Appendix C

Fermionic coherent states

In this appendix we derive the field representation for fermion operators. In the Bose case the field representation was just the coordinate representation which is also much used in quantum mechanics. For Fermi operators the analog leads to the so-called Grassmann variables. This means that the Fermi operator fields $\hat{\psi}(x)$ will be represented by 'numbers' $\psi(x)$, which have to be anticommuting. As this might not be so familiar, we shall first describe how this works.

Consider the quantum Fermi operators satisfying the commutation relations

$$
\begin{equation*}
\left\{\hat{a}_{k}, \hat{a}_{l}\right\}=0, \quad\left\{\hat{a}_{k}^{\dagger}, \hat{a}_{l}^{\dagger}\right\}=0, \quad\left\{\hat{a}_{k}, \hat{a}_{l}^{\dagger}\right\}=\delta_{k l} \tag{C.1}
\end{equation*}
$$

where $\{A, B\}=A B+B A$. In the following we shall consider a finite number n of such operators, $k=1,2, \ldots, n$. (In the continuum limit of a fermionic lattice field theory $n \rightarrow \infty$.) It is sometimes convenient to use the $2 n$ equivalent Hermitian operators

$$
\begin{equation*}
\hat{a}_{k}^{1}=\left(\hat{a}_{k}+\hat{a}_{k}^{\dagger}\right) / \sqrt{2}, \hat{a}_{k}^{2}=\left(\hat{a}_{k}-\hat{a}_{k}^{\dagger}\right) / i \sqrt{2} \tag{C.2}
\end{equation*}
$$

with the commutation relations

$$
\begin{equation*}
\left\{\hat{a}_{k}^{p}, \hat{a}_{l}^{q}\right\}=\delta_{p q} \delta_{k l}, \quad p, q=1,2 . \tag{C.3}
\end{equation*}
$$

The non-Hermitian operators are used more often.
It is clarifying to look at a representation in Hilbert space. For $n=1$ we have the 'no-quantum state' $|0\rangle$ which is by definition the eigenstate of \hat{a} with eigenvalue $0, \hat{a}|0\rangle=0$, and the one-quantum state $|1\rangle$ obtained from $|0\rangle$ by the application of $\hat{a}^{\dagger},|1\rangle=\hat{a}^{\dagger}|0\rangle$. Further application of \hat{a}^{\dagger} on $|0\rangle$ gives zero, since $\left(\hat{a}^{\dagger}\right)^{2}=0$ because of (C.1) (note that $|1\rangle$ is the 'no-quantum state' for \hat{a}^{\dagger}). So a pair of Fermi operators ($\hat{a}, \hat{a}^{\dagger}$) can be
represented in a simple two-dimensional Hilbert space,

$$
|0\rangle \rightarrow\binom{0}{1},|1\rangle \rightarrow\binom{1}{0}, \hat{a} \rightarrow\left(\begin{array}{ll}
0 & 0 \tag{C.4}\\
1 & 0
\end{array}\right), \hat{a}^{\dagger} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

For $n>1$ we can take a tensor product of these representations. A basis in Hilbert space is provided by

$$
\begin{equation*}
\left|k_{1} \cdots k_{p}\right\rangle=\hat{a}_{k_{1}}^{\dagger} \cdots \hat{a}_{k_{p}}^{\dagger}|0\rangle, \quad p=1, \ldots, n \tag{C.5}
\end{equation*}
$$

with the properties

$$
\begin{gather*}
\sum_{p=0}^{n} \frac{1}{p!} \sum_{k_{1} \cdots k_{p}}\left|k_{1} \cdots k_{p}\right\rangle\left\langle k_{1} \cdots k_{p}\right|=1, \tag{C.6}\\
\left\langle k_{1} \cdots k_{p} \mid l_{1} \cdots l_{q}\right\rangle=\delta_{p q} \delta_{l_{1} \cdots l_{q}}^{k_{1} \cdots k_{p}}, \tag{C.7}
\end{gather*}
$$

where

$$
\begin{equation*}
\delta_{l_{1} \cdots l_{q}}^{k_{1} \cdots k_{p}}=\sum_{\operatorname{perm} \pi}(-1)^{\pi} \delta_{\pi l_{1}}^{k_{1}} \cdots \delta_{\pi l_{p}}^{k_{p}} . \tag{C.8}
\end{equation*}
$$

An arbitrary state $|\psi\rangle$ can be written as \dagger

$$
\begin{gather*}
|\psi\rangle=\psi\left(\hat{a}^{\dagger}\right)|0\rangle, \tag{C.9}\\
\psi\left(\hat{a}^{\dagger}\right)=\sum_{p=0}^{n} \frac{1}{p!} \psi_{k_{1} \cdots k_{p}} \hat{a}_{k_{1}}^{\dagger} \cdots \hat{a}_{k_{p}}^{\dagger}, \tag{C.10}
\end{gather*}
$$

where $\psi_{k_{1} \cdots k_{p}}$ is totally antisymmetric in $k_{1} \cdots k_{p}$, and we sum over repeated indices unless indicated otherwise. An arbitrary operator \hat{A} can be written as

$$
\begin{equation*}
\hat{A}=\sum_{p q} \frac{1}{p!q!} A_{k_{1} \cdots k_{p}, l_{1} \cdots l_{q}} \hat{a}_{k_{1}}^{\dagger} \cdots \hat{a}_{k_{p}}^{\dagger} \hat{a}_{l_{q}} \cdots \hat{a}_{l_{1}} \tag{C.11}
\end{equation*}
$$

where all creation operators are ordered to the left of all annihilation operators. This is called the normal ordered form of \hat{A}. A familiar example is the number operator

$$
\begin{equation*}
\hat{N}=\hat{a}_{k}^{\dagger} \hat{a}_{k} \tag{C.12}
\end{equation*}
$$

which has eigenvectors $\left|k_{1} \cdots k_{p}\right\rangle$ with eigenvalue p. Note that $A_{k_{1} \cdots k_{p}, l_{1} \cdots l_{q}}$ is in general not equal to $\left\langle k_{1} \cdots k_{p}\right| \hat{A}\left|l_{1} \cdots l_{q}\right\rangle$. Note also that the coefficients $A_{k_{1} \cdots k_{p}, l_{1} \cdots l_{q}}$ may themselves be elements of a
\dagger Recall that repeated indices are summed, i.e. $\psi_{k_{1} \cdots k_{p}} \hat{a}_{k_{1}}^{\dagger} \cdots \hat{a}_{k_{p}}^{\dagger}=$ $\sum_{k_{1}=1}^{n} \cdots \sum_{k_{p}=1}^{n} \psi_{k_{1} \cdots k_{p}} \hat{a}_{k_{1}}^{\dagger} \cdots \hat{a}_{k_{p}}^{\dagger}$.

Grassmann algebra, e.g. $\hat{A}=c_{k}^{+} \hat{a}_{k}+\hat{a}_{k}^{\dagger} c_{k}$, with anticommuting c and c^{+}.

Suppose now that there are eigenstates $|a\rangle$ of the \hat{a}_{k} with eigenvalue a_{k}. Then it follows that the a_{k} have to be anticommuting:

$$
\begin{equation*}
a_{k} a_{l}=-a_{l} a_{k} . \tag{C.13}
\end{equation*}
$$

To see this, assume

$$
\begin{equation*}
\hat{a}_{k} a_{l}=\epsilon a_{l} \hat{a}_{k}, \tag{C.14}
\end{equation*}
$$

with ϵ some number $\neq 0$. Then

$$
\begin{align*}
\hat{a}_{k} \hat{a}_{l}|a\rangle=\hat{a}_{k} a_{l}|a\rangle & =\epsilon a_{l} \hat{a}_{k}|a\rangle=\epsilon a_{l} a_{k}|a\rangle \\
& =-\hat{a}_{l} \hat{a}_{k}|a\rangle=-\epsilon a_{k} a_{l}|a\rangle . \tag{C.15}
\end{align*}
$$

Hence (C.13) has to hold. The a_{k} cannot be ordinary numbers. Assuming $a_{k}|a\rangle=+|a\rangle a_{k}$ leads to

$$
\begin{align*}
\hat{a}_{k} a_{l}|a\rangle=\hat{a}_{k}|a\rangle a_{l} & =a_{k}|a\rangle a_{l}=a_{k} a_{l}|a\rangle \\
& =\epsilon a_{l} \hat{a}_{k}|a\rangle=\epsilon a_{l} a_{k}|a\rangle \tag{C.16}
\end{align*}
$$

and it follows that

$$
\begin{equation*}
\epsilon=-1 \tag{C.17}
\end{equation*}
$$

So the 'numbers' a_{k} have to anticommute with the fermionic operators as well.

We also introduce independent conjugate anticommuting a_{k}^{+}, assume these to anticommute with the a_{k} and the Fermi operators, and impose the usual rules of Hermitian conjugation,

$$
\begin{gather*}
\hat{a}_{k} \xrightarrow{\dagger} \hat{a}_{k}^{\dagger}, \quad a_{k} \xrightarrow{\dagger} a_{k}^{+}, \quad|a\rangle \xrightarrow{\dagger}\langle a|, \quad\langle a| \hat{a}_{k}^{\dagger}=\langle a| a_{k}^{+}, \tag{C.18}\\
a_{k} a_{l} \xrightarrow{\dagger} a_{l}^{+} a_{k}^{+}, \quad\left\{a_{k}^{+}, a_{l}^{+}\right\}=0 . \tag{C.19}
\end{gather*}
$$

The anticommuting a_{k}^{+}are on the same footing as the a_{k}.
The a_{k} and a_{k}^{+}together with the unit element 1 generate a Grassmann algebra. An arbitrary element f of this algebra has the form

$$
\begin{align*}
f\left(a^{+}, a\right)= & f_{0,0}+f_{k, 0} a_{k}^{+}+f_{0, l} a_{l}+\frac{1}{2!} f_{k_{1} k_{2}, 0} a_{k_{1}}^{+} a_{k_{2}}^{+} \\
& +f_{k, l} a_{k}^{+} a_{l}+\cdots+f_{1 \cdots n, 1 \cdots n} a_{1}^{+} \cdots a_{n}^{+} a_{n} \cdots a_{1} \tag{C.20}
\end{align*}
$$

where the f 's are complex numbers.

We have extended Hilbert space into a vector space over the elements of a Grassmann algebra. The a_{k} and a_{k}^{+}are called Grassmann variables and $f\left(a^{+}, a\right)$ is called a function of the Grassmann variables. This nomenclature could be somewhat misleading - the generators a_{k} and a_{k}^{+} are fixed objects and it is only the indices ' k ' and ' + ' that vary. However, we will also be using other generators $b_{k}, b_{k}^{+}, c_{k}, \ldots$, and so effectively we draw elements from a Grassmann algebra with an infinite number of generators. It is straightforward to construct a matrix representation of these generators, but this does not seem to be useful because the rules above are sufficient for our derivations.

We now express the $|a\rangle$ in terms of the basis vectors (C.5). The state $|a\rangle$ is given by

$$
\begin{equation*}
|a\rangle=e^{-a_{k} \hat{a}_{k}^{\dagger}}|0\rangle \tag{C.21}
\end{equation*}
$$

Indeed, since $\left(a_{k}\right)^{2}=0$,

$$
\begin{equation*}
e^{-a_{k} \hat{a}_{k}^{\dagger}}=\prod_{k} e^{-a_{k} \hat{a}_{k}^{\dagger}}=\prod_{k}\left(1-a_{k} \hat{a}_{k}^{\dagger}\right) \tag{C.22}
\end{equation*}
$$

and using $\hat{a}_{k}\left(1-a_{k} \hat{a}_{k}^{\dagger}\right)|0\rangle=a_{k} \hat{a}_{k} \hat{a}_{k}^{\dagger}|0\rangle=a_{k}|0\rangle$ (no summation over k) gives

$$
\begin{align*}
\hat{a}_{k}|a\rangle & =\left[\prod_{l \neq k}\left(1-a_{l} \hat{a}_{l}^{\dagger}\right)\right] \hat{a}_{k}\left(1-a_{k} \hat{a}_{k}^{\dagger}\right)|0\rangle=\left[\prod_{l \neq k}\left(1-a_{l} \hat{a}_{l}^{\dagger}\right)\right] a_{k}|0\rangle \\
& =a_{k}|a\rangle \tag{C.23}
\end{align*}
$$

Note that a_{k} commutes with pairs of fermion objects, e.g. $\left[a_{k}, a_{l} \hat{a}_{m}^{\dagger}\right]=0$. Two states $|a\rangle$ and $|b\rangle$ have the inner product

$$
\begin{align*}
\langle a \mid b\rangle & =\langle 0|\left(1-\hat{a}_{1} a_{1}^{+}\right) \cdots\left(1-\hat{a}_{n} a_{n}^{+}\right)\left(1-b_{n} \hat{a}_{n}^{\dagger}\right) \cdots\left(1-b_{1} \hat{a}_{1}^{\dagger}\right)|0\rangle \\
& =\prod_{k}\left(1+a_{k}^{+} b_{k}\right) \\
& =e^{a^{+} b} \tag{C.24}
\end{align*}
$$

where

$$
\begin{equation*}
a^{+} b \equiv a_{k}^{+} b_{k} . \tag{C.25}
\end{equation*}
$$

We would like a completeness relation of the form

$$
\begin{equation*}
\hat{1}=\int d a^{+} d a \frac{|a\rangle\langle a|}{\langle a \mid a\rangle} \tag{C.26}
\end{equation*}
$$

For $n=1$ this relation reads

$$
\begin{align*}
& \hat{1}=|0\rangle\langle 0|+\hat{a}^{\dagger}|0\rangle\langle 0| \hat{a} \\
&= \int d a^{+} d a\left(1-a^{+} a\right)\left(1-a \hat{a}^{\dagger}\right)|0\rangle\langle 0|\left(1-\hat{a} a^{+}\right) \\
&=\int d a^{+} d a\left[\left(1-a^{+} a\right)|0\rangle\langle 0|-a \hat{a}^{\dagger}|0\rangle\langle 0|\right. \\
&\left.\quad+a^{+}|0\rangle\langle 0| \hat{a}+a a^{+} \hat{a}^{\dagger}|0\rangle\langle 0| \hat{a}\right], \tag{C.27}
\end{align*}
$$

which is satisfied if we define the Berezin 'integral':

$$
\begin{equation*}
\int d a=0, \quad \int d a^{+}=0, \quad \int d a a=1, \quad \int d a^{+} a^{+}=1 \tag{C.28}
\end{equation*}
$$

where $d a$ and $d a^{+}$are taken anticommuting. For general n we define

$$
\begin{gather*}
d a=d a_{1} \cdots d a_{n}, \quad d a^{+}=d a_{n}^{+} \cdots d a_{1}^{+} \tag{C.29}\\
\int d a_{k}=0, \quad \int d a_{k} a_{k}=1, \int d a_{k}^{+}=0, \quad \int d a_{k}^{+} a_{k}^{+}=1 \tag{С.30}
\end{gather*}
$$

(no summation over k; anticommuting $d a$'s and $d a^{+}$'s). The integral sign symbolizes Grassmannian integration, which has some similarities to ordinary integration (and differentiation, see (C.42)). Cumbersome checking of minus signs can be avoided by combining every $d a_{k}$ with $d a_{k}^{+}$into commuting pairs, as in the notation

$$
\begin{equation*}
d a^{+} d a \equiv \prod_{k=1}^{n} d a_{k}^{+} d a_{k}, \tag{C.31}
\end{equation*}
$$

which we shall use in the following. Similar pairing will be done repeatedly in the following.

We check the completeness relation (C.26) for general n by verifying that it gives the right answer for an arbitrary inner product $\langle\psi \mid \phi\rangle$. Multiplying (C.9) by (C.26), we get

$$
\begin{gather*}
|\psi\rangle=\int d a^{+} d a e^{-a^{+} a} \psi\left(a^{+}\right)|a\rangle \tag{C.32}\\
\psi\left(a^{+}\right)=\langle a \mid \psi\rangle=\sum_{p} \frac{1}{p!} \psi_{k_{1} \cdots k_{p}} a_{k_{1}}^{+} \cdots a_{k_{p}}^{+} \tag{С.33}
\end{gather*}
$$

The inner product takes the form

$$
\begin{align*}
\langle\psi \mid \phi\rangle= & \int d a^{+} d a e^{-a^{+} a} \psi\left(a^{+}\right)^{\dagger} \phi\left(a^{+}\right) \\
= & \sum_{p q} \frac{1}{p!q!} \psi_{k_{1} \cdots k_{p}}^{*} \phi_{l_{1} \cdots l_{q}} \\
& \times \int d a^{+} d a e^{-a^{+} a} a_{k_{p}} \cdots a_{k_{1}} a_{l_{1}}^{+} \cdots a_{l_{q}}^{+} \tag{C.34}
\end{align*}
$$

By (C.28) the integral is non-zero only if $p=q$ and $\left(k_{1}, \ldots, k_{p}\right)=$ $\left(l_{1}, \ldots, l_{p}\right)$ up to a permutation,

$$
\begin{align*}
\int d a^{+} d a e^{-a^{+} a} a_{k_{p}} \cdots a_{k_{1}} a_{k_{1}}^{+} \cdots a_{k_{p}}^{+}= & \prod_{l \neq k_{1}, \cdots, k_{p}} \int d a_{l}^{+} d a_{l} e^{-a_{l}^{+} a_{l}} \\
& \times \prod_{m=k_{1}, \cdots, k_{p}} \int d a_{m}^{+} d a_{m} a_{m} a_{m}^{+} \\
= & 1, \tag{C.35}
\end{align*}
$$

and

$$
\begin{equation*}
\int d a^{+} d a e^{-a^{+} a} a_{k_{p}} \cdots a_{l_{1}} a_{k_{1}}^{+} \cdots a_{l_{q}}^{+}=\delta_{p q} \delta_{l_{1} \cdots l_{q}}^{k_{1} \cdots k_{p}} \tag{C.36}
\end{equation*}
$$

Hence, (C.34) gives

$$
\begin{equation*}
\langle\psi \mid \phi\rangle=\sum_{p} \frac{1}{p!} \psi_{k_{1} \cdots k_{p}}^{*} \phi_{k_{1} \cdots k_{p}} \tag{С.37}
\end{equation*}
$$

which is the right answer. Therefore (C.26) is correct for general n.
The connection between Grassmannian integration and differentiation can be seen as follows. Left and right differentiation can be defined by looking at terms linear in a translation over fermion b_{k},

$$
\begin{align*}
f(a+b) & =f(a)+b_{k} f_{k}^{\mathrm{L}}(a)+\frac{1}{2} b_{k} b_{l} f_{k l}^{\mathrm{L}}(a)+\cdots \tag{C.38}\\
& =f(a)+f_{k}^{\mathrm{R}}(a) b_{k}+\frac{1}{2} f_{k l}^{\mathrm{R}}(a) b_{k} b_{l}+\cdots \tag{С.39}
\end{align*}
$$

which suggest

$$
\begin{align*}
\frac{\partial}{\partial a_{k}} f(a) & :=f_{k}^{\mathrm{L}}(a), \tag{C.40}\\
f(a) \frac{\overleftarrow{\partial}}{\partial a_{k}} & :=f_{k}^{\mathrm{R}}(a) \tag{C.41}
\end{align*}
$$

(the extension to functions of both a and a^{+}is obvious). It follows that 'integration' is left differentiation:

$$
\begin{equation*}
\int d a_{k} f(a)=\frac{\partial}{\partial a_{k}} f(a) \tag{C.42}
\end{equation*}
$$

We shall now derive some further important properties of Grassmannian integration. Let $f\left(a^{+}, a\right)$ be an arbitrary element of the Grassmann algebra of the form by (C.20). Then

$$
\begin{equation*}
\int d a^{+} d a f\left(a^{+}, a\right)=f_{1 \cdots n, 1 \cdots n} \tag{C.43}
\end{equation*}
$$

It follows that the integration is translation invariant,

$$
\begin{equation*}
\int d a^{+} d a f\left(a^{+}+b^{+}, a+b\right)=\int d a^{+} d a f\left(a^{+}, a\right) \tag{C.44}
\end{equation*}
$$

Furthermore, for an arbitrary matrix M,

$$
\begin{align*}
\int d a^{+} d a e^{-a^{+} M a} & =\int d a^{+} d a \frac{(-1)^{n}}{n!}\left(a^{+} M a\right)^{n} \\
& =\int d a^{+} d a \frac{1}{n!} M_{k_{1} l_{1}} \cdots M_{k_{n} l_{n}} a_{l_{1}} a_{k_{1}}^{+} \cdots a_{l_{n}} a_{k_{n}}^{+} \\
& =\frac{1}{n!} M_{k_{1} l_{1}} \cdots M_{k_{n} l_{n}} \delta_{l_{1} \cdots l_{n}}^{k_{1} \cdots k_{n}} . \tag{C.45}
\end{align*}
$$

Using the identity

$$
\begin{equation*}
\epsilon_{k_{1} \cdots k_{n}} \epsilon_{l_{1} \cdots l_{n}}=\delta_{l_{1} \cdots l_{n}}^{k_{1} \cdots k_{n}}, \tag{C.46}
\end{equation*}
$$

where $\epsilon_{k_{1} \cdots k_{n}}$ is the n-dimensional ϵ tensor (with $\epsilon_{1 \cdots n}=+1$) we obtain the formula

$$
\begin{equation*}
\int d a^{+} d a e^{-a^{+} M a}=\operatorname{det} M \tag{C.47}
\end{equation*}
$$

since

$$
\begin{equation*}
\operatorname{det} M=M_{1 l_{1}} \cdots M_{n l_{n}} \epsilon_{l_{1} \cdots l_{n}} . \tag{C.48}
\end{equation*}
$$

The more general formula

$$
\begin{equation*}
\int d a^{+} d a e^{-a^{+} M a+a^{+} b+b^{+} a}=\operatorname{det} M e^{b^{+} M^{-1} b} . \tag{C.49}
\end{equation*}
$$

follows from the translation invariance (C.44) by making the translation $a+\rightarrow a^{+}+b^{+} M^{-1}, a \rightarrow a+M^{-1} a$. Note that (C.49) remains well defined if $\operatorname{det} M \rightarrow 0$.

We can interpret (C.44) as a translation invariance of the fermionic 'measure',

$$
\begin{equation*}
d a^{+}=d\left(a^{+}+b^{+}\right), \quad d a=d(a+b) \tag{C.50}
\end{equation*}
$$

A linear multiplicative transformation of variables

$$
\begin{equation*}
a_{k} \rightarrow T_{k l} a_{l}, \quad a_{k}^{+} \rightarrow a_{l}^{+} S_{l k}, \tag{C.51}
\end{equation*}
$$

has the effect

$$
\begin{equation*}
d\left(a^{+} S\right)=(\operatorname{det} S)^{-1} d a^{+}, \quad d(T a)=(\operatorname{det} T)^{-1} d a \tag{C.52}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\int d a^{+} d a f\left(a^{+} S, T a\right)=\operatorname{det}(S T) \int d a^{+} d a f\left(a^{+}, a\right) \tag{C.53}
\end{equation*}
$$

This follows easily from (C.43) and (C.48). According to (C.52), the fermionic measure transforms inversely to the bosonic measure $d x$: $d(T x)=\operatorname{det} T d x$.

We note in passing the formula

$$
\begin{equation*}
\int d a e^{-\frac{1}{2} a^{\mathrm{T}} M a}= \pm \sqrt{\operatorname{det} M} \tag{C.54}
\end{equation*}
$$

where T denotes transposition and M is an antisymmetric matrix (in this case only the antisymmetric part of M contributes anyway). This formula follows from (C.47), by making the transformation of variables

$$
\binom{a_{k}}{a_{k}^{+}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \tag{C.55}\\
1 & 1
\end{array}\right)\binom{b_{k}}{c_{k}}
$$

which leads to

$$
\begin{equation*}
\operatorname{det} M=(-1)^{n / 2} \int d b e^{-\frac{1}{2} a^{\mathrm{T}} M a} \int d c e^{\frac{1}{2} b^{\mathrm{T}} M b} \tag{C.56}
\end{equation*}
$$

where we assumed n to be even (otherwise $\operatorname{det} M=0$). As is obvious from the left-hand side of (C.54), the square root of the determinant of an antisymmetric matrix is multilinear in its matrix elements. It is called a Pfaffian.

States $|\psi\rangle$ are represented by Grassmann wavefunctions $\psi\left(a^{+}\right)$depending only on the a_{k}^{+}(cf. (C.33)). The representatives of operators \hat{A} depend in general also on the a_{k} :

$$
\begin{equation*}
\langle a| \hat{A}|a\rangle=: A\left(a^{+}, a\right) . \tag{C.57}
\end{equation*}
$$

In the normal ordered form (C.11), $A\left(a^{+}, a\right)$ is obtained from \hat{A} by replacing everywhere the operators by their Grassmann representative, keeping the same order, and multiplying by $e^{a^{+} a}$:

$$
\begin{equation*}
A\left(a^{+}, a\right)=e^{a^{+} a} \sum_{p q} \frac{1}{p!q!} A_{k_{1} \cdots k_{p}, l_{1} \cdots l_{q}} a_{k_{1}}^{+} \cdots a_{k_{p}}^{+} a_{l_{q}} \cdots a_{l_{1}} . \tag{C.58}
\end{equation*}
$$

(The $e^{a^{+} a}$ just comes from the normalization factor $\langle a \mid a\rangle$.)
It is now straightforward to derive the following rules:

$$
\begin{align*}
A \psi\left(a^{+}\right) & :=\langle a| \hat{A}|\psi\rangle \\
& =\int d b^{+} d b e^{-b^{+} b} A\left(a^{+}, b\right) \psi\left(b^{+}\right), \tag{C.59}\\
A B\left(a^{+}, a\right) & :=\langle a| \hat{A} \hat{B}|a\rangle \\
& =\int d b^{+} d b e^{-b^{+} b} A\left(a^{+}, b\right) B\left(b^{+}, a\right), \tag{C.60}\\
\hat{A} & =A\left(\hat{a}^{\dagger}, \hat{a}\right), \hat{B}=B\left(\hat{a}^{\dagger}\right), \hat{C}=C(\hat{a}) \\
\Rightarrow B A C\left(a^{+}, a\right) & =B\left(a^{+}\right) A\left(a^{+}, a\right) C(a) . \tag{C.61}
\end{align*}
$$

A useful identity is

$$
\begin{equation*}
\hat{A}=\exp \left[\hat{a}_{k}^{\dagger} M_{k l} \hat{a}_{l}\right] \Rightarrow A\left(a^{+}, a\right)=\exp \left[a_{k}^{+}\left(e^{M}\right)_{k l} a_{l}\right] \tag{C.62}
\end{equation*}
$$

This identity can be derived with well-known differentiation/integration tricks. Let $F(t)$ be given by

$$
\begin{equation*}
F(t)=\langle a| e^{t \hat{a}^{\dagger} M \hat{a}}|a\rangle \tag{C.63}
\end{equation*}
$$

To compute $F(1)=A\left(a^{+}, a\right)$ we differentiate with respect to t and subsequently integrate, with the initial condition $F(0)=\exp \left(a^{+} a\right)$. Differentiation gives

$$
\begin{equation*}
F^{\prime}(t)=\langle a| \hat{a}^{\dagger} M \hat{a} e^{t \hat{a}^{\dagger} M \hat{a}}|a\rangle=a_{k}^{+} M_{k l}\langle a| \hat{a}_{l} e^{t \hat{a}^{\dagger} M \hat{a}}|a\rangle . \tag{C.64}
\end{equation*}
$$

The \hat{a}_{l} needs to be pulled trough the exponential so that we can use $\hat{a}_{l}|0\rangle=a_{l}|0\rangle$. For this we use a similar differentiation trick:

$$
\begin{align*}
\hat{G}_{l}(t) & \equiv e^{-t \hat{a}^{\dagger} M \hat{a}} \hat{a}_{l} e^{t \hat{a}^{\dagger} M \hat{a}}, \\
\hat{G}_{l}^{\prime}(t) & =e^{-t \hat{a}^{\dagger} M \hat{a}}\left[\hat{a}_{l}, \hat{a}^{\dagger} M \hat{a}\right] e^{t \hat{a}^{\dagger} M \hat{a}}=M_{l m} \hat{G}_{m}(t), \quad \hat{G}(0)=\hat{a}_{l}, \\
\hat{G}_{l}(t) & =\left(e^{t M}\right){ }_{l m} \hat{a}_{m}, \\
\hat{a}_{l} e^{t \hat{a}^{\dagger} M \hat{a}} & =e^{t \hat{a}^{\dagger} M \hat{a}}\left(e^{t M}\right)_{l m} \hat{a}_{m} . \tag{C.65}
\end{align*}
$$

The differential equation for $F(t)$ now reads

$$
\begin{equation*}
F^{\prime}(t)=a_{k}^{+} M_{k l}\langle a| e^{t \hat{a}^{\dagger} M \hat{a}}|a\rangle\left(e^{t M}\right)_{l m} a_{m}=\left(a^{+} e^{t M} a\right)^{\prime} F(t), \tag{C.66}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
F(t)=\exp \left(a^{+} e^{t M} a\right), \quad A\left(a^{+}, a\right)=F(1)=\exp \left(a^{+} e^{M} a\right) \tag{C.67}
\end{equation*}
$$

Next we derive an important formula for the trace of a fermionic operator. It is usually sufficient to consider only even operators, i.e. operators containing only terms with an even number of fermionic operators or fermionic variables. Such \hat{A} and also their representative $A\left(a^{+}, a\right)$ commute with arbitrary anticommuting numbers, for example $A\left(a^{+}, b\right) c_{k}=+c_{k} A\left(a^{+}, b\right)$. The formula reads

$$
\begin{equation*}
\operatorname{Tr} \hat{A}=\int d a^{+} d a e^{-a^{+} a} A\left(a^{+},-a\right) \tag{C.68}
\end{equation*}
$$

for even \hat{A}. This trace formula can be derived as follows:

$$
\begin{align*}
\operatorname{Tr} \hat{A}= & \sum_{p=0}^{n} \frac{1}{p!} \sum_{k_{1} \cdots k_{p}}\left\langle k_{1} \cdots k_{p}\right| \hat{A}\left|k_{1} \cdots k_{p}\right\rangle \\
= & \int\left(d a^{+} d a\right)\left(d b^{+} d b\right) e^{-a^{+} a-b^{+} b} \\
& \sum_{p} \frac{1}{p!} \sum_{k_{1} \cdots k_{p}}\left\langle k_{1} \cdots k_{p} \mid a\right\rangle\langle a| \hat{A}|b\rangle\left\langle b \mid k_{1} \cdots k_{p}\right\rangle \\
= & \int\left(d a^{+} d a\right)\left(d b^{+} d b\right) e^{-a^{+} a-b^{+} b} \sum_{p} \frac{1}{p!} a_{k_{p}} \cdots a_{k_{1}} A\left(a^{+}, b\right) b_{k_{1}}^{+} \cdots b_{k_{p}}^{+} \\
= & \int\left(d a^{+} d a\right)\left(d b^{+} d b\right) e^{-a^{+} a-b^{+} b} \sum_{p} \frac{1}{p!} a_{k_{p}} \cdots a_{k_{1}} b_{k_{1}}^{+} \cdots b_{k_{p}}^{+} A\left(a^{+}, b\right) \\
= & \int\left(d a^{+} d a\right)\left(d b^{+} d b\right) e^{-a^{+} a-b^{+} b} e^{a_{k} b_{k}^{+}} A\left(a^{+}, b\right) \\
= & (-1)^{n} \int\left(d a^{+} d b\right) e^{a^{+} b} A\left(a^{+}, b\right) \\
= & \int\left(d a^{+} d b\right) e^{-a^{+} b} A\left(a^{+},-b\right) \tag{C.69}
\end{align*}
$$

which is the desired result. We integrated over a and b^{+}using ($d a^{+} d a$) $\times\left(d b^{+} d b\right)=(-1)^{n}\left(d a^{+} d b\right)\left(d b^{+} d a\right)$ and (C.49). In the last line we made the substitution $b \rightarrow-b$ using (C.52).

We note furthermore that omitting the minus sign from $A\left(a^{+},-a\right)$ in (C.68) leads to

$$
\begin{equation*}
\int d a^{+} d a e^{-a^{+} a} A\left(a^{+}, a\right)=\operatorname{Tr}(-1)^{\hat{N}} \hat{A} \tag{C.70}
\end{equation*}
$$

where \hat{N} is the fermion-number operator (C.12). This formula can be derived from the trace formula (C.68), the operator-product rule (C.60), with $B=\exp (i \pi \hat{N})$, and the application

$$
\begin{equation*}
\hat{B}=e^{i \pi \hat{a}^{\dagger} \hat{a}} \rightarrow B\left(a^{+}, a\right)=e^{-a^{+} a} \tag{C.71}
\end{equation*}
$$

of the rule (C.62).

