be a positive contraction on $E=L^{p}(X, \mu)$ satisfying $T u=$ v^{q-1} and $T^{\prime} v=u^{p-1}$ for some weak order units $0 \ll u \in E$ and $0 \ll v \in E^{\prime}$. Then (E, T) has a lattice dilation $\left(L^{p}(\hat{X}, \hat{\mu}), \hat{T}\right)$.

Proof. We assume $u=1$ and define operators

$$
S_{+}, S_{-}: L^{\infty}(\mu) \rightarrow L^{\infty}(\mu)
$$

by

$$
S_{+} f:=(T \mathfrak{1})^{-1} \cdot T f \quad \text { and } \quad S_{-} f:=T^{\prime}(v f)
$$

As in [5] and particularly by lemma 2.1 we obtain a positive linear operator

$$
\hat{Q}_{0}: C\left(X^{\mathbb{Z}}\right) \rightarrow L^{\infty}(X, \mu)
$$

by extending continuously the mapping

$$
\left.\left.\bigotimes_{-n}^{n} f_{i} \mapsto S_{-}\left(f_{-1} S_{-}\left(f_{-2} \ldots S_{-} f_{-n}\right) \ldots\right)\right) f_{0} S_{+}\left(f_{1} S_{+}\left(f_{2} \ldots S_{+} f_{n}\right) \ldots\right)\right)
$$

for $f_{i} \in C(X)$. If we define

$$
\hat{\mu}:=\mu \circ \hat{Q}_{0}
$$

we obtain a Radon measure on $\hat{X}:=X^{\mathbb{Z}}$ and may extend \hat{Q}_{0} to a positive contraction from $L^{1}(\hat{X}, \hat{\mu})$ into $L^{1}(X, \mu)$. By the Riesz convexity theorem, its restriction

$$
\hat{Q}: L^{\mathrm{p}}(\hat{X}, \hat{\mu}) \rightarrow L^{\mathrm{p}}(X, \mu)
$$

is also a positive contraction.
Applying similar arguments to the canonical injection into the 0th coordinate
(see [5], 2.ii)

$$
\hat{I}_{0}: C(X) \rightarrow C(\hat{X})
$$

we obtain an isometric lattice injection

$$
\hat{I}: L^{p}(X, \mu) \rightarrow L^{p}(\hat{X}, \hat{\mu})
$$

satisfying $\hat{Q}^{\prime}=\hat{I}$ (compare [5], 3.iii).
Next we consider the lattice isomorphism on $C(\hat{X})$ induced by the right shift τ on \hat{X} (see [5], 2.iii). For this operator and for $\hat{f}:=\bigotimes_{-n}^{n} f_{j} \in C(\hat{X})$ we have

$$
\begin{aligned}
\int \hat{f} \circ \tau d \hat{\mu} & =\int S_{-}\left(f_{0} S_{-}\left(f_{-1} \ldots\right)\right) f_{1} S_{+}\left(f_{2} S_{+}\left(f_{3} \ldots\right)\right) d \mu \\
& =\int v f_{0} S_{-}\left(f_{-1} \ldots\right) T\left(f_{1} S_{+}\left(f_{2} \ldots\right)\right) d \mu \\
& =\int S_{-}\left(f_{-1} \ldots\right) f_{0} S_{+}\left(f_{1} S_{+}\left(f_{2} \ldots\right)\right) v^{a} d \mu \\
& =\int \hat{Q} \hat{f} \cdot v^{a} d \mu=\int \hat{f} \cdot \hat{I} v^{a} d \hat{\mu}
\end{aligned}
$$

hence τ can be used to define a Banach lattice isomorphism

$$
\hat{T}: L^{p}(\hat{X}, \hat{\mu}) \rightarrow L^{p}(\hat{X}, \hat{\mu})
$$

namely

$$
\hat{T} \hat{f}:=\hat{I} v^{a-1} \cdot f \circ \tau^{-1}
$$

We have

$$
\int|\hat{f} \hat{f}|^{p} d \hat{\mu}=\int\left|\hat{I} v^{a-1} \cdot \hat{f} \circ \tau^{-1}\right|^{p} d \hat{\mu}=\int \hat{I} v^{q} \cdot|f|^{p} \circ \tau^{-1} d \hat{\mu}=\int|\hat{f}|^{p} d \hat{\mu} .
$$

It remains to show that \hat{T} is a dilation of T, i.e. that $\hat{Q} \hat{T}^{n} \hat{I}=T^{n}$ for $n=$ $0,1,2 \ldots$ Observe first that

$$
\hat{T}^{n} \hat{I} f=v_{(0)}^{q-1} \otimes \cdots \otimes v_{(n-1)}^{q-1} \otimes f_{(n)} \text { for } f \in L^{p}(X, \mu)
$$

therefore we have

$$
\begin{aligned}
\left\langle\hat{Q} \hat{T}^{n} \hat{I} f, g\right\rangle & =\left\langle\hat{T}^{n} \hat{I} f, \hat{Q}^{\prime} g\right\rangle \\
& =\int v_{(0)}^{a-1} \otimes \cdots \otimes v_{(n-1)}^{a-1} \otimes f_{(n)} \cdot \hat{I} g d \hat{\mu} \\
& =\int \hat{Q}\left(v_{(0)}^{a-1} \otimes \cdots \otimes v_{(n-1)}^{q-1} \otimes f_{(n)}\right) g d \mu \\
& =\left\langle T^{n} f, g\right\rangle \quad \text { for every } \quad n \geq 0 \quad \text { and } \quad f, g \in L^{p}(X, \mu) .
\end{aligned}
$$

Remark. For the proof of Akcoglu's individual ergodic theorem [1], the dilation for the finite dimensional case is sufficient.

References

1. M. A. Akcoglu, A pointwise ergodic theorem in L^{p}-spaces. Canadian J. Math. 27, (1975), 1075-1082.
2. M. A. Akcoglu, Positive contractions of L^{1}-spaces. Math. Z. 143, (1975), 5-13.
3. M. A. Akcoglu and P. E. Kopp, Construction of dilations of positive L^{p}-contractions. Math. Z. 155, (1977), 119-127.
4. M. A. Akcoglu and L. Sucheston, Dilations of positive contractions on L^{p}-spaces. Canadian Math. Bull. 20, (1977), 285-292.
5. M. Kern, R. Nagel and G. Palm, Dilations of positive operators: construction and ergodic theory. Math. Z. 156, (1977), 265-277.
6. H. H. Schaefer, Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974.

Mathematisches Institut der Universität
Auf der Morgenstelle 10
7400 TÜbingen
Max-Planck-Institut für biologische Kybernetik
Spemannstr. 38
7400 Tübingen

